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ABSTRACT. In this paper we consider random dynamical systems formed by concatenating maps
acting on the unit interval [0, 1] in an iid fashion. Considered as a stationary Markov process, the
random dynamical system possesses a unique stationary measure v. We consider a class of non
square-integrable observables ¢, mostly of form ¢(x) = d(z, xo)_é where xo is non-periodic point
satisfying some other genericity conditions, and more generally regularly varying observables with
index o € (0,2). The two types of maps we concatenate are a class of piecewise C? expanding
maps, and a class of intermittent maps possessing an indifferent fixed point at the origin. Under
conditions on the dynamics and « we establish Poisson limit laws, convergence of scaled Birkhoff
sums to a stable limit law and functional stable limit laws, in both the annealed and quenched case.
The scaling constants for the limit laws for almost every quenched realization are the same as those
of the annealed case and determined by v. This is in contrast to the scalings in quenched central
limit theorems where the centering constants depend in a critical way upon the realization and are
not the same for almost every realization.
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1. INTRODUCTION

In this paper we consider non square-integrable observables ¢ : [0,1] — R on two simple classes
of random dynamical system. One consists of randomly choosing in an iid manner from a finite
set of maps which are strictly polynomially mixing with an indifferent fixed point at the origin, the
other consisting of randomly choosing from a finite set of maps which are uniformly expanding and
exponentially mixing. The main type of observable we consider is of the form ¢(z) = d(z, 130)_é,
a € (0,2) which in the IID case lies in the domain of attraction of a stable law of index «. For
certain results the point zy has to satisfy some nongenericity conditions and in particular not be a
periodic point for almost every realization of the random system (see Definition . Some of our
results, particularly those involving convergence to exponential and Poisson laws hold for general
observables that are regularly varying with index «.

Our setup is to consider a finite set of m maps of the unit interval and choose from the set
{T;}7* in an iid fashion according to a probability vector (p1,...,pm).

Let Q := {1,...,m}*, and define on € the product measure P := {(p1,...,pm)}%. The left shift

o on Q preserves P. We write w € Q as w = (...,w_1,wp, w1, ...,w,) and denote
(1.1) T :=Tyn-1,0...0T,, =T, ,0...0T,,

Fixing w € 2 we form the quenched discrete time Birkhoff sum

n—1
w 1 i
(12) Sn = bn]z(:)¢oTi; — Cn,
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for some sequence of positive scaling constants b,, ¢,, and the quenched continuous time process
1 il .
(1.3) ‘_17 Z poT) —tey, t>0,
§j=0

Amongst other results, we describe the convergence of this quenched Birkhoff sum to a stable
law and of the corresponding quenched continuous time process to a Lévy process (in the
J1 Skorohod topology) for P-a.e. w € Q under various assumptions. A key result is that the
scaling constants b,, ¢, are the same for P-a.e. w and are the same as for the annealed system.
Our proofs are based on a Poisson process approach developed for dynamical systems by Marta
Tyran-Kaminska [TK10a, [TKI0b]. Our main results are given in detail in Section [6]

2. PROBABILISTIC TOOLS
In this section, we review some topics from Probability Theory.
2.1. Regularly varying functions and domains of attraction. We briefly describe here the

relations between domains of attraction of stable laws and regularly varying functions; we refer to
Feller [Fel71] or Bingham, Goldie and Teugels [BGT8T7] for more details.

Definition 2.1 (slow variation). A measurable function L : (0,00) — (0,00) is slowly varying if
for all X >0,

AT

Let (Y, v) be a probability space.

Definition 2.2 (regular variation). We say that ¢ : Y — R is regularly varying with index o > 0
(with respect to v) if there exists p € [0,1] and a slowly varying function L such that

(2.1) lim 28>0 g w2092

=1.
w250 1|6] > 7) v 2L (z)

Definition 2.3 (scaling constants). We consider a sequence (by)n>1 of positive real numbers such
that

(2.2) nlgngo nv(|g| > b,) =1

The sequence b, plays the role of scaling constants in stable limit theorems. For ¢ regularly

varying such a sequence can be written as b, = néz(n) for a slowly varying function L. As a
consequence, with L the slowly varying function corresponding to ¢,

L(by,
limn(b)

n—00 b%

=1,

and for every A > 0,
(2.3) ILm nv(|¢| > Aby) = A7
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Definition 2.4 (centering constants). Let ¢ : Y — R be a measurable function such that v(¢ #
0) = 1. We assume that ¢ is reqularity varying with index o € (0,2). Let (b,) be a sequence of
positive numbers as in (2.2)).

We define the centering sequence (cn)n>1 by

0 if a € (0,1)
en =1 - Eu(dlyg<p,y) fa=1
2E,(¢) if € (1,2)

Remark 2.5. When « € (0,1) then ¢ is not integrable and one can choose the centering sequence
(cn) to be identically 0. When o = 1, it might happen that ¢ is not integrable, and it is then
necessary to define ¢, with suitably truncated moments as above. If ¢ is integrable then center by
cn = nb 'E,(¢).

We will use the following asymptotics for truncated moments, which can be deduced from
Karamata’s results concerning the tail behavior of regularly varying functions:

Proposition 2.6 (Karamata). Let ¢ be reqularly varying with index o € (0,2). Then, setting
B:=2p—1 and, fore >0,
0 if € (0,1)
(2.4) cale) == —Bloge ifa=1
el=*Ba/(a—1) ifa€(1,2)
the following hold for all e > 0:

(a) Eu (611 g1eb,) ~ 5 (ebn)*v(|8] > ebn),
(b) if a € (0,1),

(07

Ey (1911 qig1<ebny) ~ 75 0nr (18] > ebn),

-«
(c) if a € (1,2),
lim EEV(¢1{|¢|>gbn}) = cale),

n—oo by,
(d) if =1,
. n
A 3B (@l feb<pol<bay) = Cale),
(e) if =1,

n ~
b*Ez/(W’l{\qb\gabn}) ~ L(n),
n
for a slowly varying function E,
In our results for concreteness we will consider the observable

(2.5) Guo (@) = d(w,20) "=

where ¢ is a point in [0, 1], the phase space of the dynamical systems we consider.
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2.2. Lévy a-stable processes. A helpful and more detailed discussion can be found, e.g., in [TK10al,
TKI10b].

X(t) is a Lévy stable process if X(0) = 0, X has stationary independent increments and X (1)
has an a-stable distribution.

The Lévy-Khintchine representation for the characteristic function of an a-stable random variable
X, with index « € (0,2) and parameter 3 € [—1,1] has the form:

Ele*X] = exp [itaa + / (" =1 —itwl iy 1)(x))Ta(dx)

where

Bt atl

0 a=1"

o 11, is a Lévy measure given by

dlla = a(pl(g,00) (@) + (1 = P)1(- o) (2))]2] ™ dz

® a4y =

B+1
Op:T

Note that p and 8 may equally serve as parameters for X, 3. We will drop the 8 from X, g, as
is common in the literature, for simplicity of notation and when it plays no essential role.

2.3. Poisson point processes. Let (7),),>1 be a sequence of measurable transformations on a
probability space (Y, B, ). For n > 1 we denote

(2.6) T :=T,o0...0Ty.
Given ¢ : Y — R measurable, recall that we define the scaled Birkhoff sum by

n—1
1 .
n =0

for some real constants b, > 0, ¢, and the scaled random process X,,(t), n > 1, by

nt|—
1 .
(2.8) = ™ g ¢OT1] —ten, t >0,
7=0

For X,(t) a Lévy a-stable process and B € B((0,00) x (R/{0})) define
N(a)(B) = #{S >0: (S,AXQ(S)) S B}

where AX,(t) := Xa(t) — Xo(t7).

The random variable N(,)(B), which counts the jumps (and their time) of the Lévy process
that lie in B, is finite a.s. if and only if (m x II4)(B) < co. In that case N(,)(B) has a Poisson
distribution with mean (m x II,)(B).

Similarly, for the process given by , define

. 1—1
N (B) :=#{j21: (fld’be> eB}, n>1,
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N, (B) counts the jumps of the process (2.8 that lie in B. When a realization w €  is fixed we

define
. j—1
Ny (B) :—#{jzl : (”’bT) GB}, n> 1.
n n

Definition 2.7. We say Ny, converges in distribution to N,y and write
d
Nn — N(a)

if and only if Nn(B)iN(a)(B) for all B € B((0,00) x (R\ {0})) with (m x I1,)(B) < co and
(m x I1,)(0B) =

2.4. Skorohod J; topology. Let D[0,00) be the space of all R-valued cddldg functions ¢ on
[0, 00), that is functions which are right continuous and have finite left hand limits for all ¢ > 0.
Let A denote the set of strictly increasing continuous maps A of [0, 0o] to [0, o] such that A(0) =0
and A(o0) = oc.
The Skorohod J; topology on D[0, 0o) is defined as follows: ¢, converges to v in the J; topology
if and only if there exists a sequence {\,} C A such that

sup [An(s) —s| — 0
S

and

sup [n (An(s)) — ¢(s)| = 0

s<m

for all positive integers m.

3. MODES OF CONVERGENCE
Consider the process X, determined by the observable ¢ (that is, an iid version of ¢ which
regularly varying with the same index o and parameter p ). We are interested the following limits:

(A) Poisson point process convergence.
NY % N

with respect to v for P a.e. w where N(,) is the Poisson point process of an a-stable process
with parameter determined by v, the annealed measure.
(B) Stable law convergence.

1 "= .
S¥ = FZ GoT! —cp b Xa(1)
7=0

for P-a.e. w, with respect to v*, for ¢ regularly varying with index av and X, (t) the corre-
sponding a-stable process, for suitable scaling and centering constants b,, and c,. See
for the definition of Tg.

(C) Functional stable law convergence.

[nt]—1
X4(1) -—i Z 0TI — ten b Xo(t)
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in D[0, o) in the J; topology P-a.e. w, with respect to v* for ¢ regularly varying with index
a and X4 (t) the corresponding a-stable process.
For the cases we are considering, the scaling constants b,, are given by (2.2 in Definition
and the centering constants ¢, are given in Definition (see also Remark .

Remark 3.1 (Convergence with respect to Lebesgue measure). We state our limiting theorems with
respect to the fiberwise measures v but by general results of Eagleson [Eag76| (see also [ZweQT]) the
convergence holds with respect to any measure u for which p << v, in particular our convergence
results hold with respect to Lebesque measure m. Further details are given in the Appendizx.

Remark 3.2 (IID random variables). An iid sequence of random wvariables ¢, with distribution
function ¢ satisfies a stable limit law iff it satisfies a functional stable limit law. In that case the
limit is an a-stable random variable, respectively a Lévy process with index o, and o € (0,2]. The
case a = 2 corresponds to Brownian Motion.

In particular, if ¢ is regularly varying with index o € (0,2), then the iid sequence is in the
(generalized) domain of attraction of a stable law with index c.

Remark 3.3. In the limit laws for quenched systems that we obtain of type (B) and (C), the
centering sequence ¢, does not depend on the realization w. This is in contrast to the case of the
CLT, where a random centering is necessary; see [AA16G, Theorem 9] and [NPT21, Theorem 5.3].

4. STATIONARY DYNAMICAL SYSTEMS

There have been many results on stable laws for ergodic dynamical systems (T, X, 1) with some
degree of hyperbolicity. The two main scenarios are: (1) the observable ¢ & L?(1) El; (2) slow decay
of correlations of (7, X, u) for a class of regular observables on a Riemannian manifold X.
Example of (1): Gouézel [Gou, Theorem 2.1] showed that if 7" : [0, 1] — [0, 1] is the doubling map

T(z) = 2z (mod 1) with Lebesgue as invariant measure, and ¢(x) = x_i, a € (0,2) then there
exists a sequence ¢, such that

2i _1 n—1 )
> 60T — ey b Xou(1)
na ]:0

Example of (2): The Liverani-Saussol-Vaienti map, a form of Manneville-Pomeau map modeling
intermittency, is defined for v € (0,1) by
) a1 +2727) f0<z<
(4.1 A e B A B
The map T, has a unique absolutely continuous invariant probability measure ..
Gouézel [Gou04, Theorem 1.3] showed that if ¥ > J and ¢ : [0, 1] — R is Hélder continuous with
#(0) #0, £, (¢) =0 then for a = %

1 n—1 -
l§:¢oTL%Xhﬂﬂ)
bn « j:()

(8 has a complicated expression).

