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Adaptive Snakes Using the EM Algorithm
Jacinto C. Nascimento, Member, IEEE, and Jorge S. Marques

Abstract—Deformable models (e.g., snakes) perform poorly in
many image analysis problems. The contour model is attracted by
edge points detected in the image. However, many edge points do
not belong to the object contour, preventing the active contour from
converging toward the object boundary. A new algorithm is pro-
posed in this paper to overcome this difficulty. The algorithm is
based on two key ideas. First, edge points are associated in strokes.
Second, each stroke is classified as valid (inlier) or invalid (outlier)
and a confidence degree is associated to each stroke. The expecta-
tion maximization algorithm is used to update the confidence de-
grees and to estimate the object contour. It is shown that this is
equivalent to the use of an adaptive potential function which varies
during the optimization process. Valid strokes receive high confi-
dence degrees while confidence degrees of invalid strokes tend to
zero during the optimization process. Experimental results are pre-
sented to illustrate the performance of the proposed algorithm in
the presence of clutter, showing a remarkable robustness.

Index Terms—Adaptive potential, contour estimation, de-
formable models, expectation maximization (EM) algorithm,
robust estimation, snakes.

I. INTRODUCTION

DEFORMABLE models (e.g., “snakes”) have been widely
used as a way to estimate the object boundary when the

object shape is partially unknown. The deformable curve is an
elastic curve which is initialized close to the object boundary
and is able to elastically deform during the estimation process,
under the influence of image (external) forces and internal
forces. The ability of the curve to approximate the desired
image features depends on the action of the external forces,
whereas the internal forces impose smoothness constraints [1].

The design of image forces has been extensively studied see
[2]–[5]) as a way to improve the convergence of the active curve
toward the object boundary. The main difficulty concerns the in-
valid features detected in the image, i.e., features which are not
located at the object boundary, but they are caused by other ob-
jects or by inner edges. The presence of such features (outliers)
often attract the elastic model toward wrong shape configura-
tions.

A great amount of research has been done to improve the per-
formance of active contours in the presence of outliers, e.g., by
using a validation gate to reduce the search region [6], nonlinear
filtering techniques with non-Gaussian distributions (e.g., par-
ticle filters [7]), the use of geometric and dynamic constraints
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Fig. 1. Typical difficulties in the estimation of the the lip boundary. (a) Original
image. (b) Corresponding edges obtained with Prewitt operator. The presence of
pixels that do not belong to the object (e.g., face, nose, and tongue edge pixels)
often hampers the shapes estimates.

to reduce shape and motion variability [4], [8], and robust esti-
mation techniques which are able to reduce the influence of out-
liers on the final shape estimate [9]. Fig. 1 shows an example in
which the elastic model aims to estimate the outer boundary of
the lips using the edge points obtained by the Prewitt algorithm.
Although the edge points located at the lips boundary are cor-
rectly detected, there is a large number of outliers which make
shape estimation a difficult task.

This paper proposes a robust algorithm for the estimation
of the object boundary in the presence of outliers denoted as
“Adaptive Snakes.” The proposed method is based on two key
ideas. First, image strokes are used instead of edge points.
Middle-level features, such as strokes, are more reliable than
edge points. Strokes have been successfully used by several
authors in [9] and [10]–[12]. Second, new external forces are
used to update the contour model. In classic approaches, all the
image features are considered as valid and used to compute the
potential function. A different strategy is adopted in this paper.
We assume that the feature extraction algorithm produces valid
features, belonging to the object boundary (inliers), as well as
invalid features, produced by other objects or by inner edges
(outliers). Active contours should be able to discriminate both
types of features in order to discard the influence of outliers and
attract the contour model toward the inliers. This is done by
assigning a confidence degree to each feature. The confidence
degrees are not assigned by heuristic rules. They are defined
as the probability of each stroke being valid given the best
contour shape, and they are recursively computed using the
expectation maximization (EM) method [13]. These proba-
bilities are updated in each iteration using the EM algorithm.
The relationship between the proposed method and the unified
framework of shape analysis methods described in [14] is also
studied. It is concluded that the adaptive snakes belong to the
unified framework and can be implemented using its equations.

