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Control of Neuromuscular Blockade in the Presence
of Sensor Faults

João M. Lemos, Member, IEEE, Hugo Magalhães, Teresa Mendonça*, Member, IEEE, and Rui Dionísio

Abstract—The problem of embedding sensor fault tolerance in
feedback control of neuromuscular blockade is considered. For
tackling interruptions of feedback measurements, a structure
based upon Bayesian inference as well as a predictive filter is pro-
posed. This algorithm is general and can be applied to different
situations. Here, it is incorporated in an adaptive automatic system
for feedback control of neuromuscular blockade using continuous
infusion of muscle relaxants. A significant contribution consists
in the experimental clinical testing of the algorithm in patients
undergoing surgery.

Index Terms—Bayes inference, hybrid systems, median filter,
neuromuscular blockade, outliers, physiological systems, supervi-
sory multiple models control.

I. INTRODUCTION

PHYSIOLOGICAL variables are associated to systems
whose dynamic behavior is highly uncertain and usu-

ally time varying. Furthermore, their measurement may be
unreliable and susceptible to random interruptions, due to the
complexity and the indirect principles upon which they rely.
“Interruptions” or “faults” are defined as situations in which the
signal yielded by the sensor is, during a transient period, not
related to the variable to be measured. If these measurements
are used for closing a control loop, their interruptions may
induce strong transients or even instability. Indeed, an inter-
ruption of measurement will be interpreted by the controller
as a fake disturbance to which it will react, thereby degrading
performance. Furthermore, if an adaptive controller whose
identifier relies on least squares is used, controller gains may
be strongly detuned since the quadratic criteria will greatly
amplify high amplitude errors. Last, but not least, interruptions
have an impact on safety of the patient undergoing surgery
which depends on sensor measurements.

Performing estimation in the presence of small duration
sensor faults, known as outliers, is an important problem in
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statistics [1]. Outliers are large deviations of the signal being
measured, occurring only in a few percent of the observed
samples, but probable enough not to be explainable by the tails
of a Gaussian distribution. Since outliers are due to unknown
causes and they cannot usually be modeled from first principles,
one has to resort to statistical methods to tackle the problems
raised by them.

The asymptotic relative efficiency of an estimator [2] is de-
fined as the ratio between the lowest achievable variance for the
estimated parameters (the Cramer-Rao bound) and the actual
variance provided by the estimator when a large data sample is
considered. Assume that the constant is to be estimated by ob-
servations of

where is a noise variable. If the noise has a Gaussian
distribution, the estimator given by the mean of the observations
has an asymptotic efficiency of 1. However, the situation is dif-
ferent if the noise is non-Gaussian, namely when outliers occur.
Robust statistics [3] provide methods that are considerably effi-
cient for nonnormal distributions. The literature on time series
[4]–[12] and computer vision [13], [14] supplies a plethora of
such methods and applications. In [15], algorithms for systems
identification with data containing outliers are described. How-
ever, embedding robust estimation in control (the problem at
hand here) received little attention. In [16], predictive adaptive
control in the presence of outliers is studied.

Consider now systems where a signal issued by a sensor is fed
back to a controller. For tackling sensor faults, the above statis-
tical methods may be used. During the periods in which mea-
surements are not issued by the sensor, control decision must be
made on the basis of a plant model used for reconstructing the
missing signal. In [17] sufficient conditions for the stability of
the closed-loop system under this situation are provided. Two
practical problems must be solved:

• detection of the sensor fault occurrence;
• signal reconstruction during the fault.
This paper concerns the referred problems in the context of

neuromuscular blockade control of patients undergoing gen-
eral anaesthesia. The methods considered are general and may,
in principle, be used for other types of physiological variables
whose measure is prone to transient faults. Several approaches
to the neuromuscular blockade control problem as well as an in-
troduction to this issue can be seen in [18]–[25]. Muscle relaxant
drugs are frequently given during surgical operations. The non-
depolarising types of muscle relaxant act by blocking the neuro-
muscular transmission (NMT), thereby producing muscle paral-
ysis. The level of muscle relaxation is measured from an evoked
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Fig. 1. Occurrence of measurement faults in a neuromuscular blockade record,
indicated by arrows. Clinical data obtained with an open-loop system.