1Or, cases where the CLT does not hold because the observable is not sufficiently regular.
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5. A PoI1sSON POINT PROCESS APPROACH TO RANDOM AND SEQUENTIAL DYNAMICAL SYSTEMS

Our results are based on the Poisson point process approach developed by Marta Tyran-Kaminska
[TK10a), TK10b] adapted to our random setting (see Theorems and . Namely, convergence
to a stable law or a Lévy process follows from the convergence of the corresponding (Poisson) jump
processes, and control of the small jumps.

A key role is played by Kallenberg’s Theorem [Kal76, Theorem 4.7] to check convergence of the

Poisson point processes, N, L\ N(q)- Kallenberg’s theorem does not assume stationarity and hence
we may use it in our setting.

In this section, we provide general conditions ensuring weak convergence to Lévy stable processes
for non-stationary dynamical systems, following closely the approach of Tyran-Kaminska [TK10b|.
We start from the very general setting of non-autonomous sequential dynamics and then specialize
to the case of quenched random dynamical systems, which will be useful to treat i.i.d. random
compositions in the later sections.

5.1. Sequential transformations. Recall the notations introduced in Section (Th)n>1 1s a
sequence of measurable transformations on a probability space (Y, B, ). For n > 1, we define

T =T,o0...0T.
For a measurable ¢ : Y — R, we define the random process X,,, n > 1, by

[nt]—1
1 .
X, (t) = ™ Z ¢oT) —tey, t >0,

for some constants b, > 0, ¢, € R.
For B € B((0,00) x (R\ {0})) we define

. 1—1

N3 N

and write

if and only if N,(B) i>N(a)(B) for all B € B((0,00) x (R\ {0})) with (Leb xII,)(B) < oo and
(Leb xI1,)(0B) = 0.
The proof of the following statement is essentially the same as the proof of [TK10b, Theorem 1.1].
Note that the measure p does not have to be invariant. Moreover (see [TK10b, Remark 2.1]),

the convergence X, 4 x (o) holds even without the condition p(¢o le # 0) = 1, which is used only
for the converse implication of the “if and only if”.

Theorem 5.1 (Functional stable limit law, [TK10b, Theorem 1.1]). Let a € (0,2) and suppose
that (¢ o TV #0) =1 for all j > 0. Then X, iX(a) in D[0, 00) under the probability measure p

for some constants b, > 0 and ¢, if and only if

o N, A N and
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o for all § >0, £ > 1, with co(g) given by (2.4]),
|nt]—1
(5.1) 31_131 limsup p | sup b z% ¢oTy 1{|¢0Tf|§€bn} —t(en —ca(e))| =6 | =0
J:

0 n—oo o<t<t

Remark 5.2. In some cases the convergence N, LA N(a) does not hold, but one has convergence of

the marginals, Ny ((0,1] x -) &N(a)((o, 1] x +). In this case, although unable to obtain a functional
stable law convergence of type (C), we can in some settings prove the convergence to a stable law
for the Birkhoff sums (convergence of type (B)).

In particular, we are unable to prove NﬁiN(a) for the case of random intermittent maps,
Example[5.12. On the other hand, in the setting of random uniformly expanding maps of Example[5.10,

we use the spectral gap to show that N A N(a), and then obtain the functional stable limit law.

The next statement is [TK10b, Lemma 2.2, part (2)], which follows from [TK10al Theorem 3.2].
Again, the measure does not have to be invariant.

Theorem 5.3 (Stable limit law, [TK10b, Lemma 2.2]). For a € (0,2), consider an observable ¢
on the probability measure p, and cqo(€) given by (2.4).
If
d
Np((0,1] X -) = Nia)((0,1] x )
and, for all d > 0,

1 n—1 )
; 3 J ) _ _ —

(5.2) ;l—%hﬁsolipu @lz%¢OT11{¢OTf§8bn} (cn—cale))| 26| =0

]:
then

1 n—1 ) 4

EZ¢OT{ —Cn—>X(a)<1)

=0

under the probability measure .

5.2. Random dynamical systems. We will be considering the following set-up, with (€2, o) the
full two-sided shift on finitely many symbols, and Y = [0, 1].

Let 0 : Q — Q be an invertible ergodic measure-preserving transformation on a probability space
(Q, F,P). For a measurable space (Y, B), let

F: OxY — QOxY
(w,z) = (ow,Ty(x))

preserving a probability measure vp on 2 X Y. We assume that vp admits a disintegration given
by vp(dw,dx) = P(dw)v*(dx). For all n > 1, we have

F'"w,z) = (c"w, T x),

where, as in (|1.1]),
T =Tynry0...0T,,

which satisfies the equivariance relations (T),v* = v % for P-a.e. w € Q.
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Let ¢ : Y — R be a measurable function such that v¥(¢ # 0) = 1 for P-a.e. w € Q. As in (1.3)),
we define for every w € € the random process X¥(t), n > 1, by

Lntj 1

Z qSoTJ tep,, t>0

for some constants b, > 0, ¢, € R.
As in Section [5.1] for B € B((0,00) x (R \ {0})) we define

. j—1
N;;’(B)::#{jzlz (imbﬂ%> EB},nzl.

Proposition 5.4 ([TK10b, proof of Theorem 1.2]).
Let a € (0,1). With b, as in Deﬁnition and ¢, = 0, suppose that for P-a.e. w € Q

nf—1
1
(5.3) hm hmsup — Z E oo ([811{ig/<cb,y) =0 for all £ > 1,

n—oo ’fL

and
NY 4 Ny,

Then X} LA X(q) in D[0,00) under the probability measure v* for P-a.e. w € Q.

Proof. We will check that the hypothesis of Theorem are met for P-a.e. w with T,, = T n-1,,
w=rv*. Recall that ¢, = co(e) = 0 when a € (0,1). Using [KW69, Theorem 1] (see Theorem [5.6])
and the equivariance of the family of measures {v“} g, we have

Lntj 1 nf—1
1
>0 < — E _; 1
e, b Z 90 T porii<en} | 20| < 5 ]Z::o yoio (1811 {1g1<eb,))
which shows that condition (/5.3]) implies condition ([5.1)) for all § > 0 and ¢ > 1. O

Remark 5.5. One could replace condition (5.3)) by one similar to (5.5)), and use the argument in
the proof of Proposition [5.7

Theorem 5.6 (Kounias and Weng [KW69, special case of Theorem 1 therein]).
Assume the random variables Xy, are in L' (u). Then

(m ZXe - 5) ;EMM»

Proposition 5.7. Let a € [1,2).
With b, and c, as in Definitions and[2.4, and co(g) as in (2.4), suppose that for all e > 0
and all £ > 1,

nt]—1
(5.4) lim sup |— Z Eyajw(qbl{‘d)‘ggbn}) —t(cn —cale))| =0 for P-a.e. w € 9,
=0

n—=00 0<t<l | On
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and that for all 6 > 0

k‘
H

- y 1 .
(5.5)  lim lim sup esssup v/ ( max b 2 [gb o Til{onilgsbn} - Euajw(¢1{|¢|gsbn})]‘ > 5) =

=0 nooo  weQ 1<k<n

<.
Il
o

If N¥ L\ N(q) for P-a.e. w € Q, then X}) A X(a) i D[0, 00) under the probability measure v for
P-a.e. w € Q.

Proof. As in the proof of Proposition[5.4] we check the hypothesis of Theorem 5.1 with T,, = T,n-1,,,
w= v for P-a.e. we Q. We will see that (5.1)) follows from (5.4 and (5.5).
p.1]

Using the equivariance of {v*} _q, we see that condition (5.1)) is implied by (5.4) and (5.6)
below:
= '
(5.6) ;g% Iiriisogp 17l 1;;151( b > [(;S o T$1{|¢0T$|§sbn} - Euajw(¢1{|¢|§abn})] >0|=0.

We next show that condition ([5.5)) implies (5.6]).

Since

<.

k-1

1 .
_ J . _ .
Lkt | bn &= 90 T2 jparsicen) — Evore (61 oizeny)]| 29

.

/-1

1 k—
C U sup bi _Z |:¢o {|¢0T]\<ab } y”jw(¢1{\¢|§5bn}):| =

)
. n<k<(i+1)n /
1=0

Y

we obtain that, using again the equivariance, for P-a.e. w € €,

k—1
[¢O wl|gord)<ebn} ~ yojw(¢1{|¢\§ebn})} >0

Jj=0

1
v sup |—
1<k<nt | bn

-1 k—
77/

|_I

< v? sup

1<k<n

|: 0’”Lw {|¢OT‘7 ‘Sgbn} - Eyo-j(o-inw) (¢1{|¢|<€bn}):| Z
i=0 =0

?T‘
H

/ 1 ;
S Oresssupr® | max g [¢0Ti’1{|¢oTi,|gsbn}—Euw(¢1{|¢|gebn})} >

T
[e)

Thus, condition (5.5)) implies ([5.6]), which concludes the proof. O

The analogue for the convergence to a stable law is the following.

Proposition 5.8. Suppose that for P-a.e. w € Q, we have

NE((0,1] X ) 5 Nigy ((0,1] x -).
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If o € (0,1) (so ¢, =0), we require in addition that

n—1
N 1
(5.7) Jim lim sup -~ ZOE,,ij(|¢\1{¢|gabn}) =0
j:

If a € [1,2), we require instead of (5.7)) that for all e > 0,

n—o0

n—1
e
lim | > E, . ($1{si<e,)) — (en — ca(2))] =0

and
1

[¢ © To {1 o <eb} — Eum@l{wgsbn})} >4 | =0

n

. 1
lim limsupv* | | —
e=0 pooo by, 4

J

i
o

Then

n—1

biZ(ﬁngj —Cni)X(a)(l)
nj:O

under the probability measure v¥ for P-a.e. w € ().

Proof. We check the conditions of Theorem
The proof for a € (0,1) is similar to the proof of Proposition the proof of the case a € [1,2)
is similar to the proof of Proposition [5.7] O

5.2.1. Annealed transfer operator. We assume that the random dynamical system F':  x [0,1] —
Q2 x [0,1], which can also be viewed as a Markov process on [0, 1], has a stationary measure v with
density h. The map F : Q x [0,1] — 2 x [0, 1] will preserve P x v. Recall that P := {(p1,...,pm)}%.

We use the notation P, ; for the transfer operator of T; : [0, 1] — [0, 1] with respect to a measure
won [0,1], i.e.

[ 90 Tdu= [ (Puigdu, forall 1 € L'(u). g € 1% (n).

The annealed transfer operator is defined by

m

Pu(f) = piPui(f)

i=1
with adjoint

U(f)=> pifoT
i=1
which satisfies the duality relation

[ Hoovydu= [ (@ufigdn. tor all £ € L), g € ().

As above, we assume there are sample measures dv* = hy,dz on each fiber [0, 1] of the skew
product such that
Pwhw = haw

where P, is the transfer operator of T;,, with respect to the Lebesgue measure
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Therefore

for all Borel sets A C [0, 1].

Remark 5.9. We emphasize that in the limit laws we obtain for quenched realizations that the
scaling and centering constants, b, and c,, are the same for P-a.e. w € Q, and determined by the
annealed measure v.

5.3. Examples. We now introduce two systems for which we are able to establish stable limit laws
of various types. The first RDS is uniformly expanding while the second is strictly polynomially
mixing.