The paper is organized as follows. Section II describes related
work. Section III describes the estimation of active contours,
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assuming that we know which features are valid and which
are outliers (ideal case of known labeling). Section IV extends
these ideas to the case in which the labeling information is un-
known. Section V deals with optimization issues, and Section
VI presents the experimental results. Section VII concludes the
paper.

II. RELATED WORK

The EM method was proposed in the 1970s [15] as a tool to
solve maximum likelihood (ML) problems when some observa-
tions are missing (incomplete observations). Since then, it has
been used in a wide variety of applications, e.g., in mixture esti-
mation [16], neural networks [17], [18], hidden Markov models
(HMMs) [19], [20], system identification [21], graphical models
[22], [23], and image restoration [24].

The EM method has been recently used in object tracking
to cope with hidden variables, e.g., shape and motion param-
eters (e.g., [25]–[27]). In [25], appearance models are used to
describe the visual data. The EM method is employed to esti-
mate the parameters of the appearance models from the data. In
[27], a new EM contour algorithm is introduced. The E-step esti-
mates the posteriori probability density function over a discrete
set of shape deformations and the M-step estimates the contour
location. The EM method has also been used in the context of
object tracking using multiple motion and shape models [21],
[28]. Multiple model trackers have been proposed to deal with
sudden changes in shape or motion variables, which cannot be
easily tackled by a single dynamical model. Models identifica-
tion [21], [28] can be achieved using EM method. Another ap-
plication concerns the representation of image features (edge
points) by a mixture of Gaussians as an intermediate step in
the estimation of the object contour. This approach is a way to
perform data compression and to overcome the correspondence
problem between the model and the data [26]. In this work, the
outlier features are represented by a normal distribution with a
large covariance matrix.

A related problem in which the EM algorithm has been used
concerns three-dimensional shape and motion estimation from
a sequence of images, assuming a rigid shape [29] (shape from
motion problem [30]). In [29], the EM algorithm is used to solve
the correspondence problem, i.e., the association between image
features and model points. This is done by computing a confi-
dence degree for each pair of feature/model point. The object
shape is then estimated under the rigidity assumptions, taking
all the data points into account, with different confidence de-
grees.

Another class of methods relying on confidence degrees, are
the data association methods [e.g., the probabilistic data asso-
ciation filter (PDAF) and the joint probabilistic data association
filter (JPDAF) [31]], widely used in target tracking for surveil-
lance applications. These methods have been used to track iso-
lated and multiple targets in the presence of clutter. The PDAF
tracker provides robust estimates of the targets position and ve-
locity in the presence of outliers and misdetections since it com-
putes the association probabilities between the observed data
and the estimated trajectory of the target, assuming that there

Fig. 2. Image strokes: Valid strokes (y ; y ) and outliers (y ; y ; y ).

are detection errors (false positives and false negatives). How-
ever, the association probabilities are not obtained using the EM
algorithm. They are computed by a sub optimal approximation
of the a posteriori density of the state variables using a Gaussian
distribution.

The method proposed in this paper is different from the above
methods since it uses the EM algorithm to estimate the object
shape in the presence of outliers, and assuming that shape is un-
known and it may deform. Furthermore, the proposed method is
based on middle level features (strokes) which are more reliable
and informative than edge points.

III. IDEAL CASE

This section addresses shape estimation in the presence of
outliers, assuming that the feature labels are known, i.e., as-
suming we know which features are valid and which are outliers.
This is, of course, an unrealistic hypothesis, since we usually do
not know which strokes are invalid. However, it is a useful step
toward the final solution for the problem. For the sake of sim-
plicity, no regularization forces will be considered in this sec-
tion.

