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Abstract. In this paper we consider random dynamical systems formed by concatenating maps
acting on the unit interval [0, 1] in an iid fashion. Considered as a stationary Markov process, the
random dynamical system possesses a unique stationary measure ν. We consider a class of non

square-integrable observables φ, mostly of form φ(x) = d(x, x0)−
1
α where x0 is non-periodic point

satisfying some other genericity conditions, and more generally regularly varying observables with
index α ∈ (0, 2). The two types of maps we concatenate are a class of piecewise C2 expanding
maps, and a class of intermittent maps possessing an indifferent fixed point at the origin. Under
conditions on the dynamics and α we establish Poisson limit laws, convergence of scaled Birkhoff
sums to a stable limit law and functional stable limit laws, in both the annealed and quenched case.
The scaling constants for the limit laws for almost every quenched realization are the same as those
of the annealed case and determined by ν. This is in contrast to the scalings in quenched central
limit theorems where the centering constants depend in a critical way upon the realization and are
not the same for almost every realization.
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1. Introduction

In this paper we consider non square-integrable observables φ : [0, 1]→ R on two simple classes
of random dynamical system. One consists of randomly choosing in an iid manner from a finite
set of maps which are strictly polynomially mixing with an indifferent fixed point at the origin, the
other consisting of randomly choosing from a finite set of maps which are uniformly expanding and

exponentially mixing. The main type of observable we consider is of the form φ(x) = d(x, x0)−
1
α ,

α ∈ (0, 2) which in the IID case lies in the domain of attraction of a stable law of index α. For
certain results the point x0 has to satisfy some nongenericity conditions and in particular not be a
periodic point for almost every realization of the random system (see Definition 6.1). Some of our
results, particularly those involving convergence to exponential and Poisson laws hold for general
observables that are regularly varying with index α.

Our setup is to consider a finite set of m maps of the unit interval and choose from the set
{Ti}mi=1 in an iid fashion according to a probability vector (p1, . . . , pm).

Let Ω := {1, . . . ,m}Z, and define on Ω the product measure P := {(p1, . . . , pm)}Z. The left shift
σ on Ω preserves P. We write ω ∈ Ω as ω = (. . . , ω−1, ω0, ω1, . . . , ωn) and denote

(1.1) Tnω := Tσn−1ω ◦ . . . ◦ Tω0 = Tωn−1 ◦ . . . ◦ Tω0

Fixing ω ∈ Ω we form the quenched discrete time Birkhoff sum

(1.2) Sωn :=
1

bn

n−1∑
j=0

φ ◦ T jω − cn,
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for some sequence of positive scaling constants bn, cn, and the quenched continuous time process

(1.3) Xω
n (t) :=

1

bn

bntc−1∑
j=0

φ ◦ T jω − tcn, t ≥ 0,

Amongst other results, we describe the convergence of this quenched Birkhoff sum (1.2) to a stable
law and of the corresponding quenched continuous time process (1.3) to a Lévy process (in the
J1 Skorohod topology) for P-a.e. ω ∈ Ω under various assumptions. A key result is that the
scaling constants bn, cn are the same for P-a.e. ω and are the same as for the annealed system.
Our proofs are based on a Poisson process approach developed for dynamical systems by Marta
Tyran-Kaminska [TK10a, TK10b]. Our main results are given in detail in Section 6.

2. Probabilistic tools

In this section, we review some topics from Probability Theory.

2.1. Regularly varying functions and domains of attraction. We briefly describe here the
relations between domains of attraction of stable laws and regularly varying functions; we refer to
Feller [Fel71] or Bingham, Goldie and Teugels [BGT87] for more details.

Definition 2.1 (slow variation). A measurable function L : (0,∞) → (0,∞) is slowly varying if
for all λ > 0,

lim
x→∞

L(λx)

L(x)
= 1.

Let (Y, ν) be a probability space.

Definition 2.2 (regular variation). We say that φ : Y → R is regularly varying with index α > 0
(with respect to ν) if there exists p ∈ [0, 1] and a slowly varying function L such that

(2.1) lim
x→∞

ν(φ > x)

ν(|φ| > x)
= p and lim

x→∞

ν(|φ| > x)

x−αL(x)
= 1.