Example 5.10 (S-transformations). A simple ezample is to take m B-maps of the unit interval,
Ts,(x) = Bixz (mod 1). We suppose B; > 1+ a, a >0, for all B;, i =1,...,m.
By results of [CROT] (see also [ANV15]) in this setting the stationary measure v on [0,1] has a
density h bounded away from zero and bounded above. In fact h is of bounded variation (BV).
The functions hy, h (recall that dv¥ = hydx) are BV, uniformly bounded in BV norm and
uniformly bounded away from zero.

Remark 5.11. Example fits in a larger class of uniformly expanding random maps, see
Section [5.5.

Example 5.12 (intermittent maps). Liverani, Saussol and Vaienti [LSV99] introduced the map (4.1)
as a simple model for intermittent dynamics:

. 1.
272"+ 1)z if0<x < 3;

T, :10,1] = [0,1], T, () ::{ 2% — 1 @‘fégxgl.

If 0 < v < 1 then T, has an absolutely continuous invariant measure pi, with density h, bounded
away from zero and satisfying h(x) ~ Cx™7 for x near zero.

We form a random dynamical system by selecting v; € (0,1), i =1,...,m and setting T; :=T,.
The associated Markov process on [0,1] has a stationary invariant measure v which is absolutely
continuous, with density h bounded away from zero.

We denote Ymag := maxi<i<m{Vi} and Ymin = minj<j<m{7i}-

5.4. Decay of correlations. We now consider the decay of correlations properties of the annealed
systems associated to Example [5.10| and Example |5.12

By [ANVI5] Proposition 3.1] in the setting of Example we have exponential decay in BV
against L': there are C > 0, 0 < A < 1 such that

'/fgoU”dV—/de/ng

In the setting of Example by [BB16, Theorem 1.2], we have polynomial decay in Holder
against L°°: there exists C' > 0 such that

'/fgoU"du—/fdy/gdy

< CX'IfllBv llgllL)

11
< Cn min || fllnsider |19l oo (1) -
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5.4.1. The sample measures h,. The regularity properties of the sample measures h,, both as
functions of w and as functions of z on [0, 1] play a key role in our estimates. We will first recall
how the sample measures are constructed. Suppose w := (..., w_1,Wp, W1, ... ,Wn,-..,) and define
hn(w) =P, ,... P, ,1 as a sequence of functions on the fiber I above w. In the setting both of
Example and Example {hn(w)} is a Cauchy sequence and has a limit h,,.

In the setting of Example (8 maps), hy, is uniformly BV in w as

[An(w) = hns1(W)llBy <[Py Po_y - Po_, (1 — Pw—n—ll)HBV < ON".

In the setting of Example (intermittent maps), with Ve = maxj<j<,{7i}, the densities
h, lie in the cone
L:={fec’(0,1])NnL'(m), f>0, fnon-increasing,
X'Ymaa:+1f ianeaSing, f(w) S avamazm(f)}

where X (z) = x is the identity function and m(f) is the integral of f with respect to m. In
[AHNT15] it is proven that for a fixed value of Y42 € (0,1), provided that the constant a is big
enough, the cone L is invariant under the action of all transfer operators P,, with 0 < v; < Vpae
and so (see e.g. [NPT21) Proposition 3.3], which summarizes results of [NTV18])

th(w) - hn+k(W)HL1(m) < HPw71Pw72 s own(]‘ - ownfl cee Pw—n—kl)HLl(m)

1——L _1
S C n TYmax (log ’]’L) Ymazx

Ymax

whence h,, € L'(m). In later arguments we will use the approximation

(5.8) (@) = hull i my < Comaen' 7 (log m) s

Ymaz

We mention also the recent paper [KL21] where the logarithm term in Equation is shown to
be unnecessary and moment estimates are given.

We now show that h,, is a Holder function of w on (2, dy) in the setting of Example [5.10

For 6 € (0,1), we introduce on €2 the symbolic metric

do(u,') = 65

where s(w,w’) =inf {k > 0 : w; # wj for some |¢| < k}.
Suppose w, w' agree in coordinates |k| < n (i.e. backwards and forwards in time) so that
dg(w,w’) < 0" in the symbolic metric on €. Then
e — hw’HBV < Howl‘PUJl e Pw7n+1 (h(af’”lw) - h(a*”ﬂLlw’))HBV
< C)\n—l — C'/dg(w,w/)logf’)‘
Recall that || flleo < C||f|lBV, see e.g. [BGI7, Lemma 2.3.1].

That is, Condition U (see Definition [5.13|) holds for Example see Remark

The map w — hy, is not Holder in the setting of Example in several arguments we will use
the regularity properties of the approximation h,(w) for hy,.

However, on intervals that stay away from zero, all functions in the cone L are comparable to
their mean. Therefore, on sets that are uniformly away from zero, all the above densities/measures
(dv = hdz, hy, hy(w)) are still comparable.

Namely,

for any 6 € (0,1) there is Cs > 0 such that

(5.9) heL = 1/Cs < h(z)/m(h) < Cs for x € [5,1]
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Indeed, h/m(h) is bounded below by [LSV99, Lemma 2.4], and the upper bound follows from the
definition of the cone.

5.5. Random uniformly expanding maps of [0,1]. We now consider a slightly more general
set-up than Example As before, we assume the existence of an invariant probability measure
v for the Markov chain associated to the random system, with disintegration along the fibers given
by dv* = h,dm.

Definition 5.13 (Condition U). We assume that almost each v* is absolutely continuous with
respect to the Lebesgue measure m, and
d w
(5.10) for some C > 0, P-g.e. w€Q = C ' <h,:= d—<C’ m-a.e.
v
(5.11) the map w € Q> hy,, € L°(m) is Hélder continuous.

Consequently, the stationary measure v 1$ also absolutely continuous with respect to m, with density
h € L*(m) given by h(z) = [ ho(2)P(dw) and satisfying (5.10).

We consider random i.i.d. compositions described in Section [5.2 with additional assumptions of
uniform expansion. Let S be a finite collection of m piecewise C? uniformly expanding maps of
the unit interval [0, 1]. More precisely, we assume that for each T' € S, there exist a finite partition
Ar of [0, 1] into intervals, such that for each I € Ap, T can be continuously extended as a strictly
monotonic C? function on I and

A= inf inf [T'(z)] > 1.
I€eAT zel

As in Section [5.2] the maps T,, (determined by the O-th coordinate of w) are chosen from S in
an iid. fashion according to a Bernoulli probability measure P on Q := {1,...,m}*. We will
denote by A, the partition of monotonicity of T,, and by A" = V}_}(TF)~ 1(Aa.kw) the partition
associated to T}'. We introduce

D = Up>0 Uyen 0A

the set of discontinuities of all the maps 7;’. Note that D is at most a countable set.

For each w € (), we denote the transfer operator P, of T, with respect to the Lebesgue measure
m: for all € L>(m) and ¢ € L(m),

[ @omyvdn= [ o rudn
[0,1] [0,1]
We can then form, for w € €2 and n > 1, the cocycle

P} =P,u-1,0...0P,.

These operators are contractions on L*(m): || P f|| i(m) < [Ifllz1(m), and, from the duality relation,
it easily follows that

FP(f-g0Th) = P}(f)y-
We will let them act on the space BV of functions of bounded variation on [0, 1], whose norm is
given by

IfllBv = £l L1 (m) + Var(f),
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where Var(f) is, as usual, the infimum, over all functions g with f = g m-a.e., of the total variation
of g on [0,1]. The space BV is continuously embedded in L>(m), as ||f|re@m) < [[flBv, and,
furthermore, for all f,g € BV, we have

Var(fg) < Var(f)llgllLeem) + lfllze Var(g),

see for instance [BGI7].
We assume that the class of transfer operators { P, },cq satisfies a uniform Lasota-Yorke inequal-
ity on the space BV:
(LY): there exist 7 > 1, M > 0 and D > 0 and p € (0,1) such that for all w € £ and all
f € BV,
| PufllBv < M| fliBV,
and
Var(F[f) < pVar(f) + DIl fll L1 (m)-
Iterating these two inequalities, we obtain that there exists A € (0,1) and C > 0 such that

125 fllev < CA* (| fllBv + Cllfll L1 (m)-

In particular, ||P] fllsv < C| fllBv-
We also assume the following two other conditions from Conze and Raugi [CRO7]:
(Dec): there exists C' > 0 and 6 € (0,1) such that for all n > 1, all w € 2 and all f € BV
with E,,(f) = 0:

1P fllsv < CO0™| fllBv
and

(Min): there exists ¢ > 0 such that for all n > 1 and all w € Q,

inf (P"1 >c>0.

L (o)) 2 e
Lemma 5.14. Properties (LY), (Min) and (Dec) imply Condition U. Namely, there exists a
unique Holder map w € Q +— h, € BV such that P,hy, = hg, and (5.10), (5.11) are satis-
fied [ANV15).

Proof. By (Dec), and as all the operators P,, are Markov with respect to m, we have

(5.12) [P 1= PR Ly < CRMIL— PE ) 1lmy < Ok,

o— (k)
which proves that (P;anl)nzo is a Cauchy sequence in BV converging to a unique limit h,, € BV
satisfying P,hy, = hgyo for all w. The lower bound in follows from the condition (Min),
while the upper bound is a consequence of the uniform Lasota-Yorke inequality (LY), as actually
the family {he} cq is bounded in BV. To prove the Hélder continuity of w +— hy, with respect to
the distance dy, we remark that if w and w’ agree in coordinates |k| < n, then

th — hw’HBV = Hpk (h — hg*kw/)”BV S CQ” S Cdg(w,w’).

o~ kw
Note that the density h of the stationary measure v also belongs to BV and is uniformly bounded
from above and below, as the average of h,, over (). O

o~ kw

Remark 5.15. As mentioned above, a class of maps satisfying these assumptions is given by the
B-transformations of Example [5.10: if all maps T € S, with S finite, are of the form T : x — Px
mod 1, with 8 > 1+a, a > 0, then (LY), (Dec) and (Min) are satisfied. We refer to [CROT| for
a proof, and for a more in-depth treatment of these assumptions.
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6. MAIN RESULTS

6.1. A simple class of unbounded observables. Let gy € [0, 1], and, for o € (0,2), consider
the function X

Gzo(x) = |2 — 20|72, 2 €]0,1].
Then, we have for ¢t small enough

V(|| > 1) = / h(x)d.

|x—zo|<t—
This proves that ¢, is regularity varying with index «, having a constant slowly varying function
L given by L(t) = b and scaling sequence b,, = béné, where
1
b:= lim — h(z)dx.
e=0¢ |lz—z0|<e
Under the setting of condition U, the limit exists for all 2o € [0, 1] since h € BV and b > 0 as h is
bounded from below. If h admits a continuous version at xo and z¢ € (0, 1), then b = 2h(zp). In
the setting of Example the limit exists for all zp € (0, 1] since the density h belongs to the
cone L and is thus Lipschitz on any interval [d, 1], § > 0.
As the observable ¢, is positive, the parameter p € [0, 1] such that

t=00 (|| > 1)
is equal to 1.

Recall that the (deterministic) centering is defined in Definition by

0 if a € (0,1)
Cp = %EV(le{IqﬁISbn}) lf o = 1
LE, () if a € (1,2)

Definition 6.1. We say that xq is periodic if there exist w € Q and n > 1 such that T} (x0) = xo.

Remark 6.2. For the sake of concreteness, we restricted ourselves to observables of the form

Gz (T) = |2 — l'0|_é, but it is possible to consider more general reqularly varying observables ¢
which are piecewise monotonic with finitely many branches, see for instance [TK10b, Section 4.2]
in the deterministic case.

6.2. Exponential law and point process results. We denote by J the family of all finite unions
of intervals of the form (z,y], where —oco <z <y < oo and 0 ¢ [z, y].
For a measurable subset U C [0, 1], we define the hitting time of (w,x) € Q x [0,1] to U by

(6.1) Ry(w)(z) := inf{k >1: Thz) e U}.