Let be the set of all the features detected in an image orga-
nized in strokes being the set of observa-
tions (edge points) belonging to the th stroke.1 Fig. 2 shows the
organization of the data in strokes. In this figure, the object to
be estimated is a rectangle, the strokes belong to the ob-
ject boundary (inlier strokes), and the strokes do not
belong to the rectangle, thus being outliers.

Let be a contour model defined by a sequence of two-dimen-
sional (2-D) points . The goal is to approximate
the data contained in , or a subset of it, by the contour model .

To accomplish this, we shall consider the potential function

(1)

where is the th model unit, is the th observation of the
th stroke, and is a set of stroke labels de-

fined as follows: if the th stroke is valid, ; oth-
erwise, measures the influence of on the model
unit . In this paper, we assume that is a gaussian kernel

with mean and covariance when
and the outliers have a constant potential within the analysis
interval. Therefore

if
if

(2)

1A standard edge-linking algorithm is used to compute the image strokes.
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In this way, the invalid features only influence the dc value of
the potential function,2 not its minima.

If were known, the contour model could be obtained by
minimizing the contour energy as follows:

(3)

where

(4)

Equation (4) is equivalent to the snake algorithm with the Cohen
potential [3] if we assume that all data are valid, i.e., .

The problem may also be addressed in a probabilistic frame-
work, by assuming that are random variables with proba-
bility density function

(5)

In this case, the log likelihood function is

(6)

and the maximization of the log likelihood function leads to the
optimization problem defined in (4).

In practice, we do not know which features are valid and
which are outliers. The labels are unknown and we need ad-
ditional techniques to tackle this problem. This difficulty is ad-
dressed in the next section.

IV. ADAPTIVE POTENTIAL

Since the stroke labels are unknown in practice, the object
contour should be estimated by maximizing the joint probability
density function

(7)

where is a prior distribution. Using (5), we obtain

(8)

The maximum a posteriori (MAP) estimates are obtained by
solving the optimization problem

(9)

This is, however, a difficult problem since we have to take into
account every possible combination of labels and it is not pos-
sible to obtain a closed form expression for (8) nor to analyti-
cally optimize it.

The EM method proposed in [15] can be used to solve this
difficulty. In its original formulation, EM is presented as an al-

2The dc level of the potential function (1) is�mL wherem is the number of
invalid features (outliers)

gorithm to perform ML estimates [13], [15], [32], [33]. The EM
method can be used if there is an auxiliary variable such that

has a simpler expression than and can be
optimized in an analytical way. The function is de-
noted complete log probability distribution.

If was observed, the unknown variables would be esti-
mated by

(10)

Since is not known, we cannot estimate using (10). The
EM algorithm replaces by its expected value with
respect to the hidden variables , i.e.,

(11)

where is the best estimate of . An improved estimate is
obtained by optimizing with respect to . A formal
proof of the EM method can be found in [13]. This procedure is
recursively performed until convergence is achieved. Equation
(11) can also be written as

(12)

where is a prior density and

(13)

The EM method approximates the MAP estimate by a se-
quence of contour estimates , obtained as
follows.

• E-step: Calculation of the auxiliary function

(14)

• M-step: Optimization of

(15)

The E-step in the MAP method (14) is the same as in the ML
approach. However, the M-steps are different since
is augmented by an additional term depending on prior density

[see (12)]. The presence of this term leads to the appear-
ance of the so called internal energy, which is a regularization
term used in deformable contours methods.

Equation (14) can be rewritten as follows:

(16)
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where

(17)

The second term in (16) is the outlier potential which does not
depend on the contour model . Thus

(18)

Using (1) and (6), can be written as (the constant is dis-
carded)

(19)

Since all strokes are considered as valid , a Gaussian
distribution is used to model the potential in (1)

(20)

where does not depend on . Furthermore,
we shall assume that where is an
internal energy. Therefore, is a Gibbs distribution

. The regularization term used in this paper
is similar to the one proposed in [34] which tries to keep the
distance between consecutive model points close to an average
distance , i.e., , where
is the distance between consecutive model points and is the
average distance specified by the user.