Definition 2.3 (scaling constants). We consider a sequence (bn)n≥1 of positive real numbers such
that

(2.2) lim
n→∞

nν(|φ| > bn) = 1.

The sequence bn plays the role of scaling constants in stable limit theorems. For φ regularly

varying such a sequence can be written as bn = n
1
α L̃(n) for a slowly varying function L̃. As a

consequence, with L the slowly varying function corresponding to φ,

lim
n→∞

nL(bn)

bαn
= 1,

and for every λ > 0,

(2.3) lim
n→∞

n ν(|φ| > λbn) = λ−α.
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Definition 2.4 (centering constants). Let φ : Y → R be a measurable function such that ν(φ 6=
0) = 1. We assume that φ is regularity varying with index α ∈ (0, 2). Let (bn) be a sequence of
positive numbers as in (2.2).

We define the centering sequence (cn)n≥1 by

cn =


0 if α ∈ (0, 1)
n
bn
Eν(φ1{|φ|≤bn}) if α = 1

n
bn
Eν(φ) if α ∈ (1, 2)

.

Remark 2.5. When α ∈ (0, 1) then φ is not integrable and one can choose the centering sequence
(cn) to be identically 0. When α = 1, it might happen that φ is not integrable, and it is then
necessary to define cn with suitably truncated moments as above. If φ is integrable then center by
cn = nb−1

n Eν(φ).

We will use the following asymptotics for truncated moments, which can be deduced from
Karamata’s results concerning the tail behavior of regularly varying functions:

Proposition 2.6 (Karamata). Let φ be regularly varying with index α ∈ (0, 2). Then, setting
β := 2p− 1 and, for ε > 0,

(2.4) cα(ε) :=


0 if α ∈ (0, 1)

−β log ε if α = 1

ε1−αβα/(α− 1) if α ∈ (1, 2)

the following hold for all ε > 0:

(a) Eν(|φ|21{|φ|≤εbn}) ∼
α

2− α
(εbn)2ν(|φ| > εbn),

(b) if α ∈ (0, 1),

Eν(|φ|1{|φ|≤εbn}) ∼
α

1− α
εbnν(|φ| > εbn),

(c) if α ∈ (1, 2),

lim
n→∞

n

bn
Eν(φ1{|φ|>εbn}) = cα(ε),

(d) if α = 1,

lim
n→∞

n

bn
Eν(φ1{εbn<|φ|≤bn}) = cα(ε),

(e) if α = 1,
n

bn
Eν(|φ|1{|φ|≤εbn}) ∼ L̃(n),

for a slowly varying function L̃,

In our results for concreteness we will consider the observable

(2.5) φx0(x) = d(x, x0)−
1
α

where x0 is a point in [0, 1], the phase space of the dynamical systems we consider.
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2.2. Lévy α-stable processes. A helpful and more detailed discussion can be found, e.g., in [TK10a,
TK10b].
X(t) is a Lévy stable process if X(0) = 0, X has stationary independent increments and X(1)

has an α-stable distribution.
The Lévy-Khintchine representation for the characteristic function of an α-stable random variable

Xα,β with index α ∈ (0, 2) and parameter β ∈ [−1, 1] has the form:

E[eitX ] = exp

[
itaα +

∫
(eitx − 1− itx1[−1,1](x))Πα(dx)

]
where

• aα =

{
β α

1−α α 6= 1

0 α = 1
,

• Πα is a Lévy measure given by

dΠα = α(p1(0,∞)(x) + (1− p)1(−∞,0)(x))|x|−α−1dx

• p =
β + 1

2
.

Note that p and β may equally serve as parameters for Xα,β. We will drop the β from Xα,β, as
is common in the literature, for simplicity of notation and when it plays no essential role.

2.3. Poisson point processes. Let (Tn)n≥1 be a sequence of measurable transformations on a
probability space (Y,B, µ). For n ≥ 1 we denote

(2.6) Tn1 := Tn ◦ . . . ◦ T1.