Recall that ¢z, (x) := d(z, xo)fé depends on the choice of zy € [0, 1].
Theorem 6.3. In the setting of Section[5.5, assume(LY), (Min) and (Dec). If zy ¢ D is not
periodic, then, for P-a.e. w € Q and oll 0 < s < ¢,

lim 7" (RAn (o)) > |n(t - S)J) = ¢~ (t=9)Mal)),

n—oo

where Ay = ¢} (bnd), J € J.
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Theorem 6.4. Assume the conditions of Example and that Ymaz < % Then for m-a.e. xg
for P-a.e. w € Q and all 0 < s < t,

lim ot <RAn (al")w) > [n(t - 8)J> = ¢~ (t=9)a()),

n—oo
where Ay = ¢5 )} (bnd), J € J.

Theorem 6.5. In the setting of Section[5.5, assume (LY), (Min) and (Dec). If zy ¢ D is not
periodic, then for P-a.e. w € §, then

under the probability v* .
Theorem 6.6. In the setting of Example[5.19 for m-a.e. zy for P-a.e. w,
w d
Nn ((07 1] X ) - N(oe)((ov 1] X )
6.3. Limit theorems.

Theorem 6.7. In the setting of Section assume (LY), (Min) and (Dec). Suppose that
xo ¢ D is not periodic for P-a.e. w € Q and consider the observable ¢, .
If « € (0,1) then for P-a.e. w € Q, the Functional Stable Limit holds:

nt]—
= bi Z O TLZ; - tcn i X(a) (t> n D[()’ OO)
7=0

in the Jy topology under the probability measure v, where X(4)(t) is the a-stable process with Lévy
measure T, (dz) = alz|~ (@) on [0, 00).
If o € [1,2) then the same result holds for m-a.e. xg.

Remark 6.8. It would be possible to remove the assumption that o ¢ D by doubling the disconti-
nuity points, see [AFV15l Section 3.3] for the deterministic case. In the case of B-transformations
of Example[5.10, we can consider each map as a map of the unit circle, by identifying 0 and 1, in
which case the only discontinuity point is 1, and thus the assumption xo ¢ D reduces in assuming
that all the random orbits of To never hit 1.

Theorem 6.9. In the setting of Example suppose a € (0,1) and v < % Then, for m-a.e. xq
bin Z;‘;& bz 0 T2 iX(a)(l) under the probability measure v for P-a.e. w (recall that ¢, = 0 for

a€ (0,1)).

7. SCHEME OF PROOFS

7.1. Two useful lemmas. We now proceed to the proofs of the main results. We will use the
following technical propositions which are a form of spatial ergodic theorem which allows us to
prove exponential and Poisson limit laws.

Lemma 7.1. Under the setting of Condition U, let xn : Y — R be a sequence of functions in
LY(m) such that Ey,(|xn]) = O(n~tL(n)) for some slowly varying function L. Then, for P-a.e.
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w e Q and for all ¢ > 1,
kn—1
lim sup Z (E,oiw(Xn) = Ev(xn))| = 0.

n—oo
0<k<t| =g

Therefore, given (s,t] C [0,00) and € > 0, for P-a.e. w there exists N(w) such that

[t
Z (Eyajw(Xn) - EV(XR)) S &

r=[ns|+1

for alln > N(w).
Proof. We obtain the second claim by taking the difference between two values of £ in the first

claim.
Fix £ > 1. For § > 0, let
kn—1
UP@) ={weQ: [ D> (Eiulxn) —Eulxa))| =6 ¢,
§=0
and
kn—1
B"(0)=weQ: sup Z (Eyajw(Xn) —EV(XR)) >0
0<k<e| 520

Note that
L
B™(6) = |J U; (9.
k=0

We define fy(w) = Eye(xn) and fn = Ep(fn). We claim that f,, : © — R is Holder with norm
| fulle = O(n~1L(n)). Indeed, for w € Q, we have
/ Xn(2)dv® (z)
Y

C~
< lhollzgg lxallny, < —L(n),

|[fn(w)| =

and for w,w’ € O, we have

/

“(z)

Fnl@) — fule)] = j{,xn<x>de<x>-—(/Q;xn<x>du
< /L\xn<xn-th<x>—-hw«x>chn<x>
< [Jhe — hw’”L;’nOHXnHL},l

< CEm)dp(w, ),
n

since w € Q +— h, € L%(m) is Holder continuous. In particular, we also have that f,

O(n~'L(n)).
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We have, using Chebyshev’s inequality,

kn—1
P(UL(6)) =P ({w eQ: Z (fnoaj = 5})

=0
2
1 kn—1 ' -
SéjEIF’ Z(anU]—fn)
§=0

kn—1
<;5[§:@Pn0074m2+2 > Ex((faco' —Tu)faod’ = T,))

§=0 0<i<j<kn—1
By the o-invariance of P, we have
i T2 712
EP|anUJ_fn’ :E]P’|fn_fn’ )

and, since (€2,P,0) admits exponential decay of correlations for Holder observables, there exist
A€ (0,1) and C > 0 such that

Ep((fnoo' = fu)(faoo? = £,)) = Ep((fo — fo)(fnoo? ™" = )
< CN 7 fn = Fall-
We then obtain that

C _ - _
Skl —Tallzs +2 Y N~ Tl

0<i<j<kn—1

P(UE(9)) <

[«%)

nk

<05 T,

which implies that
n e~
P(B"(5)) < C- - (L(w)*

Let n > 0. By the Borel-Cantelli lemma, it follows that for P-a.e. w € Q, there exists N(w,0) > 1
such that w ¢ B (8) for all p > N(w,d).

Let now P := [p'™"] < n < P' = |(p+ 1)'*"] for p large enough. Let 0 < k < ¢. Then, since
| fallos = O(n~"L(n)),

kP—1 ‘ B kn—1 . - kn—1 A B
Z (fn(ij)—fn) - Z (fn(ajw)_fn) < Z |fn(0jw)_fn‘
j=0 j=0 J=kP
SC’P,_PE(n) SC’L(p:rn),

because on the one hand

P o1+

P—P _[p+)™] - [p*] _ <1>
p



STABLE LAWS FOR RANDOM DYNAMICAL SYSTEMS 21
and on the other hand, by Potter’s bounds, for 7 > 0,

Lin) < CL(P) (%) < CL(p) (P> < CL(P).

) =
Since
kP—1 ‘
Z (fn(ajw) - fn) < 4
j=0
for all 0 < k < ¢, it follows that for P-a.e. w, there exists N(w,d) such that w ¢ B"™(26) for all
n > N(w,d), which concludes the proof. O

We now consider a corresponding result to Lemma in the setting of Example

Lemma 7.2. In the setting of FExample assume that Ymaz < 1/2, and that x, € L'(m) is
such that Ep,(|xn]) = O(n™Y), [|xnlleo = O(1) and there is § > 0 such that supp(x») C [8,1] for all
n.

Then, for P-a.e. w € Q and for all ¢ > 1,

kn—1
li E io(xn) —Eu(xn))| =0.
A sup, jz_:o (B o1 (Xn) = Ev(xn))

Proof. In the setting of Example we must modify the argument of Lemma slightly as h,,
is not a Hélder function of w. Instead, we consider hj, = P!_; 1. and use that, by (5.8)),

(7.1) |l — holl L1 (m) < Ci' ™ Fmaz (leaving out the log term).
Note that hl, is the i-th approximate to h, in the pullback construction of h,. Let vl be the

measure such that % =hl.

Consider ‘

falw) = E,; (Xn) » fn(w) = Epe (xn)
Fo=Ep(fl),  fn=Ep(fa).

By (5.9), on the set [4, 1] the densities involved (h%, hy,,h = dv/dm) are uniformly bounded above
and away from zero. Thus || fi[c = O(n1).

Pick 0 < a < 1 is such that 8 := (%} Ja—1>0.

For a given n take i = i, = n®. By (7.1} . for all w, n and ¢ = n®

(@) = Fa(@)] < iy — heoll 2oy Xl 2o (my = O(n=FHD),

Then
7 = Ful = O(n= D)
and
kn—1
D fi(o"w) = falo"w)]| < Cen™?
r=0

Given ¢, choose n large enough that for all 0 < k < /£,

kn—1 kn—1 )
{wGQ: Z(fn(arw)—?n) >6}C{w€Q: Z(fi(arw)—f;) >;}
r=0 r=0
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By Chebyshev

kn—1 ' B c 4 kn—1 ' 19
4 kn—1 kn—1 ' ] ' 4
+€7 22 Z ‘EP[(f'rZLOO—T_fn><f;LOO—u_fn)]’]
r=0 u=r+1
We bound
kn—1 kn—1

AR AR M
r=0 r=0

and note that if | — u| > n® then by independence

—i

Bp [(fi 00" = F)(faoo® = Fu)| =Ep [fioo” = T Ee [fioo" ~F,] =0

and hence we may bound

kn—1 kn—1 ‘ ] 4 » ol
> Y [Eelfio o - Ffho ot - Tl| < o
r=0 u=r+1

Thus, for n large enough,

n+—%

The rest of the argument proceeds as in the case of Lemma using a speedup along a sequence
n = p'*" where n > 12, since || fnlloc = O(n™?) still holds. O

a’

kn—1

S ulo™w) - 7]

r=0

7.2. Criteria for stable laws and functional limit laws. The next theorem shows that for
regularly varying observables, Poisson convergence and Condition U imply convergence in the J;
topology if a € (0,1) and gives an additional condition to be verified in the case a € [1,2).

Note that is essentially condition (5.5)) of Proposition

Theorem 7.3. Assume ¢ is reqularly varying, Condition U holds and that
NE 4 N,

for P-a.e. w € Q.
If « € [1,2), assume furthermore that for all 6 > 0, and P-a.e. w € Q

N

—1
- 1 ;

(7.2) iI—I}(l)thSO%pV 11%11?%(71 b 2 [(;So T$1{|¢0T£\§sbn} - ]EV(,J-W(QSI{MSE%})} >0 =0.
j

Il
=)

Then XY A X(a) in D[0,00) under the probability measure v* for P-a.e. w € Q.

Remark 7.4. From (5.10) and Theoremm it follows that the convergence of X2 also happens
under the probability measure v.
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Proof of Theorem[7.3. When « € (0,1), we check the hypothesis of Proposition Using ([5.10)),
we have

né—1
1 nt
. > " E,_i(|6]1{g/<chn}) < CEu (1911 ggl<cnay)

Using and Proposition we see that condition is satisfied since o < 1, thus proving
the theorem in this case.

When « € [1,2), we consider instead Proposition Firstly, we remark that condition is
implied by and . It remains to check condition , which constitutes the rest of the
proof.

If a € (1,2), since ¢, = nb, 'E,(¢), we have

[nt|—1
1 w w w
(7.3) 0 Z E oiw(9lfigj<cb,y) — tlen — cale))| < AR (E) + By (1) + Cyy (1)
with
1 [nt]—1
AX(t) = ™ Z E .i.(0) — ten|,
7=0
[nt]—1
w 1 nt
Byo(t) =4 > E oiw (1{g1>ebn}) = 3 Bu(P1{g)>eh,))
and

nt
Che(t) = FEV(¢1{\¢|>abn}) —tea(e)] -

Since ¢ is regularity varying with index o > 1, it is integrable and the function w +— E,«(¢) is
Holder. Hence, it satisfies the law of the iterated logarithm, and we have for P-a.e. w € Q)

Vioglogk
w)

1 k—1
B0 (0) - Ee)| 0
=0

Thus, we have

log 1
sup A(t) = O (\/nﬁx/ C;g O%(nﬁ)) .
0<t<t n

As a consequence, we can deduce that lim, . supg<;<y A, (t) = 0 since b, = nii(n) for a slowly
varying function L, with o < 2.
By Proposition 2.6, we also have

Jim nb, "By (¢1{4>eb1) = Cale)-

In particular, we have

lim sup C¥_(t) =0.
i, sup e (1)
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This also implies that E,,(|x,|) = O(n~!) if we define x,, = b;1¢1{|¢‘>5bn}. From Lemma it
follows that lim,, o0 supg<;<¢ By -(t) = 0.
Putting all these estimates together concludes the proof when « € (1,2).