EMG at the hand by electrical stimulation of the adductor poli-
cies muscle to supramaximal train-of-four stimulation of the
ulnar nerve. In a clinical environment the measurement of the
neuromuscular blockade level corresponds to the first single
response ( ) calibrated by a reference twitch, obtained by
defining a supramaximal stimulation current. This measurement
procedure is prone to failure due to the interaction between
technological devices and physiological systems, measurement
faults having been reported in practice [24]. These faults mani-
fest themselves as fast changes of the sensor output signal to un-
realistic values. Although their cause may be related to a poor
electrical coupling between the sensor electrodes and the pa-
tient, there are reported cases in which the cause is unknown.
Fig. 1 shows one example of the occurrence of measurement
faults in a neuromuscular blockade record, obtained in a clinical
environment with an open-loop system. The graphic shows the
temporal plot of a variable indicating muscle activity level.
For the patient is fully paralyzed while
corresponds to normal muscle activity. In the beginning of the
surgery, the patient, starting at , undergoes a bolus
of atracurium, a drug for inducing neuromuscular blockade. As
a consequence, falls down to a value close to 0%. Then, as
the drug is metabolyzed, the variable gradually increases.
Sensor faults are seen as sudden large deviations from a smooth
envelope of and they are indicated in Fig. 1 by arrows.

The contributions of this paper consist in the development
and test of sensor signal processing algorithms in order to
render control insensitive with respect to the occurrence of
sensor faults. These methods are incorporated in an adaptive
automatic system [26]1 for feedback control of neuromuscular
blockade using continuous infusion of muscle relaxants. A
significant contribution consists in the experimental testing
of the algorithms in the neuromuscular blockade control of
patients undergoing surgery.

1The package incorporates a variety of control and filtering techniques and it
can be used on patients undergoing surgery or as an advanced simulation tool
for education and training purposes.

The paper is organized as follows: after the introduction (Sec-
tion I), neuromuscular blockade and its control with switched
multiple models (Section II) are briefly reviewed in order to re-
call the aspects which are important for the present framework.
The main contributions are contained in Section III, where al-
gorithms for tackling sensor faults are presented. This section
includes the results of extensive simulations as well as clinical
cases obtained with neuromuscular blockade control. Conclu-
sions are drawn in Section IV.

II. NEUROMUSCULAR BLOCKADE MODEL AND CONTROL

This section introduces the model representing the dynamics
of neuromuscular blockade and explains the control strategy
used.

A. Model

The dynamic response of the neuromuscular blockade for
atracurium may be modeled as shown in Fig. 2 [23], [27]. A
linear pharmacokinetic model (block 1 of Fig. 2), described by
the following linear system of state equations:

(1)

relates the drug infusion rate [ ] with the
plasma concentration [ ], where ( , 2)
are state variables [implicitly defined by (1)] and [ ],

[ ] ( , 2) are patient-dependent parameters. The
physiological basis of the model described by (1) consists of
assuming two plasma compartments (central and peripheric)
both communicating with each other. As explained in [28], one
decides which class of compartmental model applies from the
number of exponential terms (disposition polyexponential equa-
tion) needed to describe the plasma concentration-time after in-
travenous administration. A linear second-order model (blocks
2 and 3 of Fig. 2), described by the cascade of two first-order
systems, written as

(2)

and

(3)

is assumed to relate with the concentration in the effect
compartment, [ ]. Here, is an intermediate
variable and [ ], [ ] are patient-dependent pa-
rameters. It is remarked that standard models developed for
atracurium [29], [30] do not consider the block 3. As shown
in [27], the inclusion of the extra delay associated to allows
a better replication of the observed experimental responses.
Finally, the pharmacodynamic effect, that relates to the
induced pharmacodynamic response, [%], may be modeled
by the Hill equation [30] (block 4 of Fig. 2)

(4)

where the parameters [ ] and (adimensional) are
also patient-dependent. The variable , normalized between
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Fig. 2. Block diagram of the neuromuscular blockade model.

Fig. 3. Modified switched multiple model controller for tackling sensor faults.

0 and 100, measures the level of the neuromuscular blockade, 0
corresponding to full paralysis and 100 to full muscular activity.