Given φ : Y → R measurable, recall that we define the scaled Birkhoff sum by

(2.7) Sn :=
1

bn

n−1∑
j=0

φ ◦ T j1 − cn,

for some real constants bn > 0, cn and the scaled random process Xn(t), n ≥ 1, by

(2.8) Xn(t) :=
1

bn

bntc−1∑
j=0

φ ◦ T j1 − tcn, t ≥ 0,

For Xα(t) a Lévy α-stable process and B ∈ B((0,∞)× (R/{0})) define

N(α)(B) := #{s > 0 : (s,∆Xα(s)) ∈ B}

where ∆Xα(t) := Xα(t)−Xα(t−).
The random variable N(α)(B), which counts the jumps (and their time) of the Lévy process

that lie in B, is finite a.s. if and only if (m × Πα)(B) < ∞. In that case N(α)(B) has a Poisson
distribution with mean (m×Πα)(B).

Similarly, for the process given by (2.8), define

Nn(B) := #

{
j ≥ 1 :

(
j

n
,
φ ◦ T j−1

1

bn

)
∈ B

}
, n ≥ 1,
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Nn(B) counts the jumps of the process (2.8) that lie in B. When a realization ω ∈ Ω is fixed we
define

Nω
n (B) := #

{
j ≥ 1 :

(
j

n
,
φ ◦ T j−1

ω

bn

)
∈ B

}
, n ≥ 1.

Definition 2.7. We say Nn converges in distribution to N(α) and write

Nn
d→N(α)

if and only if Nn(B)
d→N(α)(B) for all B ∈ B((0,∞) × (R \ {0})) with (m × Πα)(B) < ∞ and

(m×Πα)(∂B) = 0.

2.4. Skorohod J1 topology. Let D[0,∞) be the space of all R-valued cádlág functions ψ on
[0,∞), that is functions which are right continuous and have finite left hand limits for all t > 0.

Let Λ denote the set of strictly increasing continuous maps λ of [0,∞] to [0,∞] such that λ(0) = 0
and λ(∞) =∞.

The Skorohod J1 topology on D[0,∞) is defined as follows: φn converges to ψ in the J1 topology
if and only if there exists a sequence {λn} ⊂ Λ such that

sup
s
|λn(s)− s| → 0

and

sup
s≤m
|ψn(λn(s))− ψ(s)| → 0

for all positive integers m.

3. Modes of Convergence

Consider the process Xα determined by the observable φ (that is, an iid version of φ which
regularly varying with the same index α and parameter p ). We are interested the following limits:

(A) Poisson point process convergence.

Nω
n

d→N(α)

with respect to νω for P a.e. ω where N(α) is the Poisson point process of an α-stable process
with parameter determined by ν, the annealed measure.

(B) Stable law convergence.

Sωn :=
1

bn

n−1∑
j=0

φ ◦ T jω − cn
d→Xα(1)

for P-a.e. ω, with respect to νω, for φ regularly varying with index α and Xα(t) the corre-
sponding α-stable process, for suitable scaling and centering constants bn and cn. See (1.1)

for the definition of T jω.
(C) Functional stable law convergence.

Xω
n (t) :=

1

bn

bntc−1∑
j=0

φ ◦ T jω − tcn
d→Xα(t)
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in D[0,∞) in the J1 topology P-a.e. ω, with respect to νω for φ regularly varying with index
α and Xα(t) the corresponding α-stable process.

For the cases we are considering, the scaling constants bn are given by (2.2) in Definition 2.3,
and the centering constants cn are given in Definition 2.4 (see also Remark 2.5).

Remark 3.1 (Convergence with respect to Lebesgue measure). We state our limiting theorems with
respect to the fiberwise measures νω but by general results of Eagleson [Eag76](see also [Zwe07]) the
convergence holds with respect to any measure µ for which µ � νω, in particular our convergence
results hold with respect to Lebesgue measure m. Further details are given in the Appendix.

Remark 3.2 (IID random variables). An iid sequence of random variables φn with distribution
function φ satisfies a stable limit law iff it satisfies a functional stable limit law. In that case the
limit is an α-stable random variable, respectively a Lévy process with index α, and α ∈ (0, 2]. The
case α = 2 corresponds to Brownian Motion.