Therefore, the function becomes

(21)

where , and

(22)

is denoted as an adaptive potential since it depends on the con-
fidence degrees of the image strokes which vary during the
estimation process.

Let us consider the estimation of the weights in the E-step
of the EM algorithm. Using (1), (2), and (5)

(23)

Assuming that are independent random variables

(24)

Therefore, comparing (23) and (24)

(25)

Using (17)

(26)

where is a normalization constant, can be obtained by
computing

(27)

since

(28)

then

(29)

where is the number of model units and is the length of
the th stroke, and .

V. CONTOUR ESTIMATION

The contour estimation is performed by the EM algorithm
described in the previous section. We shall now consider some
additional details. The M-step involves the minimization of an
energy with two terms: a regularization term which tries to keep
the distance between consecutive model points close to an av-
erage distance and an image dependent term given by (22).
Therefore

(30)

The minimization of (30) is performed in the M-step as fol-
lows:

(31)

Using the gradient algorithm

(32)

where is the gradient operator defined by
. The algorithm is a generalized EM

(GEM) [13], since it does not attempt to find the value of that
globally maximizes the function .

Equation (32) can be rewritten as follows:

(33)
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where are gains,
are interpreted as internal

and external forces applied to the model unit , respectively.
A gain is used to normalize the internal force

and is an adaptive gain which tries to avoid abrupt
changes of the model units in a single iteration (details can be
found in [14]). After straightforward manipulations, we obtain
the following expressions for the internal and external forces:

(34)

(35)

The external forces (35) can also be written in a different way.
If we define a weight function , the
external forces are given by

(36)

Therefore, the external force applied to becomes

(37)

where

(38)

are denoted as the mass and centroid of the th unit.
Equation (37) has an intuitive meaning. The external force

attracts each model unit toward a data centroid computed
as a weighted sum of edge points. The force magnitude is pro-
portional to the distance from the model point to the centroid.
These expressions are similar to the ones derived in [14] which
considers several methods sharing the same structure and de-
noted as a unified framework for active contours. The methods
belonging to this framework share a set of common properties
namely: In each iteration, the model units are attracted toward
data centroids using different choices for .

Table I summarizes the adaptive snake algorithm. The next
section presents experimental results and performs a compar-
ison between the snake and adaptive snake algorithms.

TABLE I
ADAPTIVE SNAKES

Fig. 3. Image potentials obtained with (a) � = 1, (b) � = 5, and (c) � = 15.

VI. EXPERIMENTAL RESULTS

This section presents experimental results illustrating the per-
formance of the proposed algorithm in the estimation of object
boundaries in synthetic and real images. We compare the pro-
posed algorithm with the classical snakes which is a special case
of the proposed method, assuming that all image features are
valid. A statistical study is provided to assess the performance
of both methods when the number of outliers is increased, in
synthetic images. Then, we illustrate the performance of both
methods in real images. To improve the performance of the al-
gorithm, and its convergence rate, the following procedures are
adopted: in each iteration, the boundary model is resampled at
equally spaced points; a gain is used to nor-
malize the internal forces; independent gain factors acting
on each model unit are used as described in [14].

The first example illustrates the estimation of a square shape
in a cluttered environment. Fig. 4 shows the results obtained
with the snakes in a synthetic image. The size of the image is
256 256 and pixel was used [see (2)]. This parameter
has a key role in the design of the external forces. If the value of

is set too high, the centroids [see (38)] will be located close
to the mass center of the data. This happens, since the potential
valleys are very broad and overlap. On the contrary, if is set
too small, the potential valleys are narrow. Thus, the model units
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Fig. 4. (Top row) Results obtained with snakes and (bottom row) the
correspondent attraction valleys. Each row shows initial, intermediate, and
final results.