When a = 1, we estimate (7.3)) by Aj, _(t) + By, .(t) with

[nt]—1
w 1 nt
A = D B (@1geizen)) — 3 Eu(SL{gi<h,))

and
nt

Bre(t) = |3~ Eu(@lap, <igl<bn}) — tale)]-

instead, since ¢, = nb, 'E, (PL{|g/<cbn})-
We define y,, = b, ¢1{‘¢|<8b }- By Proposition we have E,,(|xn|) = O(n~'L(n)) for some
slowly varying function L and so by Lemma .

lim sup A} _(t) =0.
oo 0<t<e

On the other hand, by Proposition [2.6] we have
nh_{go nbglEV(qbl{ebndqb\gabn}) = Cau (5)

and 8o limy, o0 SUpg<;<¢ By; . (t) = 0 which completes the proof. O

8. AN EXPONENTIAL LAW

8.1. General considerations. We denote by J the family of all finite unions of intervals of the
form (z,y], where —co < 2z < y < oo and 0 ¢ [z,y]. For J € J, we will establish a quenched
exponential law for the sequence of sets A, = ¢z, (b, J). Similar results were obtained in [CF20,
FEV17, HRY20, RSV14, RT15].
Since ¢ is regularly varying, it is easy to verify that
lim nv(A4,) = u(J).

n—oo
In particular, m(4,) = O(n~1).

Lemma 8.1. Assume Condition U and that ¢ is regularly varying with inder «.

If A, C [0,1] is a sequence of measurable subsets such that m(A,) = O(n™1), then for all
0<s<t,

[nt) ;
nh—>Holo Z v (Ay) | —n(t—s)v(A,) | =0.
j=lns|+1

The same result holds in the setting of Example if A, C [0,1] for some § > 0 with m(A,) =
O(n=Y). In particular, if A, = gb;ol (bpJ) for J € T, then for all 0 < s < t.

[t ] _
lim > v7Y(An) = (t— s)Ta(J).

n—oo
j=lns|+1
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Proof. For the first statement, it suffices to apply Lemma or Lemma with x, = 14,. The
second statement immediately follows since lim,, nv(A4,) = I, (J). O

Corollary 8.2. Assume the hypothesis of Lemma[8.]]
Let J € J, and set A, = ¢~ 1(b,J). Then for P-a.e. w € Q, and all 0 < s < t,

Lnt)
nh_{glo H (1 - I/Jjw(An)> — e—(t—s)Ha(J)_
j=lnsj+1

Proof. Since v*(A,) is of order at most n~! uniformly in w € Q, it follows that

[nt] [nt]
log H (1 - I/ij(An)> =— Z V(A | 0.
j=|ns]+1 j=[ns]+1

By Lemma [8.1]

[nt]—1 '

Tim Y v7(A) = (- s)Ta(J),

j=lns]

which yields the conclusion. O

Definition 8.3. For a measurable subset U C 'Y = [0, 1], we define the hitting time of (w,x) € QXY
to U by

Ry(w)(z) := inf{k >1: Th) e U}.
and the induced measure by v on U by

_v(ANU)
vy(A) = O

In order to establish our exponential law, we will first obtain a few estimates, based on the proof
of [HSV99, Theorem 2.1], to relate v* (R4, (w) > |[nt]) to ZJLZ%A v7'%(A,) so that we are able to

invoke Corollary
The next lemma is basically [RSV14, Lemma 6.

Lemma 8.4. For every measurable set U C [0, 1], we have the bound

k , koo j—1 .
v(Ru(w) > k) = [T =v72(U)| < X v7“(U) ik =3, U) [T =07 (U))
j=1 j=1 i=1

v (U) iy (U)

M=

1

<.
Il

where
cw(k,U) == v (Ry(w) > k) — v*(Ry(w) > k)|
and

cw(U) :=supcy(k,U).
k>0
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Proof. Note that {Ry(w) > k} = [T (U°*N{Ry(ow) > k —1}) and so, using the equivariance of
{Vw}weﬂa
VW (Ry(w) > k) =v’“(U°N{Ry(ow) >k —1}).
Hence
v (Ry(w) > k) =v°*(Ry(ow) >k —1) — v’ (U N{Ry(ow) > k —1}).
We note that

v (Ry(w) > k) = v™(Ry(ow) > k — 1) —v7(U)[v™(Ry(ow) > k = 1) + cou(k — 1,U)]
= (1 =v7(U))v"*(Ry(ow) > k —1) =v7(U)co ( - LU).
Iterating we obtain, using the fact that for P-a.e. w, v*(Ry(w) > 1) =
k j—1 ‘
v (Ry(w) > k) = [J(1 - VU Z v (U, (k= §,0) [Ta-v" )
=1 i=1
which yields the conclusion. O

We will estimate now the coefficients ¢, (U).

Lemma 8.5. Fiz N. Then, for any measurable subset U C'Y such that 1y € BV, we have
(8.1) cw(U) <vp(Ry(w) < N) +v*(Ry(w) < N) +

with C' independent of N and

O 1

1

82) (R <N) < o

N
v(Ru(w) < N),  v*(Ru(w) <N) <D »7¥(U)
Proof. The estimates (8.2)) follow from

{Ru(w) < N} = @) )

and therefore

For (8.1]), note that

If 5 < N then

If j > N we write

v (Ru(w) < j) — v*(Ru(w) <) = vi(Ru(w) < j) — v (T, N (Ru(o™w) < j — N))
+ v(T, N (Ru(o™Nw) < j— N)) = (T, Y (Ry(oMw) < j — N))
+ v*(T;N(Ry(oNw) < j — N)) — ¥Ry (w) < )

= (a) +(b) + (¢)-



STABLE LAWS FOR RANDOM DYNAMICAL SYSTEMS 27

To bound (a) and (¢) note that
{Ru(w) <j} = {Ru(w) < N}UT;Y({Ry(c™w) < j— N)})
(8.3) v (Ry (w) < j) = v*(T; " (Ru(o™w) < j — N))| < v*(Ry(w) < N)

and similarly for v;.
To bound (b) we use the decay of P¥. Setting V = {Ry(c¥w) < j — N}, we have

(TN (V) — v (TN (V)] = szU) /Y 1p1y o TN hy,dm — v (U) /Y 1y o T;Vhwdm’
_ ysz) /Y1VP§([1U _ u“(U)]hw)dm’
< o 1P (0 = PO s

O

8.2. Uniformly expanding maps. We can now prove the exponential law for 4, = ¢~1(b,J),

JeJ.

Proof of Theorem[6.3. Due to rounding errors when taking the integer parts, we have

Jolnele <RAH(O'MSJW) > |n(t — s)j) — ol <RAn(UL”SJw) > [nt] — L”SJ)‘
< yaLnth(An) < Cm(An> — 0,

and it is thus enough to prove the convergence of vo"*/® (RAn(UL”SJw) > |nt] — [ns]).
By Lemmas and for all N > 1, we have

[nt] |
(84) | (Ra, (01w) > o) — s ) =TT (1= w7 (40)] < (1) + (10) + (11D),

j=lnsj+1
with
[nt] . '
M= Y v7(An{Ra,(0'w) < N}),
j=Insl+1
[nt] ) ) )
(= > v7“(A)v"(Ra,(0/w) < N)
j=Ins)+1
and

[nt)

my =y (

j=Ins]+1

Py ([1 n - zﬂjw(An)} hajw) ]

Li(m)
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To estimate (I), we choose € > 0 such that J C {|z| > ¢} and we introduce V,, = {|¢| > eb,}.
For a measurable subset V' C Y, we also define the shortest return to V' by

ralV) = inf By ()(@).

and we set

r(V) = ul}Ielg ro(V).

We have
V7 (An N {Ra,(0w) < N}) <07 (VN { Ry, (07w) < N})

N
< Y v (Ve (Th,) V)
i=r_j,(Vn)
N
< /IVnP;jw(lvnhij)dm.
(V) 7Y

It follows from (Dec) that

/ Ly, Pl (W g )dm — v (Vo) (V)| < vy, [P ([t =770V o) |
Y " b
i _odw .
< CO'm(Vy) ‘ |:1Vn v (Vn)] Psos ‘BV
< CO'm(Vy,),

as BV is a Banach algebra, and both |1y, ||gv and ||, ||V are uniformly bounded. H
Consequently,

[nt] N _ o '
m< > Y [ W) + 0 (0m(V)]

j=Ins]+1i=r_; (Va)
<C (m(Vn)QnN + m(Vn)nH’"(V")> .

On the other hand, we have by (8.2)),

[nt] N
)< Y w794 Y v (A
j=lns|+1 i=1
< CnNm(Ay)?,
and it follows from (Dec) that
[nt] _
am < o™ 3 || [1a, = v (A g
j=lns|+1
< Cnb,

v

2Recall that, from the definition of ¢, it follows that V/, is an open interval, and thus 1v,, has a uniformly bounded
BV norm.
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since {hy }weq is a bounded family in BV, A,, is the union of at most two intervals and thus ||1 4, ||Bv
is uniformly bounded. We can thus bound ({8.4]) by

C (m(Vn)2nN + m(V,)nd™ V") £ m(A,)*nN + n9N> <C (n_lN +6m(Vn) 4 nGN) ,

and, assuming for the moment that r(V;) — +oo, we obtain the conclusion by choosing N =
N(n) = 2logn and letting n — oo.

It thus remains to show that r(V,,) — +o00. Recall that V,, is the ball of centre xy and radius
blemon=!. Let R > 1 be a positive integer. Since ¢ is assumed to be non-periodic, and that the
collection of maps T3 for w € Q and 0 < j < R is finite, we have that

6p:= inf inf |TY(zq) — zo| >0

R weQO<j<R| 2(@0) = 0l
is positive. Since all the maps T? are continuous at zo by assumption, there exists ng > 1 such
that for all n > ng, 7 < R and w € Q,

4 . 5
x €V, = |TI(2) — T (z0)] < 2.

2
Increasing ng if necessary, we can assume that b= le=%n~! < %R for all n > np.

Then, for all n > nr, w € Q, j < R and = € V,,, we have
4 . . ) 5
[T3(2) — ol 2 113 wo) — wo] — [T3(a) ~ Td(wo)] > 2% > b e on

and thus TY(z) & Vj,.
This implies that 7(V},) > R for all n > ng, which concludes the proof as R is arbitrary. O

Remark 8.6. A quenched exponential law for random piecewise expanding maps of the interval is
proved in Theorem 7.1 [HRY20, Section 7.1]. Our proof follows the same standard approach. We
are able to specify that Theorem [6.3 holds for non-periodic zg, since our assumptions imply decay
of correlations against L' observables, which is known to be necessary for this purpose, see [AFV15H,
Section 3.1]. Our proof is shorter, as we consider the simpler setting of finitely many maps, which
are all uniformly expanding. In addition we use the exponential law in the intermittent case of
Theorem 7.2 [HRY20, Section 7.2] to establish the short returns condition of Lemma below.

8.3. Intermittent maps. In order to prove the exponential law in the intermittent setting, Theorem[6.4]
we need a genericity condition on the point z¢ in the definition (2.5)) of ¢, .

Lemma 8.7. In the setting of FExample with Ymaz < %, for m-a.e. xg and for P-a.e. w €

lim Ltz"% m (Bcn_l(xo) N {R”Bj:ﬂ(mo) < |n(logn)™ }) =0.

n—oo
j=[sn]+1

for allc>0 and all 0 < s < t.
Proof. Let N = |n(logn)~!| an V,, = B,,,-1(x¢). First, we remark that for m-a.e. 2o and P-a.e. w,
(8.5) m (V,, N {Ry, (w) < N}) =o(n1).