In particular, if φ is regularly varying with index α ∈ (0, 2), then the iid sequence is in the
(generalized) domain of attraction of a stable law with index α.

Remark 3.3. In the limit laws for quenched systems that we obtain of type (B) and (C), the
centering sequence cn does not depend on the realization ω. This is in contrast to the case of the
CLT, where a random centering is necessary; see [AA16, Theorem 9] and [NPT21, Theorem 5.3].

4. Stationary dynamical systems

There have been many results on stable laws for ergodic dynamical systems (T,X, µ) with some
degree of hyperbolicity. The two main scenarios are: (1) the observable φ 6∈ L2(µ) 1; (2) slow decay
of correlations of (T,X, µ) for a class of regular observables on a Riemannian manifold X.
Example of (1): Gouëzel [Gou, Theorem 2.1] showed that if T : [0, 1]→ [0, 1] is the doubling map

T (x) = 2x (mod 1) with Lebesgue as invariant measure, and φ(x) = x−
1
α , α ∈ (0, 2) then there

exists a sequence cn such that

2
1
α − 1

n
1
α

n−1∑
j=0

φ ◦ T j − cn
d→Xα,1(1)

Example of (2): The Liverani-Saussol-Vaienti map, a form of Manneville-Pomeau map modeling
intermittency, is defined for γ ∈ (0, 1) by

(4.1) Tγ : [0, 1]→ [0, 1], Tγ(x) :=

{
x(1 + 2γxγ) if 0 ≤ x ≤ 1

2 ;
2x− 1 if 1

2 < x < 1.

The map Tγ has a unique absolutely continuous invariant probability measure µγ .
Gouëzel [Gou04, Theorem 1.3] showed that if γ > 1

2 and φ : [0, 1]→ R is Hölder continuous with

φ(0) 6= 0, Eµγ (φ) = 0 then for α = 1
γ

1

bn
1
α

n−1∑
j=0

φ ◦ T j d→Xα,β(1)

(β has a complicated expression).

1Or, cases where the CLT does not hold because the observable is not sufficiently regular.
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5. A Poisson Point Process Approach to random and sequential dynamical systems

Our results are based on the Poisson point process approach developed by Marta Tyran-Kamińska
[TK10a, TK10b] adapted to our random setting (see Theorems 5.1 and 5.3). Namely, convergence
to a stable law or a Lévy process follows from the convergence of the corresponding (Poisson) jump
processes, and control of the small jumps.

A key role is played by Kallenberg’s Theorem [Kal76, Theorem 4.7] to check convergence of the

Poisson point processes, Nn
d→N(α). Kallenberg’s theorem does not assume stationarity and hence

we may use it in our setting.
In this section, we provide general conditions ensuring weak convergence to Lévy stable processes

for non-stationary dynamical systems, following closely the approach of Tyran-Kamińska [TK10b].
We start from the very general setting of non-autonomous sequential dynamics and then specialize
to the case of quenched random dynamical systems, which will be useful to treat i.i.d. random
compositions in the later sections.

5.1. Sequential transformations. Recall the notations introduced in Section 2.3. (Tn)n≥1 is a
sequence of measurable transformations on a probability space (Y,B, µ). For n ≥ 1, we define

Tn1 = Tn ◦ . . . ◦ T1.

For a measurable φ : Y → R, we define the random process Xn, n ≥ 1, by

Xn(t) =
1

bn

bntc−1∑
j=0

φ ◦ T j1 − tcn, t ≥ 0,

for some constants bn > 0, cn ∈ R.
For B ∈ B((0,∞)× (R \ {0})) we define

Nn(B) := #

{
j ≥ 1 :

(
j

n
,
φ ◦ T j−1

1

bn

)
∈ B

}
, n ≥ 1,

and write

Nn
d→N(α)

if and only if Nn(B)
d→N(α)(B) for all B ∈ B((0,∞) × (R \ {0})) with (Leb×Πα)(B) < ∞ and

(Leb×Πα)(∂B) = 0.
The proof of the following statement is essentially the same as the proof of [TK10b, Theorem 1.1].
Note that the measure µ does not have to be invariant. Moreover (see [TK10b, Remark 2.1]),

the convergence Xn
d→X(α) holds even without the condition µ(φ ◦T j1 6= 0) = 1, which is used only

for the converse implication of the “if and only if”.