Fig. 5. (Top row) Results obtained with adaptive snakes potential and (bottom
row) the correspondent attraction valleys. Each row shows initial, intermediate,
and final results.

are only attracted by a small amount of data points in the
vicinity of the units. In this case, it is not possible to merge the
influence of different edge points. This means that the object
boundary may not be correctly estimated. Fig. 3 illustrates the
potential function for different values of . In the next examples,
we assume that .

Fig. 4 shows the performance of snakes in this example. The
first row shows the image features and the contour model at

. It is shown that the model gets stuck in the poten-
tial valleys associated with outliers. The second row shows the
potential function of the snake algorithm which remains con-
stant during the estimation process. One can see that the valleys
remain invariant. The valleys associated with the outliers are not
removed and produce a strong attraction of the contour model.
This explains why the estimates obtained with the snake poten-
tial do not converge toward the object boundary. The model units
get stuck in the valleys (local minima) associated to the outliers.

Fig. 5 shows the results obtained with adaptive snakes at the
same iterations. The adaptive potential changes during the opti-
mization process managing to assign larger weights to the true
strokes and discarding the influence of the outliers, since they
have smaller lengths and are farther from the contour. It is con-
cluded that the removal of the outlier valleys is crucial to achieve
accurate estimates of the object boundary. The ability of the po-
tential function to change during the iteration process is a key
issue for the success of this method. In this way, it is possible to
modify the external forces applied to the contour model.

Monte Carlo tests were performed to evaluate the perfor-
mance of both methods in the estimation of the square object.

Fig. 6. Randomly generated data with (left) p = 30%; � = 3, (center) p =

60%; � = 10, and (right) p = 100%; � = 20.

The test images were obtained by adding random strokes to the
original image. The number of outlier strokes is randomly gen-
erated and the length of each stroke is a random variable with
gamma distribution. The parameters of the gamma distribution
are , where and are the mean and
variance of the stroke length. The initial point of each stroke
is randomly generated with uniform distribution in the image
domain.

In these experiments, two parameters were changed: the
number of strokes (stroke percentage ) and the average length

. The stroke percentage is defined as the sum of stroke
lengths divided by the object perimeter. For each value of

, the stroke percentage was changed from 10% to 100%.
Three values were considered for the average stroke length:

. Fig. 6 shows three sample images used in the
tests with % % %.

The final shape estimates were evaluated using two distances:
the average distance and the maximum distance defined as

(39)

(40)

where

(41)

is the average distance from the contour model to the true
boundary (ideal contour) defined by the set , and

(42)

is the largest distance from the contour model to the true
boundary. The other two measures are
obtained by changing the role of and in (41) and (42).

Fig. 7 shows the performance of both methods for several
values of and . The solid line corresponds to the estimates
obtained with the adaptive snake and the dashed line corre-
sponds to the snake algorithm with the Cohen potential. These
results were computed by performing ten experiments for each
test condition. The first row shows the values of while the
second shows the results of . It is concluded from Fig. 7
that the proposed algorithm is robust against the presence of out-
liers while the snake algorithm shows a significant degradation
when the noise level increases, specially in the case of small
strokes. When the average length is small, a large number of
strokes are generated filling the whole image plane. In this case,
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Fig. 7. (Dashed line) Results obtained with snake and (solid line) adaptive snake. (First row)D . (Second row)D . From left to right, � = 3; � = 10; � =

20.

Fig. 8. (First row) Shape estimates and (second row) snake potential.

Fig. 9. (First row) Shape estimates and (second row) adaptive potential.

the deformable model gets easily stuck during the convergence
process.