This is a consequence of [HRY20, Theorem 7.2]. Their result is stated for two intermittent LSV
maps both with v < % but generalizes immediately to a finite collection of maps with a uniform
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bound of Yer < % The exponential law for return times to nested balls imples that for a fixed ¢,
for m-a.e g and P-a.e. w

: w — 1 _ 1
nh—>Hc>lo Vw(Vn)l/ (Vo n{Ry, (w) <nt})=1—e"".

which shows in particular, since {Ry, (w) < N} C {Ry, (w) < nt} for all n large enough, that for

all £ > 0, m-a.e xg and P-a.e. w

1
(8.6) lim sup — W (VN {Ry,(w) < N} <1—et

n—oo UV (Vn)

Using (5.9)), taking the limit ¢ — 0 proves (8.5). Note that, even though the set of full measure
of ¢ and w such that holds may depend on ¢, it is enough to consider only a sequence t; — 0.
Now, for k£ > 0 and ng > 1, we introduce the set

27]6
00 = {w € :m((V,N{Ry,(w) <N} < g for alanno}.

According to (8.5)), we have for all &k > 0,

lim P(Qp)=P( |J Q| =1

nog—o0
no>1

By the Birkhoff ergodic theorem, for al £ > 0, ng > 1 and P-a.e. w,

n—00 N 4

n—1
. 1 ] n
lim — " Lono (07w) = P(Q°),
7=0
which implies that for all 0 < s < ¢,
1 [nt]

BT =T, Tk )~ R

Let ng = no(w, k) such that P(Q}°) > 1 —27% and for all n > ny,

[nt)
> Lomo (07w) = P(°) — 27",
j=lns)+1

v
([nt] = [ns])

Then, for all n > ng(w, k) we have

[nt] |
j=lns)+1

N
([nt] = [ns])

Consequently,

[nt] —k
S m(Van {Ry, () < NY) < (Int] — Lns]) 2=+ (L] — Lns]) 274~ Dm(13)
[ns]+1
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This proves that
[nt]
lim sup Z (Va N {Ry, (w) < N}) <C27F,
n—oo
|ns]+1
and the result follows by taking the limit &k — oc.
Note that the set of g and w for which the lemma holds depends a priori on ¢ > 0, but it is

enough to consider a countable and dense set of ¢, since for ¢ < ¢/,

{Bm,l(xo) N {R‘ém_l(xo) < N}} C {Bc,nfl(xo) N {R“éc,n_mzo) < N}}

The exponential law for random intermittent maps follows from Lemma

Proof of Theorem[6.]]. We consider the three terms in with N = [n(logn)™!].

Let V,, = {|¢| > eb,, } where € > 0 is such that A,, C V,, for all n > 1. Since V,, is a ball of centre
zo and radius b=t~ *n~!, and since V;, C [4, 1], the term

[nt] _ [ nt]
M= > v An{Ra,(lw) <N} <C Y m(Van{Ry,(c/w) <N})
j=|ns|+1 j=|ns]+1

tends to zero by Lemma [8.7] for m-a.e xo.

The term

[nt] . '
()= > v7“A)r"“(Ra,(0'w) < N) < CnNm(A,)?
j=|ns|+1

also tends to zero since N = o(n). Lastly we consider

Lnt]

In= >

j=Ins]+1

225 ([ =7 a)] )

Li(m)

We approximate 14, by a C! function g such that ||g||c1 <n", g =14, on A, and ||g—14,, |1 <
n~" (recall A4, is two intervals of length roughly % so a simple smoothing at the endpoints of the
intervals allows us to find such a function g). Later we will specify 7 > 1 will suffice. By [NPT21,
Lemma 3.4] with h = h, and ¢ = g — m(ghy,), for all w,

1P) (lg = m(gho)h)|| 2 < CnTN“mﬁ(mg N)maz

g
< C”I’ZT+ ’Ymaz (log n) Wn?az -1

Using the decomposition 14, —v*(A,) = (14, —g9)— (v*(An) —m(ghy))+(g—m(ghy)) we estimate,

leaving out the log term,

(III) < C |n'~" + nT+2_Tiaz}

where the value of C' may change line to line. Taking Vimqer < % and 1 <7< %ﬁ — 2 suffices. O
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9. POINT PROCESS RESULTS

We now proceed to the proof of the Poisson convergence. In Section we will consider an
annealed version of our results.
Recall that the counting point processes Ny’ are defined by

. j—1
N:(B):z#{jzlz (‘“ﬁobT‘“> EB},nzl,
n n

for B € B((0,00) x (R\ {0})).

9.1. Uniformly expanding maps. Recall Theorem under the conditions of Section [5.5] in
particular (LY), (Min) and (Dec), if xg ¢ D is not periodic, then for P-a.e. w € Q

Ne 4 N,

under the probability measure v*.
Our proof of Theorem [6.5] uses the existence of a spectral gap for the associated transfer operators
P}, and breaks down in the setting of Example [5.12] The use of the spectral gap is encapsulated

w
in the following lemma.

Lemma 9.1. Assume (LY). Then there exists C > 0 such that for all w € Q, all f, f, € BV with

sup || fjllzoo(my < 1 and sup || f;[lBv < oo,
j=1 j>1
we have

sup P3| f- [ £i 072 < Cfllsv (Sl>lll)HfjHBv>

n>0 . J
J=1 BV

Proof. We proceed in four steps.
Step 1. We define

n
gr=1]t-T
j=0

where we have set fy = 1. We observe that for all n > 0, there exists C,, > 0 such that for all
w € Q,

n+1
(9.1) 1951 oo (m) < <slillb HfjHLOO(m)) <1 and |g5lsv < Cn <$1>11$ Hfj!Bv) :
J=Z
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The first estimate is immediate, and the second follows, because

Var(gi 1) < Var(g)|[ fat1 0 T | Lo (my + 11951 oo (m) Var(frg1 0 T H)
< Var( 3) + Var(fny1 0 T”+1)

=Var(gl)+ > Var;(for1 0I5
IeAnt!

= Var(g,;) Z VarTnJrl([ (frn+1)
TeALT

< Var(gl) + (#ALH) Var(fo1),

and so we can define by induction Cy11 = C), + sup,cq #A%T! which is finite, as there are only

finitely many maps in S.
Step 2. We first prove the lemma in the case where » = 1 in the condition (LY). Before, we

claim that for f € BV and sequences (f;) C BV as in the statement, we have

(9.2) Var (P2(fgl)) <pruP" I(Fg M) | oo (my | fa—i BV

7=0

+DZPJHP” 9T D | il oo (m)-
7=0

This implies the lemma when r = 1, since

P57 (f957 Dl noemy < 9™ ooy |1 P51 £l oo (my < ClIf BV,

and
IPS (9l M prmy < N9 Nramy < WFlnemllgl ™ lpromy < I1f 8-

We prove the claim by induction on n > 0. It is immediate for n = 0, and for the induction step,
we have, using (LY),

Var(BJ (fg2™))

= Var(PL N (£l fusr 0 TOHY)) = Var(PL T (£l) frvn)

< Var(PIH (gl fnsall Lo omy + 1S (F I oo (my VAT (frs1)

< (pVar(PL(f92)) + DIBL (Fa L2 omy) | Fntall o omy + IPSFHFGE) | oo (my Var (ft1)
< pVar(PJ(fg2)) + DIPI(FI L2 gyl il Loomy + IPSTH(F I Loo gy L frra 1BV

which proves (9.2)) for n + 1, assuming it holds for n.
Step 3. Now, we consider the general case r > 1 and we assume that n is of the particular

form n = pr, with p > 0. We note that the random system defined with 7 = {17} (, satisfies the
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condition (LY) with » = 1. Consequently, by the second step and (9.1]), we have

p
125 (fa gy = || Pyr-1,0-- 0 BL | f Hgf;jrw o T’
j=1 BV

’BV) < CCr||fllBv <$1>111)||fjHBV> :

< flsv (Sup 90 ire,
j>1 Jj>

Step 4. Finally, if n = pr+ ¢, with p > 0 and g € {0,...,r — 1}, as an immediate consequence
of (LY), we obtain

125 (fg)llBy = | Pgor, PE (£ 95 9gore © TS ) BV
= |1 Pgor(PY" (f95) 9grru)llBY < CIPE (f95) 9gmrellBV-
But, from Step 3, we have

IPL (f92 ) gdorollLrm) < Ngdoroll ooy I PE (F L L1 (m)

< [|PE"(fg) Lt my < CliflIBY st>111)||fj\3v> :
Jz

and, using (©.1),

Var(PL(f92")ggvre) < 1PE"(f957) || oo (m) Var (gger,,) + Var(PL (£ g2 95ere |l oo (m)

< [Cll g 1oy | PET 1 f 1| e ) + ClIf V] (sgg ||fjHBv>

<C (1 + max Cq> | fllBv (SUP Hfj”BV> )
q=0,...,r—1 §>1

which concludes the proof of the lemma. O

Proof of Theorem [6.5, We denote by R the family of finite unions of rectangles R of the form
R = (s,t]xJ with J € J. By Kallenberg’s theorem, see [Kal76, Theorem 4.7] or [Res87,, Proposition

3.22], N& % Ny if for any R € R,

(a) lim v*(Ny(R) = 0) = P(Nq)(R) = 0),

n—oo
and
(b) lim E,oN7(R) = EN(Q)(R).

n—oo

We first prove (b). We write

with RZ = (Si7ti] X Jl diSjOil’lt.
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Then
k
EN(a)(R) = Z(tz 5i)1la (J;)
i=1
and
k
w _ —1
E,« N ( ZE,,WN (siyta] X Ji) = Eve(Ly-10,0 T3
=1 ns;<j<nt;
k
=> > (¢ (b Ji)
=1 ns;<j<nt;
k Lntijfl )
olw( 1 —
:Z Z v mol(anl))
i=1 j=|ns;]
By Lemma for P-a.e. w € 2, we have
k [nti]—1
O'Jw
Jim > > v (0n (badi)) = (t = s)Ta( i),
i=1 j=|ns;]

which proves (b).
We next establish (a). We will use induction on the number of “time” intervals (s;,¢;] C (0, o0].
Let R = (s1,t1] x Ji where J; € J. Define

An = (b;Ol (bnjl)-
Since

{NY(R) =0} ={z:T!(x) € Ap,ns1 <j+1<nt}

= {Lag o) g o Tl o T 2 0}
|[nt1]—1—|ns1 |
= T H ]_Ac © T olnsily © TLLTL81J (x) # 0 ’
=0
we have that,
(9.3) [ (N2 (R) = 0) = v (Ra, (01" )w) > [n(ts — 51)])|

< g—Lnéle(RAn (O_Lnsljw) — 0) — Vo—\_’nsﬂw(An) é Cm(An) N 0’
because, due to rounding when taking integer parts, |nt; | —|nsy|—1 is either equal to [n(t1—s1)|—1
or to [n(t1 — s1)]. By Theorem [6.3)]

ygtnlew(RAn(o_Lnsljw) > Ln(tl _ SI)J) - e—(tl—Sl)Ha(J)

as desired.
Now let R = Ué‘?:l(si,ti] X J; with 0 < 51 <t1 <...< s <t and J; € J. Furthermore, define
si=s;— sy and t; =t; — s1.
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Observe that, accounting for the rounding errors when taking integer parts as for (9.3), we get

k k
v (NZJ (U(Siati] x Ji) = 0) — e (N,ftns”w (U(sgytﬁ X Ji> = 0)‘
i=1 i=1

k
<20 m(éy, (bni)) — 0

i=1

(9.4)

so, after replacing w by ol™1w, we can assume that s; = 0. Let

R, = (O,tl] X Ji
k
R2 = U(Siati] X Ji
=2
k
RIQ = U(Sz — SQ,ti — 82] X JZ'
=2

Then, with A, = gb;ol(anl),
(9.5) ]w (N (Ry U Ry) = 0) — 1" [{RAn (n) > [nt1]} N Ty n2) (N;{LMQJ”(R’Q) - o)] ) =0
as n — 0o, uniformly in 7 € ), as in . Moreover, as we check below,
(9.6) |7 [{Ra, () > [nta ]} N T (N7 01y = 0) |
— V"(Ra, (n) > |nt1]) - v(N(Rz) = 0)] =0

as n — oo, uniformly in 7 € Q. Therefore, setting n = ¢!™2lw in (9.5) and , we have, by
Theorem [6.3]

lim
n—oo

NG (B U Ry) = 0) — e (N ) = )] = 0

which gives the induction step in the proof of (a).
We prove now . Our proof uses the spectral gap for P’ and breaks down for random
intermittent maps.