Theorem 5.1 (Functional stable limit law, [TK10b, Theorem 1.1]). Let α ∈ (0, 2) and suppose

that µ(φ ◦ T j1 6= 0) = 1 for all j ≥ 0. Then Xn
d→X(α) in D[0,∞) under the probability measure µ

for some constants bn > 0 and cn if and only if

• Nn
d→N(α) and
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• for all δ > 0, ` ≥ 1, with cα(ε) given by (2.4),

(5.1) lim
ε→0

lim sup
n→∞

µ

 sup
0≤t≤`

∣∣∣∣∣∣ 1

bn

bntc−1∑
j=0

φ ◦ T j1 1{|φ◦T j1 |≤εbn} − t(cn − cα(ε))

∣∣∣∣∣∣ ≥ δ
 = 0

Remark 5.2. In some cases the convergence Nn
d→N(α) does not hold, but one has convergence of

the marginals, Nn((0, 1]× ·) d→N(α)((0, 1]× ·). In this case, although unable to obtain a functional
stable law convergence of type (C), we can in some settings prove the convergence to a stable law
for the Birkhoff sums (convergence of type (B)).

In particular, we are unable to prove Nω
n

d→N(α) for the case of random intermittent maps,
Example 5.12. On the other hand, in the setting of random uniformly expanding maps of Example 5.10,

we use the spectral gap to show that Nω
n

d→N(α), and then obtain the functional stable limit law.

The next statement is [TK10b, Lemma 2.2, part (2)], which follows from [TK10a, Theorem 3.2].
Again, the measure does not have to be invariant.

Theorem 5.3 (Stable limit law, [TK10b, Lemma 2.2]). For α ∈ (0, 2), consider an observable φ
on the probability measure µ, and cα(ε) given by (2.4).

If

Nn((0, 1]× ·) d→N(α)((0, 1]× ·)
and, for all δ > 0,

(5.2) lim
ε→0

lim sup
n→∞

µ

∣∣∣∣∣∣ 1

bn

n−1∑
j=0

φ ◦ T j1 1{|φ◦T j1 |≤εbn} − (cn − cα(ε))

∣∣∣∣∣∣ ≥ δ
 = 0

then

1

bn

n−1∑
j=0

φ ◦ T j1 − cn
d→X(α)(1)

under the probability measure µ.

5.2. Random dynamical systems. We will be considering the following set-up, with (Ω, σ) the
full two-sided shift on finitely many symbols, and Y = [0, 1].

Let σ : Ω→ Ω be an invertible ergodic measure-preserving transformation on a probability space
(Ω,F ,P). For a measurable space (Y,B), let

F : Ω× Y → Ω× Y
(ω, x) 7→ (σω, Tω(x))

preserving a probability measure νF on Ω × Y . We assume that νF admits a disintegration given
by νF (dω, dx) = P(dω)νω(dx). For all n ≥ 1, we have

Fn(ω, x) = (σnω, Tnω x),

where, as in (1.1),

Tnω = Tσn−1ω ◦ . . . ◦ Tω,
which satisfies the equivariance relations (Tnω )∗ν

ω = νσ
nω for P-a.e. ω ∈ Ω.
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Let φ : Y → R be a measurable function such that νω(φ 6= 0) = 1 for P-a.e. ω ∈ Ω. As in (1.3),
we define for every ω ∈ Ω the random process Xω

n (t), n ≥ 1, by

Xω
n (t) =

1

bn

bntc−1∑
j=0

φ ◦ T jω − tcn, t ≥ 0

for some constants bn > 0, cn ∈ R.
As in Section 5.1, for B ∈ B((0,∞)× (R \ {0})) we define

Nω
n (B) := #

{
j ≥ 1 :

(
j

n
,
φ ◦ T j−1

ω

bn

)
∈ B

}
, n ≥ 1.