The final model for atracurium has, therefore, eight pa-
rameters [ , [ ], , , [ ], [ ],

[ ], and (adimensional)], which (apart from
following a uniform distribution) follow a multidimensional
log-normal probability distribution, as established using statis-
tical methods [27].

B. Control

To achieve a high level of neuromuscular blockade in a short
time, a bolus of atracurium is always administered in the begin-
ning of a surgery. After the administration of the bolus, the level
of the muscular blockade increases very quickly (the variable
, that measures muscular activity decreases), and full muscle

paralysis is induced in a few minutes. Following that initial pe-
riod, the control objective is to follow a specific reference profile
with a final target value . The value of the reference
profile is initially fixed at a low level (typically 2.5%) during
the first 30 min. It is then gradually increased to the final value
(typically 10%).

A constant gain digital PID controller incorporating several
modifications to accommodate the characteristics of the neu-
romuscular blockade has been developed in [23]. However,
the analysis of a large set of clinical results [23] indicated
that the variability of the patient’s responses to the infusion
of atracurium is much greater than that inferred by the data
available in the literature [30], therefore suggesting the need
for more elaborate control structures.

In order to cover a wide range of behaviors, a family of
nonlinear dynamic models, , , has

been generated using the probabilistic model for atracurium
discussed previously [27]. For each model , a PID controller

, , has been tuned according to a rule which
places a pair of dominant poles [31]. Based on this family
of controllers , , switching multiple model
control strategy has been proposed as an alternative method in
order to tackle the high degree of uncertainty in neuromuscular
blockade model knowledge [32]. The choice for the
number of models/controllers and their distribution was moti-
vated by experimental observations, which suggest that possible
outcomes are suitably covered. It is possible to stabilize these
bank models with a much smaller number of controllers but,
implying a loss of transient performance. Increasing allows
a much closer match between the unknown patient dynamics
and the selected controller, according to the adaptive strategy
underlying multiple model switching control.

The basic structure of a supervisor based switched multiple
model controller including a modification to tackle sensor faults
is seen in Fig. 3, as described in [32]–[34]. In Fig. 3, denotes
the sensor measure, denotes an estimate of free from out-
liers and is equal to when outliers are detected, being equal
to otherwise. The detection of outliers occurrence is made
by the block labeled FD in Fig. 3, to be discussed in the fol-
lowing section. Each of the bank of controllers is designed
to match the plant models , . This set of models
is assumed to “cover” all the possibilities of the actual plant .
In order to select at each time which controller best matches

, the principle according to which the best predictive perfor-
mance model implies the best controller performance is applied.
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For evaluating the model predictive performance, the output ,
, of each model is, therefore, compared with

the reconstructed output in order to build a prediction error
given at each time by

(5)

The performance index (PI) , , of model ,
which provides a measure of the corresponding prediction error
power , is computed by low-pass filtering according to

(6)

where is discrete time and is a parameter to adjust. The
switching logic block SL selects the index of the controller
to apply to the plant. This selection is given by the value of
corresponding to the least value of , but ensuring that, once a
controller is applied to the plant, it remains so for a minimum
amount of time . This is the so called “dwell time” condi-
tion, which prevents high frequency commutation among con-
trollers and prevents instabilities that could occur due to too
fast switching [33]. An integrator common to all blocks ensures
bumpless transfer between different controllers [33] (discrete
control transfer function ,

).

III. SENSOR FAULTS

Sensor faults correspond to transient periods in which the
measure issued by the sensor is not related to the variable to
be measured. The class of sensor faults considered in the paper
is seen as isolated or repeated (in time) occurrence of outliers.
Methods for reconstructing the measured signal in the presence
of outliers are now considered.

A. Median Filter

One possibility for modeling sensor faults consists in as-
suming that the observations (sensor measures) are obtained
by adding to the true value of the variable a noise whose
probability density function (pdf) is Gaussian

(7)

but whose inverse variance

(8)

is itself a random variable. By making assumptions with respect
to the pdf of it is possible to model the heavy tails associ-
ated with different types of outliers and to deduce algorithms
corresponding to these models. Furthermore, by following the
approach of [35] it is possible to derive estimation algorithms
for given from a unified point of view based on loss func-
tions. In the sequel, this approach is used to justify the median
filter. It could also be used to derive estimators based on non-
quadratic losses, suitable for adaptive self-tuning control in the
presence of outliers. However, a different method will be fol-
lowed leading to algorithms more adequate to combine with
switched multiple model control.