Similarly to (9.4)),
’V"(N,?(Rg) =0)— y"(Tn*L”sﬂ (NngQJ"(R/Q) = 0))’ — 0 as n — oo, uniformly in 7.
We have, using the notation

U={Ra,(m) > 1]}, V= {Ng"(Ry) = 0},



STABLE LAWS FOR RANDOM DYNAMICAL SYSTEMS 37

that
‘y" (U=l (vy) — vy (1,22 (v)) ‘

=| [ i - v vam

<o Pl (@ = viwn)||

Pl 1Bl (1 = )|

BV
By (o = v @)

where the last inequality follows from the decay, uniform in 7, of {PéC }i in BV (condition (Dec)).
But

(9.7) SE?)SZP“}%nill<(1{RAn(W)>Lntﬂ} —v(Ra,(n) > L“ilJ))h")’th < 9%

<CH [ns2|—|nt1]

which proves . This follows from Lemma below applied to f = h; and f; = 14¢, because

|_TLt1J
LR, )>[nta ]} = H 14 OTg,
j=1

and both [|h,||Bv and [[14¢||gv are uniformly bounded. Note that for the stationary case the
estimate (9.7)) is used in the proof of [TK10b, Theorem 4.4], which refers to [ADSZ04, Proposition
4]. O

9.2. Intermittent maps. We prove a weaker form of convergence in the setting of Example [5.12
which suffices to establish stable limit laws but not functional limit laws.
In the setting of Example we will show that for P-a.e. w,

NE((0,1] % -) % Niay ((0,1] x -)

Proof of Theorem [6.6, We will show that for P-a.e. w € (2, the assumptions of Kallenberg’s theorem
[Kal76l, Theorem 4.7] hold.
Recall that J denotes the set of all finite unions of intervals of the form (z,y] where x < y and

0 ¢ [a,y].
By Kallenberg’s theorem [Kal76, Theorem 4.7], N#[(0,1] x -) =% N ((0,1] x -) if for all J € 7,

(a) lim v#(N2((0,1] x J) = 0) = P(Nia)((0,1] x J) = 0)

and

(b) li_>m Eye N,y ((0,1] x J) = E[No)((0,1] x J)]
We prove first (b) following [TK10bl page 12]. Write

k
J:UL
=1

with J; = (x;,y;] disjoint.
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Then

k

]EN(oz)((07 1] X ']) = ZHCM(Jl) = Ha(J)
i=1

and
k n ) n )
Eue N3 ((0,1] % ) = Y BuslL i,z 0 T = D Euw Ly, 0 T8
i=1 j=1 j=1

We check that

n

lim " Eue Lyt 0 70) = Ta(J)

n—oo
j=1
Write Ay, := ¢ (byJ). Then
j olw
Eyw [1(¢;01(an)) O Ti] = U (An>
hence
i w _ J _
A Z; E, [1(%01 b)) © T(@)] = Ta(J)
J:
by Lemma [7.2]

Now we prove (a), i.e.

lim v*(N2((0,1] x J) = 0) = P(Ny((0,1] x J) = 0)

n—oo

for all J € J.
Let J € J and denote as above A, := ¢, ! (byJ) C X = [0,1]. Then

{N“((0,1] x J) =0}y ={z: T/(z) € Ap,0 < j+1<n}={Ra,(w) >n—1}NAS
Hence
[V (NZ((0,1] x J) =0) — v¥(Ra, (w) >n)| < Cm(A4,) =0
and by Theorem for m-a.e. xg
V2 (R, (w) > n) — e Tl

This proves (a). O

10. STABLE LAWS AND FUNCTIONAL LIMIT LAWS

10.1. Uniformly expanding maps. In this section, we prove Theorem under the conditions
given in Section [5.5 in particular (LY), (Dec) and (Min).

For this purpose, we consider first some technical lemmas regarding short returns. For w € €,
n>1and e >0, let

El(e)={xz€[0,1] : |T]}(z) — x| < e}.
Lemma 10.1. There exists C' > 0 such that for allw € 2, n>1 and e > 0,
m(&E7(e)) < Ce.
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Proof. We follow the proof of [HNT12, Lemma 3.4], conveniently adapted to our setting of random
non-Markov maps. Recall that A7, is the partition of monotonicity associated to the map T7}.
Consider I € A”. Since inf; [(T))'] > A" > 1, there exists at most one solution z7 € T to the
equation

(10.1) To(xF) = af +e,
and since there is no sign change of (7}?)" on I, we have
(10.2) EX(e)NI C [z7,xf).
We have

Ti(af) = Tj(xy) = 27 — a7 + 2,
and by the mean value theorem,
!TZ}(J:}F)—T:}(:U;)’ |(T" ‘ }ml —CCI‘ for some c € I.

Consequently,

1
(T2)'

Note that if there is no solutions to ([10.1)), then the estimate ([10.3)) is actually improved. Rearranging
(10.3) and summing over I € A7}, we obtain thanks to ((10.2])

_ 1 _ _ _
(10.3) lof —a7| < <Sl}p ‘(TJ})/O [|laf —ay|+ 2] <A |af —a7 | + 2€Sl}p

< Ce.

S A e “Zsup

IeAn IeAn

The fact that

(10.4) > sup L ¢

for a constant C' > 0 independent from w and n follows from a standard distortion argument for
one-dimensional maps that can be found in the proof of part 3 of [ANV15, Lemma 8.5 (see also
[ARI6, Lemma 7]), where finitely many piecewise C? uniformly expanding maps with finitely many
discontinuities are also considered. Since it follows from (LY) that ||P" f||gv < C||f||sv for some
uniform C' > 0, we do not have to average over w as in [ANV15], but instead we can simply
have an estimate that holds uniformly in w. O

Recall that, for a measurable subset U, Rfj(x) > 1 is the hitting time of (w,x) to U defined by
@)

Lemma 10.2. Leta >0, 3 <¢ <1 and 0 < k < 3¢ — 2. Then there exist sequences (71(n))p>1
and (y2(n))p>1 with y1(n) = O(n™") and v2(n) = o(1), and for allw € Q, a sequence of measurable
subsets (A¥)p>1 of [0,1] with m(A%) < v1(n) and such that for all xo ¢ AY,

(logn) "z_:lm< B, (o) {RUBZ‘:%@O) < Lalognj}) < 72(n).
i=0
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Proof. Let
EY = {x €[0,1] : |T9(z) — x| < 2n~Y for some 0 < j < Lalognj}.

Since B,,—4 (o) N {R"Biw_w(m) < lalog nj} C B,—s(x0) N ES'“, it is enough to consider

(logn) ”Z_:l m (Bnﬂp (xo) N Egl‘”> .
=0

According to Lemma [10.1} we have
lalogn|
mE< Y m(&en)) <C

j=1

log n

We introduce the maximal function

1 [rott 1 ;
M (z¢) = sup — Z 1EU w dz = sup — Z (Bt(azo) NE; “’)

t>0 2t t>0 2t =

By [Rud87, Equation (5) page 138], for all A > 0, we have

n—1 —
C C % C’ logn

: w <=3 1, —75
(10.5) m(My > \) < 3 2 1E% " B S 2 < )\ )

Let p > 0 and &£ > 0 to be determined later. We define
F = {wo € [0,1] + m (B,ms (w0) N Bg) = 207400},

n

so that we have

n—1 n—1
Z m (Bn_w (.CUQ) N Egiw> > (Z 1ngw (xg)) 2n7¢(1+p).
=0 =0

By definition of the maximal function M}/, this implies that

M) (zo) > n~ (leawiﬂo)
from which it follows, by (10.5) with A = (logn)né=%?,
m (49) <m (Mg > (logn)n® %) < Cn=EF0=2070 —; 5 (m),

(o))

(ogn) D" m (B, (w0) N BZ) < (logn) (lexo) m(B, v (x0)) + 2(logn)n! 1+

1=0

where

If zg ¢ A%, then

< C(logn) ((1og n)yn~ (=8 4 n—“/’(l*”)‘”) =: 72(n).
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Since % < ¥ < land 0 < kK < 3y — 2, it is possible to choose p > 0 and £ > 0 such that

k=&+ 1 =—pp—1,¢>&and (1 +p) >1 EL which concludes the proof. O

Lemma 10.3. Suppose that a > 0 and 3 < ¢ < 1. Then for m-a.e. zo € [0,1] and P-a.e. w € Q
and , we have

i (log ”>§m (Bus (o) N {RE (o) < lalogn] }) =
=0

Proof. Let 0 < k < 31)—2 to be determined later. Consider the sets (A%),>1 given by Lemmam
with m(AY) < ~1(n) = O(n™"). Since k < 1, we need to consider a subsequence (ny)r>1 such that
> k>171(ng) < co. For such a subsequence, by the Borel-Cantelli lemma, for m-a.e. x¢, there exists
K = K (z0,w) such that for all k > K, 29 ¢ A% . Since limy_,o y2(nj) = 0, this implies

ng—1 _
dim (logny) > m (Bn;WO) “{ B (o) < lalog ”kJ}> =0.

i=0
We take nj, = |k¢], for some ¢ > 0 to be determined later. In order to have > k>171(nE) < oo,

we need to require that k{ > 1. Set U¥(xg) = B,,—+(x0) N {R“é y(@0) S lalogn]| } To obtain the
convergence to 0 of the whole sequence, we need to prove that

n—1 ) ngp—1 ,
(10.6) lim  sup (logn) Zm(Uglw(:ro)) — (log ng) Z m(Uka(xo))‘ =0.
k=00 n, <n<npys i=0 =0
For this purpose, we estimate
n—1 ) nip—1 ‘
(logn) > m(Uy “(z0)) = (lognx) Y m(Uy,“(x0))| < (1) + (I1) + (III) + (IV) + (V).
=0 =0
where
n—1 ) n—1 )
() = [log n — log ng| Y~ m(Uy “(x0)), (II) = (logny) Y m(U7 “(x0)),
i=0 i=ny,
ne—1 _
(III) = (log ng) Z ‘m( —w(.CC())ﬂ{ UB:iw(:ro) < LalognJ}) —m(B —u(x0) ﬁ{ B (@) S alognj})‘
nk—l )
(IV) = (log ng) Z m (Bn;w(l’o) N { UB:w(xo) < |alog nJ}) -m (B —(zo) N { B y (o) < Lalogn] }) ',
i=0

-1
(V) = (logng) z; < ¥ a:o)ﬂ{ UBI%’”(C‘CO) < Lalognj}) —m<B —u (0 ﬂ{ B y (z0) = Lalognﬂ})‘

Before proceeding to estimate each term, we note that |ng,; — ng| = O(k~(1=9),
Ok~ 1+ log ny11 — logny| = O(k~1) and m(U¥ (20)) < m(B,,—v(x0)) = O(k~ w).