Proposition 5.4 ([TK10b, proof of Theorem 1.2]).
Let α ∈ (0, 1). With bn as in Definition 2.3 and cn = 0, suppose that for P-a.e. ω ∈ Ω

(5.3) lim
ε→0

lim sup
n→∞

1

bn

n`−1∑
j=0

E
νσ
jω(|φ|1{|φ|≤εbn}) = 0 for all ` ≥ 1,

and

Nω
n

d→N(α).

Then Xω
n

d→X(α) in D[0,∞) under the probability measure νω for P-a.e. ω ∈ Ω.

Proof. We will check that the hypothesis of Theorem 5.1 are met for P-a.e. ω with Tn = Tσn−1ω,
µ = νω. Recall that cn = cα(ε) = 0 when α ∈ (0, 1). Using [KW69, Theorem 1] (see Theorem 5.6)
and the equivariance of the family of measures {νω}ω∈Ω, we have

νω

 sup
0≤t≤`

∣∣∣∣∣∣ 1

bn

bntc−1∑
j=0

φ ◦ T jω1{|φ◦T jω |≤εbn}

∣∣∣∣∣∣ ≥ δ
 ≤ 1

δbn

n`−1∑
j=0

E
νσ
jω(|φ|1{|φ|≤εbn})

which shows that condition (5.3) implies condition (5.1) for all δ > 0 and ` ≥ 1. �

Remark 5.5. One could replace condition (5.3) by one similar to (5.5), and use the argument in
the proof of Proposition 5.7.

Theorem 5.6 (Kounias and Weng [KW69, special case of Theorem 1 therein]).
Assume the random variables Xk are in L1(µ). Then

µ

(
max

1≤k≤n

∣∣∣∣∣
k∑
`=1

X`

∣∣∣∣∣ ≥ δ
)
≤ 1

δ

n∑
k=1

Eµ(|Xk|).

Proposition 5.7. Let α ∈ [1, 2).
With bn and cn as in Definitions 2.3 and 2.4, and cα(ε) as in (2.4), suppose that for all ε > 0

and all ` ≥ 1,

(5.4) lim
n→∞

sup
0≤t≤`

∣∣∣∣∣∣ 1

bn

bntc−1∑
j=0

E
νσ
jω(φ1{|φ|≤εbn})− t(cn − cα(ε))

∣∣∣∣∣∣ = 0 for P-a.e. ω ∈ Ω,
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and that for all δ > 0

(5.5) lim
ε→0

lim sup
n→∞

esssup
ω∈Ω

νω
(

max
1≤k≤n

∣∣∣ 1

bn

k−1∑
j=0

[
φ ◦ T jω1{|φ◦T jω |≤εbn} − E

νσ
jω(φ1{|φ|≤εbn})

]∣∣∣ ≥ δ
)

= 0.

If Nω
n

d→N(α) for P-a.e. ω ∈ Ω, then Xω
n

d→X(α) in D[0,∞) under the probability measure νω for
P-a.e. ω ∈ Ω.

Proof. As in the proof of Proposition 5.4, we check the hypothesis of Theorem 5.1 with Tn = Tσn−1ω,
µ = νω for P-a.e. ω ∈ Ω. We will see that (5.1) follows from (5.4) and (5.5).

Using the equivariance of {νω}ω∈Ω, we see that condition (5.1) is implied by (5.4) and (5.6)
below:

(5.6) lim
ε→0

lim sup
n→∞

νω

 sup
1≤k≤n`

∣∣∣∣∣∣ 1

bn

k−1∑
j=0

[
φ ◦ T jω1{|φ◦T jω |≤εbn} − E

νσ
jω(φ1{|φ|≤εbn})

]∣∣∣∣∣∣ ≥ δ
 = 0.

We next show that condition (5.5) implies (5.6).
Since sup

1≤k≤n`

∣∣∣∣∣∣ 1

bn

k−1∑
j=0

[
φ ◦ T jω1{|φ◦T jω |≤εbn} − E

νσ
jω(φ1{|φ|≤εbn})

]∣∣∣∣∣∣ ≥ δ


⊂
`−1⋃
i=0

 sup
in<k≤(i+1)n

∣∣∣∣∣∣ 1

bn

k−1∑
j=in

[
φ ◦ T jω1{|φ◦T jω |≤εbn} − E

νσ
jω(φ1{|φ|≤εbn})