Assume that the noise standard deviation is a random variable
(r.v.) with pdf

(9)

The most likely value of is close to 1.5. However, higher
values of may also be produced, although with a much lower
likelihood, thereby modeling outliers. Let be the variable to
estimate, be its estimate and consider a function called
the loss [2]. The average loss associated to the estimate is
defined as

(10)

where is the expectation operator. It is shown in [35] that
the corresponding loss is the absolute value of the estimation
error, instead of its quadratic value as would be the case under
Gaussian noise of constant variance. The absolute value is a
classical loss function [2], introduced heuristically in order to
prevent large deviations of data from distorting the estimate. As
is well known [2], the corresponding optimal estimate (mini-
mizing (10) with given by the absolute value) is the median
of the data received. Therefore, the inclusion of a median filter
in order to remove outliers from the plant output seems to be ad-
equate. As discussed in [35], other possibilities may be obtained
by considering different loss functions .

Fig. 4 shows a real case of neuromuscular blockade control
obtained in a clinical environment. A filter comprising a cascade
of a three-point median filter followed by a fifth-order low-pass
FIR filter is employed. This is made according to the approach
suggested in [36]. As explained above, the median filter can-
cels the outliers. Once these are eliminated, the high frequency
Gaussian noise components are rejected by the FIR filter. The
orders have been selected so as to achieve these aims with the
introduction of the least possible delay in the signals. The order
of the median filter should depend on the duration of the out-
liers. Longer duration outliers require higher order median fil-
ters. Fig. 4(a) shows the sensor output and the upper graphic in
Fig. 4(b) shows the filtered signal, while the lower one shows
the record of the manipulated variable. At the in-
fusion of atracurium stops and the muscular activity gradually
raises to its normal value. As can be seen in Fig. 4, the major
outliers have been filtered out. As will be seen in trials obtained
with other methods, an increased tracking performance can be
achieved.

B. Bayesian Decision

Another approach for tackling sensor faults is based on
Bayesian decision and signal reconstruction. The Bayesian
decision procedure detects that a fault has occurred. The sensor
output is then replaced by a patient model output selected as
detailed later.

In order to explain the Bayesian decision scheme, consider
the model generating the faults as shown in Fig. 5. Let de-
note the observation made at discrete time and be the
corresponding true value of the variable to be measured. It is
assumed that . Under hypothesis , oc-
curring with probability , close to 1, the observation is
equal to the value of the variable to be measured, , with
added zero mean white Gaussian noise of (constant) variance

, denoted :

(11)
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Fig. 4. Clinical results of neuromuscular blockade control obtained with the nonlinear filter comprising a cascade of a three-point median filter followed by a
fifth-order low-pass FIR filter. (a) Sensor output and (b) filtered r(t) and control action.

Fig. 5. Model of measurement with interrupted observations.

This choice of corresponds to absence of sensor faults.
The sensor output is equal to the variable to be measured cor-
rupted with Gaussian noise which can be attenuated by a linear
filter.

Under hypothesis , which occurs with probability ,
close to zero, a measure interruption (sensor fault) occurs. In
this case, the observation is no longer related to the variable
being measured but, instead, is given by a random variable
with a pdf which presents “heavy tails,” thereby explaining the
frequent occurrence of high values of . If the signal to be
measured is confined between the values and , it is
reasonable to assume that the pdf of is uniform between these
two values. The choice of the pdf of as uniform was made a
priori, being justified only by the final results obtained in the
case of neuromuscular blockade control.

According to a Bayesian approach, in order to detect that a
given observation is actually noise, the probability of both hy-
pothesis, given the observations, ( , 1),
is computed. For this is

(12)

where is the set of observations made up to , is a
normalizing constant and is the probability of the occurrence

Fig. 6. The pdf of the observations in the presence of interruption measures.

of a nonfaulty measurement (see Fig. 5). Given the model of the
observations when holds, (12) reads

(13)

For computing (13), the value of is needed. Since this is
unknown, it is replaced by a convenient estimate . To this
end, several possibilities may be envisaged as discussed later.