3For instance, take ¢ = ¢ —d and p =1~ — 1+ 5y~ with § = 3’/’_%
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From these observations, it follows

(I) < C [log 1 — log ng| nyy 1k < Ok~ 1717900,
(I1) < Clog ni) ks — nilk=<¥ < C(log )k~ (=40,

(II) < C(logng)ngm(B_—w(x0) \ B,—v(x0)) < C(log nk)nklnaﬂ — n,?ﬂ < C(log k)k_(l_(l_¢)C),

-
T

TLk—l ]
(IV) < C(log ny,) Z m <Bn;w(xo) N {RUB’T:w OB, (@0) lalogn] })
=0
nep—1
< Cllogny) > allogn)m (B, - (w0) \ B,-o(0))
i=0

and
ne—1 )
(V) < C(logny) Z m (Bnk¢ (xo) N {La logng | < R%::?p(xo) < |alogn] })
i=0
ne—1
< C(logny) Y allogngy1 — lognyl m(B,, v (o))
i=0
< C(log k)k~ (= 0=¥)0),
To obtain ((10.6)), it is thus sufficient to choose x > 0 and ¢ > 0 such that k < 3¢ — 2, K( > 1
and (1 — )¢ < 1, which is possible if ¢ > %. O

We can now prove the functional convergence to a Lévy stable process for i.i.d. uniformly ex-
panding maps.

Proof of Theorem[6.7, We apply Theorem By Theorem we have N iN(a) under the
probability v for P-a.e. w € . It thus remains to check that equation holds for m-a.e. xg
when « € [1,2) to complete the proof. For this purpose, we will use a reverse martingale argument
from [NTVI8] (see also [ARI6, Proposition 13]). Because of (5.10)), it is enough to work on the
probability space ([0, 1], %) for P-a.e. w € Q. Let B denote the o-algebra of Borel sets on [0, 1] and

B,k = (T5)"'(B)
To simplify notation a bit let
fw,j,n(x) = ¢I0(x)1{‘¢10|gebn}(m) - Eyojw(¢zol{\¢zo|§5bn})'

From (5.10)), it follows that E,,(|fu jn|) < Ceby, and from the explicit definition of ¢, we can
estimate the total variation of f,, ;, and obtain the existence of C' > 0, independent of w, €, n and
7, such that

(10.7) [ fr.gim

Ipv < Céeby,.
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We define

wkn: wa,],noT
and
(10'8) Hw,k,n o TZ} =E,w (Sw,k,n‘Bw,k)

Hence H,, 1, = 0 and an explicit formula for H,, ; ,, is

wkn: Z fw,]n Uﬁw)

=0

From the explicit formula, the exponential decay in the BV norm of P(Z:}j from (Dec), (5.10) and
(10.7)), we see that ||[Hy k.n|lBv < Ceby, where the constant C' may be taken as constant over w € 2.
If we define

Mw,k,n = Sw,k,n - Hw,k,n o To]j
then the sequence {M,, 1, » }x>1 is a reverse martingale difference for the decreasing filtration B, j, =
(T2)~'(B) as
Epe (M,

The martingale reverse differences are

w,k) =0

Mw,k+1,n - w k.n ww k,n w

where
¢w,k,n = fw,k,n + Hw,k,n - Hw,k+1,n o Tgk+1w-
We see from the L*° bounds on |[H, kn|lcc < Cbpe and the telescoping sum that

- k—1
(10.9) > WujnoTh =Y fujmoTh| < Ceby.
=0 j=0
By Doob’s martingale maximal inequality
k—1 n—1 2
o 2 Yo T 20 [ S B Do T2
Note that
n—1 A n—1 ‘ 2
D By [0 T =FEpe | thujnoTY
j=0 j=0
by pairwise orthogonality of martingale reverse differences.
As in [HNTV17, Lemma 6]
n—1
EV“[(S%”,TLF} = ZEV“’[ w,jyn © T]] + Epe [Hw 1 n] —Epe [Hf) n,n © TZJL]
§=0

So we see that
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k—1

2.2
(10.10) Ul max Zzpw,j,n 0TI > b6 p < b?}ﬁEW[(S“’”’”)Q] + 2%
where we have used [|H7 ; ,[loo < C?b2e.
Now we estimate
n—1
(1011) EV“[(Sw,n,n)2] = Z V“’[fwjnoT] +QZZEV“’ fW,jnoT fwznoTl]
7=0 =0 1<j

Using the equivariance of the measures {v*},cq and (5.10]), we have

n—1

(10.12) D Euelfl 0 0 T < CnEy($3, 11, <cb,)) ~ O 0,
j=0

by Proposition and ([2.3)).

On the other hand, we are going to show that for m-a.e. xg

n—1
(10.13) hmhg:sgp 5 ZZEW fw]’noT fwznoTZ] 0.
” i=0 i<j

The first observation is that, due to condition (Dec),

Eyw [fw,j,n © Tu]; : fw,i,n © T:;] < Cej_iwa,i,n”BVwa,j,n”L}n < 052bi(9j_i
where 6 < 1. Hence there exists a > 0 independently of n and € such that
Z Epe[fu,jm © TLZ * Juw,in © TZJ] < CEQn_zbi
j—i>|alogn]
and it is enough to prove that for € > 0,

n—11i+|alogn]|

Z Z Ey“’ [fw,j,n © ch; : fw,i,n o TZ_}:I - O(b%) = O(n%)

i=0 j=i+1

By construction, the term E,w[fy in © T fw,] noT? ] is a covariance, and since ¢ is positive, we
can bound this quantity by Eye[fno T - froTY] = E qiw[fn: fao Tj ] where f, = ¢x01{|¢ |<ebn )
T n
Then, since the densities are uniformly bounded by (|5.10} -, we are left to estimate

n—11i+|alogn]|

(10.14) >N Enlfa: fao T

=0 g=i+1
Let 3 <4 < 1and U, = B, (zp). We bound (10.14) by (I) + (II) + (III), where

n—1i+|alogn]|

-> > o1y

=0 joip1 JURNTL)
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n—11i+|alogn]| o
(D / fn'fnoTJ:ldm

and
n—11i+|alogn]|

n=>" > / fo+ foo TZ dm.

=0 j=i+1
Since || fnlloo < €by, it follows that

n—1i+|alogn]|

<y S m(U N (19w, ))

=0 gjJ=i+1
n—1 )
< ag’b? (logn) Z m (Un N {Ri}:" < alog n}) ,
i=0

which by Lemma is a o(b2) as n — oo for m-a.e. x.
To estimate (II) and (III), we will use Hélder’s inequality. We first observe by a direct compu-
tation that

(10.15) / 2 dm = O(n*(G1)).
We consider (III) first. Let A = US. We have
1 1
.o . 2 . 2
(10.16) fo+ fao T2 dm < / Gu * fno T2 dm < (/ ¢§,Odm> (/ fro Tg;;dm>
Ug A A

(10.17) <C </A gbiodm); </ fﬁdm)é

1
By (10.15), (/4 %Odm)% S cn® (31 and by Proposition (f f2dm)? < Cna~2. Hence we
may bound ({10.16]) by C +)(3-3),
To bound (II), let B = (T] l) L(U¢). Then,
(10.18)

1 1
. _ 2 . 2
/ N Jo - fno T2 Mdm < / fr - bzg 0 T Jdm < </ fﬁdm) </ ¢2, 0 Tijjdm)
Un (TS 1)1 (UF) ’ B B

As before ([ f2dm)? < Cna~3 and

1 3
L. 2 P
</ ¢§:o oTj_dem) < (/qﬁz oT] 1 TJ - 1(Uc)dm> < C’( ¢i0dm) < cnt(E-1)
B n Ue

by (10.15)), and so ([10.18]) is bounded by Cn+9(5-2),
It follows that (II) + (III) < C(logn)n L+ (5-32) = o(n%), since 1 < 1. This proves that

(10.14) is a o(b?) and concludes the proof of (10.13).
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Finally, from (10.11]), (10.12)) and (10.13), we obtain

1
(10.19) lim lim sup 2 Eyw[(SN,mn)Q] =0,

e=0 pooo 0p

which gives the result by taking the limit first in n and then in ¢ in (10.10)). ([l

10.2. Intermittent maps. We prove convergence to a stable law in the setting of Example
when a € (0,1).

Proof of Theorem [6.9. We apply Proposition By Theorem it remains to prove ([5.7)), since
a € (0,1). We will need an estimate for Eyw(|¢x0|1{¢ <eb }) which is independent of w. For this
o SEON

purpose, we introduce the absolutely continuous probability measure vy,,x Whose density is given
by hAmax(x) = kax~Tmax. Since all densities h,, belong to the cone L, we have that h,, < “hmax for
all w. Thus,

n a

E Z(:)Eyojw(gbwo 1{\¢10|S€bn}) < E;El/max (¢x01{|¢m0\§€bn})'
J:

We can easily verify that ¢, is regularly varying of index o with respect to vmax, With scaling
sequence equal to (by),>1 up to a multiplicative constant factor. Consequently, by Proposition
we have that, for some constant ¢ > 0,

l—a, +—1

]EVmax (¢x01{|¢x0‘§8bn}) ~ CE nao s
which implies (5.7]). O

11. THE ANNEALED CASE

In this section, we consider the annealed counterparts of our results. Even though the annealed
versions do not seem to follow immediately from the quenched version, it is easy to obtain them

from our proofs in the quenched case. We take ¢,,(z) = d(x,mo)_é as before we consider the
convergence on the measure space  x [0, 1] with respect to vp(dw,dz) = P(dw)v*(dz). We give
precise annealed results in the case of Theorems [6.7 and where we consider

nt]—
a 1
X (w,x)(t 'bz_% —tep, >0,

viewed as a random process defined on the probability space (Q x [0, 1], vF).

Theorem 11.1. Under the same assumptions as Theorem the random process X2(t) converges
in the Ji topology to the Lévy a-stable process X () (t) under the probability measure v .

Proof. We apply [TKI10b, Theorem 1.2] to the skew-product system (2 x [0, 1], F,vp) and the
observable ¢, naturally extended to € x [0,1]. Recall that vp is given by the disintegration
vr(dw,dz) = P(dw)v® (dzx).

We have to prove that

d,
(a) N, — N(a),
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(b) if € [1,2), for all § > 0,

k—1
. . 1 .
fpmsupve | (0) = e 1y 2 (90 (T g, oricen, ) ()~ BolraL i )] [ 26 | =0
‘7:
where

Ny (w,z)(B) == Nﬁ(w)(B)-#{jZl : (i w) EB}, n>1.

To prove (a), we take f € C{((0,00) x (R {0})) arbitrary. Then, by Theorem we have for
P-a.e. w
lim E,o(e M) = (e NW)),
n—oo

Integrating with respect to P and using the dominated convergence theorem yields

li_>m E,, (e V(D) = E(e=N ),

which proves (a).
To prove (b), we simply have to integrate with respect to P in the estimates in the proof of
Theorem [6.7, which hold uniformly in w € €, and then to take the limits asn — oo and e — 0. O

Similarly, we have:

Theorem 11.2. Under the same assumptions as Theorem m X2(1) 4

bility measure vp.

Proof. We can proceed as for Theorem in order to check the assumptions of [TK10bl Theorem
1.3] for the skew-product system (2 x [0, 1], F, vr) and the observable ¢, . O

X(a)(1) under the proba-

12. APPENDIX

The observation that our distributional limit theorems hold for any measures u < v* follows
from Theorem 1, Corollary 1 and Corollary 3 of Zweimiiller’s work [Zwe(7].
Let

1 n—1 A
= 1> 6o Ti@) — anl.

n .
J=

and suppose

Sp =, Y
where Y is a Lévy random variable.
We consider first the setup of Example We will show that for any measure v with density
hi.e. dv = hdm in the cone L of Example in particular Lebesgue measure m with h = 1,

S, =, Y

We focus on m. According to [Zwe07, Theorem 1] it is enough to show that

/u} n)dv, — /1,!) )dm — 0.

for any 1 : R — R which is bounded and uniformly Lipschitz.
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Fix such a ¢ and consider

n—1
[ (13 60 Ti@) — aul) s — 1)
L

n—1
< / ¢<b1n[jzo¢o T3, (%) — an)) P (hy — 1)dm

< N9 lloo | P (e = DI 21 (-

Since ||P¥(h, — 1)| ry — 0 in case of Example and maps satisfying (LY), (Dec) and (Min)
the assertion is proved. By [Zwe07, Corollary 3], the proof for continuous time distributional limits
follows immediately.
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