Figs. 8 and 9 show an example concerning the estimation of
the lips boundary. The size of the image is 200 250, and

. The strokes detected in the image are represented as thin
yellow lines. The initialization is far from the lips boundary;
therefore, the model units are attracted by outliers located at the
face contour. The poor convergence of the snakes is notorious
[see Fig. 8] since it is sensitive to invalid strokes, as well. The
results obtained with adaptive snakes are much better [Fig. 9]

since the method manages to provide correct estimates of the
lips contour. The final estimates accurately represent the lips
boundary.

From this point on, we present experimental results obtained
with adaptive snakes only. Fig. 10 shows five artistic images,3

the strokes detected in the image (yellow lines), the initial con-
tour (red line), and the evolution of the contour model estimated
using the adaptive potential.

The sizes of images, the number of detected strokes, and the
values of the parameter are summarized in Table II.

Fig. 11, shows the evolution of the adaptive potential pro-
posed herein, as well as the position of the contour model (green
line). Dark valleys have the strongest influence on the contour
estimates. A similar behavior is observed in the first two exam-
ples (first and second row of the Fig. 11). However, the second
example has much more strokes than the first. Therefore, the
convergence of the algorithm is faster in the first example than
in the second case (compare the second column of Fig. 11).

In the sea stack example (third row), the clouds and the sea
strokes have a strong influence in the first few iterations. When
the contour model approximates the stack boundary, the longest
stroke starts to have a stronger influence and the converge to the
correct boundary is achieved.

In the cabbage example, there are several strokes which be-
long to the cabbage boundary. This example is different from the
previous ones since the object of interest is described by a mul-
tiple strokes. During the first iterations, the upper right stroke
has a strong influence on the model configuration, providing an
initial attraction valley. In this way, it is possible to estimate the
model units in this region well (see left column in the fourth
row). Then, the left stroke starts to create its own valley, which
helps the contour model to estimate the left boundary. Finally,
on the right column we see the final model. Although the left
stroke is the only visible valley in Fig. 11, its influence is not
enough to attract all the model units located far from this valley.

3These images were obtained from http://www.billatkinson.com/—original
works of art by Bill Atkinson.
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Fig. 10. Shape estimates using adaptive snakes: (first row) round rock, (second
row) round beach stones, (third row) sea stack at sunset, (fourth row) cabbage,
and (fifth row) waterfall.

TABLE II
EXPERIMENTAL RESULTS OBTAINED WITH ADAPTIVE SNAKES

In this example, we see the importance of the individual contri-
bution of the strokes taken at different iterations of the estima-
tion process.

The last example (waterfall) is similar to the previous one.
In this case we have used two open lines to estimate the object
shape. These examples, illustrate that the algorithm manages to
solve situations where the object is described by a single stroke
and by multiple strokes detected in the image. Fig. 12 shows the
detected strokes, as well as the initializations.

VII. CONCLUSION

This paper describes a new algorithm for the estimation
of objects boundaries in the presence of outliers. The object
boundary is approximated by a deformable contour as in
snakes, defined by a sequence of 2-D points (model units). The

Fig. 11. Evolution of the adaptive potential through the iterative process.
Circles denote the convergence of the model.

Fig. 12. Strokes detected in the images (circles are the initial position of the
model).

model units are deformed by the action of internal forces and
external forces computed using an image potential. However,
instead of using a classic potential function which remains
invariant during the shape estimation process, an adaptive
potential is proposed which is able to discard the influence of
outliers. This is achieved as follows. Image features (edges
points) are organized in strokes and a binary label variable is
associated to each stroke. The label should be one if the stroke
belongs to the object boundary and zero otherwise. Since this
information is not available, a confidence degree is assigned
to each stroke, being updated during the estimation process.
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Therefore, all strokes contribute to the image potential but with
different weights. The image potential and the contour model
are recursively obtained by the MAP method using the EM
algorithm.

Experimental tests show that the proposed algorithm is ro-
bust and provides much better results than classic methods in
the presence of clutter, achieving significant robustness. It was
also observed that the adaptive snakes are robust with respect to
initialization specially when the outlier strokes are smaller than
the object strokes.
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