For

(14)

with being the same constant as in (13). Both probabilities
and are then com-

pared. If

(15)

it is decided that a sensor fault has occurred. Fig. 6 provides
a graphic explanation, showing the pdf of the last observation
given each of both hypotheses. If the observation falls at,
say, point A, the length of the segment is smaller than the
length of and is selected. The opposite happens if
the observation falls at point B, in which (existence of a mea-
sure interruption) is decided. If it is decided that an interruption
has occurred, the observation is discarded and replaced by
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Fig. 7. Simulated results obtained with the nonlinear filter. (a) Sensor output and (b) filtered r(t) and control action.

Fig. 8. Simulated results obtained with the Bayesian decision in which the signal is reconstructed using the currently active model from the bank. (a) Sensor
output and test value and (b) filtered r(t) and control action.

a forecast of the true value , made from previous ob-
servations. Coupling this scheme with switched multiple model
control results in the structure of Fig. 3. Here, the fault detection
block FD embodies the above mentioned Bayesian decision rule
and .

C. Signal Reconstruction

When a fault is detected, the estimate of cannot be
obtained by low-pass filtering of . During these periods,
can be generated by a linear system mode, driven by the input

actually applied and defined by an equation of the form

(16)

If switched multiple model control is used, the orders
and and the coefficients , , ,

are selected as the ones of the closest model of the bank ,
, in the sense of minimizing the switched multiple

model control performance index. Another possibility is to es-
timate the coefficients , by standard recursive least squares
from plant data corresponding to periods in which outliers
are not detected. This second possibility will be referred to,
hereafter, as the “ARX model,” because (16) is the optimal one
step ahead predictor associated to an ARX model with the same
parameters.

D. Algorithm Comparison

For tackling sensor faults, two possible algorithms are con-
sidered.

• Filtering with a combination of a median filter and a FIR
filter. This will hereafter be referred for short as “nonlinear
filter.”
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Fig. 9. Simulated results obtained with the Bayesian decision in which the
signal is reconstructed using an ARX(p = 6, q = 1) model (filtered r(t) and
control action).

• Filtering with a combination of a Bayesian decision and
a FIR filter plus reconstruction. This will hereafter be re-
ferred for short as “Bayesian decision”.

These two methods are now compared by simulation results.
Fig. 7 shows a simulated result that mimics the clinical case
(Fig. 4) obtained with the nonlinear filter. The results obtained
using Bayesian decision is illustrated in Fig. 8. In this case
the control structure of Fig. 3 is used and the signal is recon-
structed using the currently active model of the model bank.
More specifically, in Fig. 3 is the closest model to data of
the model bank , . Fig. 9 shows the results ob-
tained with Bayesian decision in which the control structure of
Fig. 3 is again used, but the signal is now reconstructed using
an ARX( , ) model whose parameters are recursively
estimated on-line. The parameters of the Bayesian decision used
are and . This value of (used in the al-
gorithm) was intentionally chosen as different from the “true”
value used in the model generating the data. In the model, was
made equal to 0.825 for and to 0.7 for .
As can be concluded from Figs. 8 and 9, the Bayesian decision
leads to a superior performance. From (instant at
which the reference has already attained the target value [23])
up to the end, the mean square error (MSE) between and
its reference is computed. When the nonlinear filter is used, this
index takes the value 4.40. When the Bayesian decision is used
and the signal is reconstructed using the currently active model
of the model bank, the MSE takes the value 1.91. On the other
hand, when the signal is reconstructed using an ARX( ,

) model, the MSE is 2.00. Although these last two results
are not significantly different, the method relying on the recon-
struction of the signal using ARX models has the disadvantage
of having to define the optimal order for the model. By optimal
order of the model one means the values of and in (16) such
that the resulting prediction error power is the least possible.

An important issue to be considered is the degradation of
the algorithm performance with the interruption duration. In
fact, the interruption can not take too long since the signal is

Fig. 10. MSE as a function of � and p in the model generating the data.
(a) Nonlinear filter. (b) and (c) Bayesian decision in which the signal is
reconstructed using the currently active model from the bank. The parameters
of the decision algorithm are (b) p = 0:95 and � = 1:5, (c) p = 0:8 and
� = 1:5.
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Fig. 11. Clinical results obtained with the Bayesian decision in which the signal is reconstructed using the currently active model from the bank. (a) Sensor output
and test value and (b) filtered r(t) and control action.