]∣∣∣∣∣∣ ≥ δ

`

 ,

we obtain that, using again the equivariance, for P-a.e. ω ∈ Ω,

νω

 sup
1≤k≤n`

∣∣∣∣∣∣ 1

bn

k−1∑
j=0

[
φ ◦ T jω1{|φ◦T jω |≤εbn} − E

νσ
jω(φ1{|φ|≤εbn})

]∣∣∣∣∣∣ ≥ δ


≤
`−1∑
i=0

νσ
inω

 sup
1≤k≤n

∣∣∣∣∣∣ 1

bn

k−1∑
j=0

[
φ ◦ T j

σinω
1{
|φ◦T j

σinω
|≤εbn

} − E
νσ
j(σinω)(φ1{|φ|≤εbn})

]∣∣∣∣∣∣ ≥ δ

`


≤ ` · esssup

ω′∈Ω
νω
′

 max
1≤k≤n

∣∣∣∣∣∣ 1

bn

k−1∑
j=0

[
φ ◦ T jω′1{|φ◦T j

ω′ |≤εbn}
− E

νσ
jω′ (φ1{|φ|≤εbn})

]∣∣∣∣∣∣ ≥ δ

`

 .

Thus, condition (5.5) implies (5.6), which concludes the proof. �

The analogue for the convergence to a stable law is the following.

Proposition 5.8. Suppose that for P-a.e. ω ∈ Ω, we have

Nω
n ((0, 1]× ·) d→N(α)((0, 1]× ·).
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If α ∈ (0, 1) (so cn = 0), we require in addition that

(5.7) lim
ε→0

lim sup
n→∞

1

bn

n−1∑
j=0

E
νσ
jω(|φ|1{|φ|≤εbn}) = 0

If α ∈ [1, 2), we require instead of (5.7) that for all ε > 0,

lim
n→∞

∣∣∣∣∣∣ 1

bn

n−1∑
j=0

E
νσ
jω(φ1{|φ|≤εbn})− (cn − cα(ε))

∣∣∣∣∣∣ = 0

and

lim
ε→0

lim sup
n→∞

νω

∣∣∣∣∣∣ 1

bn

n−1∑
j=0

[
φ ◦ T jω1{|φ◦T jω |≤εbn} − E

νσ
jω(φ1{|φ|≤εbn})

]∣∣∣∣∣∣ ≥ δ
 = 0.

Then

1

bn

n−1∑
j=0

φ ◦ T jω − cn
d→X(α)(1)

under the probability measure νω for P-a.e. ω ∈ Ω.

Proof. We check the conditions of Theorem 5.3.
The proof for α ∈ (0, 1) is similar to the proof of Proposition 5.4, the proof of the case α ∈ [1, 2)

is similar to the proof of Proposition 5.7. �

5.2.1. Annealed transfer operator. We assume that the random dynamical system F : Ω× [0, 1]→
Ω× [0, 1], which can also be viewed as a Markov process on [0, 1], has a stationary measure ν with
density h. The map F : Ω× [0, 1]→ Ω× [0, 1] will preserve P×ν. Recall that P := {(p1, . . . , pm)}Z.

We use the notation Pµ,i for the transfer operator of Ti : [0, 1]→ [0, 1] with respect to a measure
µ on [0, 1], i.e. ∫

f · g ◦ Tidµ =

∫
(Pµ,if)gdµ, for all f ∈ L1(µ), g ∈ L∞(µ).

The annealed transfer operator is defined by

Pµ(f) :=
m∑
i=1

piPµ,i(f)

with adjoint

U(f) :=
m∑
i=1

pif ◦ Ti

which satisfies the duality relation∫
f(g ◦ U)dµ =

∫
(Pµf)gdµ, for all f ∈ L1(µ), g ∈ L∞(µ).

As above, we assume there are sample measures dνω = hωdx on each fiber [0, 1] of the skew
product such that

Pωhω = hσω

where Pω is the transfer operator of Tω0 with respect to the Lebesgue measure
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Therefore

ν(A) =

∫
Ω

[

∫
A
hωdx]dP(ω)

for all Borel sets A ⊂ [0, 1].