Fig. 12. Clinical results obtained with the Bayesian decision in which the signal is reconstructed using the currently active model from the bank. (a) Sensor output
and test value and (b) filtered r(t) and control action.

reconstructed with a model. Fig. 10(a)–(c) shows the MSE as a
function of (Gaussian noise standard deviation) and (pa-
rameters of the model generating the simulated signals) for the
nonlinear filter and Bayesian decision in which the signal is re-
constructed using the currently active model from the bank. In
Fig. 10(b) the parameters of the decision algorithm are kept con-
stant at and , while in Fig. 10(c),
and . Since is the probability of occurrence
of an “outlier” in an isolated sample, smaller values of cor-
respond, therefore, to an higher probability of longer interrup-
tions. As can be seen by comparing both figures (remark the
different scales of the vertical axis), the Bayesian decision leads
to much lower values of the average error when decreases.

E. Clinical Trials

A study was approved by the Ethics Committee of Hospital
Geral de Santo António (Porto, Portugal) in order to evaluate

and compare the performance of different control strategies
including switched multiple model control. At this moment,
30 patients (with health features levels I to IV according to the
American Society of Anesthesiology (ASA) have undergone
elective surgery with automatic control of neuromuscular
blockade. The occurrence of measurement faults have been
observed in a reduced number of cases, some of them reported
in this paper.

Anesthesia was induced with intravenous fentanyl and
propofol. After calibration of the NMT module [37] of the
Datex AS/3 Anaesthesia Monitor (manufactured in Finland),
a 500 bolus of atracurium was administered.
Anesthesia was maintained with AIR or / , propofol
infusion or sevoflurane and fentanyl as needed. Atracurium
(1 ) was delivered by a computer controlled syringe
driver ( [38]). The controller
is implemented in a portable battery operated computer that
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Fig. 13. Clinical results obtained with the Bayesian decision in which the signal is reconstructed using the currently active model from the bank. (a) Sensor output
and test value and (b) filtered r(t) and control action.

receives the signal (via RS 232C) from the Datex AS/3
and updates the infusion rate delivered by the pump every 20 s.

Fig. 11 shows a clinical result obtained with the Bayesian
decision in which the signal is reconstructed using the currently
active model of the model bank. The upper graphic in Fig. 11(a)
shows the sensor output, while the lower one shows the test
value. The test value is a variable which assumes the value 1
when an outlier is detected, i.e., when (15) holds, being zero
otherwise. In Fig. 11(b), the upper graphic shows the filtered
signal, while the lower one shows the manipulated variable. The
vertical arrow indicates the end of the infusion, when the control
system is disconnected. The parameters of the bayesian filter
used are and . This choice was made on
the basis of simulation in order to get a compromise between
good detection and false alarms. As can be seen in Fig. 11, the
outliers have been removed and the resulting performance of
this strategy is good ( ).

Fig. 12 shows the results of a different clinical trial, the pa-
rameters of the decision algorithm being the same as in the pre-
vious case. Although the initial bolus was insufficient to drive

close to zero, when the controller was connected it was able
to track the reference ( ).

In Fig. 13 the results of another clinical trial are shown, the
parameters of the decision algorithm being the same as in the
previous cases. Despite the initial overshoot ( ),
the controller maintained the desired reference throughout the
surgery ( ).

IV. CONCLUSION

The problem of embedding sensor fault tolerance in feedback
control of physiological variables is considered from a unified
point of view. The presence of outliers due to sensor faults in
the feedback signal entering the controller causes a degradation
of tracking performance. Indeed, outliers will be seen as distur-
bances (actually not existing) to which the controller will react.
Outliers can be removed by a median filter. However, for longer
duration sensor faults, the median filter is no longer effective

and the output signal has to be reconstructed during the periods
in which it is missing. A structure relying on Bayesian inference
and a predictive filter is proposed. The above algorithms are il-
lustrated by simulations and clinical results using the control of
neuromuscular blockade as a case study.
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