Remark 5.9. We emphasize that in the limit laws we obtain for quenched realizations that the
scaling and centering constants, bn and cn, are the same for P-a.e. ω ∈ Ω, and determined by the
annealed measure ν.

5.3. Examples. We now introduce two systems for which we are able to establish stable limit laws
of various types. The first RDS is uniformly expanding while the second is strictly polynomially
mixing.

Example 5.10 (β-transformations). A simple example is to take m β-maps of the unit interval,
Tβi(x) = βix (mod 1). We suppose βi > 1 + a, a > 0, for all βi, i = 1, . . . ,m.

By results of [CR07] (see also [ANV15]) in this setting the stationary measure ν on [0, 1] has a
density h bounded away from zero and bounded above. In fact h is of bounded variation (BV).

The functions hω, h (recall that dνω = hωdx) are BV, uniformly bounded in BV norm and
uniformly bounded away from zero.

Remark 5.11. Example 5.10 fits in a larger class of uniformly expanding random maps, see
Section 5.5.

Example 5.12 (intermittent maps). Liverani, Saussol and Vaienti [LSV99] introduced the map (4.1)
as a simple model for intermittent dynamics:

Tγ : [0, 1]→ [0, 1], Tγ(x) :=

{
(2γxγ + 1)x if 0 ≤ x < 1

2 ;
2x− 1 if 1

2 ≤ x ≤ 1.

If 0 ≤ γ < 1 then Tγ has an absolutely continuous invariant measure µγ with density hγ bounded
away from zero and satisfying hγ(x) ∼ Cx−γ for x near zero.

We form a random dynamical system by selecting γi ∈ (0, 1), i = 1, . . . ,m and setting Ti := Tγi.
The associated Markov process on [0, 1] has a stationary invariant measure ν which is absolutely
continuous, with density h bounded away from zero.

We denote γmax := max1≤i≤m{γi} and γmin := min1≤i≤m{γi}.

5.4. Decay of correlations. We now consider the decay of correlations properties of the annealed
systems associated to Example 5.10 and Example 5.12.

By [ANV15, Proposition 3.1] in the setting of Example 5.10, we have exponential decay in BV
against L1: there are C > 0, 0 < λ < 1 such that∣∣∣∣∫ fg ◦ Undν −

∫
fdν

∫
gdν

∣∣∣∣ ≤ Cλn‖f‖BV ‖g‖L1(ν)

In the setting of Example 5.12, by [BB16, Theorem 1.2], we have polynomial decay in Hölder
against L∞: there exists C > 0 such that∣∣∣∣∫ fg ◦ Undν −

∫
fdν

∫
gdν

∣∣∣∣ ≤ Cn1− 1
γmin ‖f‖Hölder‖g‖L∞(ν).
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5.4.1. The sample measures hω. The regularity properties of the sample measures hω, both as
functions of ω and as functions of x on [0, 1] play a key role in our estimates. We will first recall
how the sample measures are constructed. Suppose ω := (. . . , ω−1, ω0, ω1, . . . , ωn, . . . , ) and define
hn(ω) = Pω−1 . . . Pω−n1 as a sequence of functions on the fiber I above ω. In the setting both of
Example 5.10 and Example 5.12 {hn(ω)} is a Cauchy sequence and has a limit hω.

In the setting of Example 5.10 (β maps), hω is uniformly BV in ω as

‖hn(ω)− hn+1(ω)‖BV ≤ ‖Pω−1Pω−2 . . . Pω−n(1− Pω−n−11)‖BV ≤ Cλn.
In the setting of Example 5.12 (intermittent maps), with γmax = max1≤i≤m{γi}, the densities

hω lie in the cone

L :=
{
f ∈ C0((0, 1]) ∩ L1(m), f ≥ 0, f non-increasing,

Xγmax+1f increasing, f(x) ≤ ax−γmaxm(f)
}

where X(x) = x is the identity function and m(f) is the integral of f with respect to m. In
[AHN+15] it is proven that for a fixed value of γmax ∈ (0, 1), provided that the constant a is big
enough, the cone L is invariant under the action of all transfer operators Pγi with 0 < γi ≤ γmax
and so (see e.g. [NPT21, Proposition 3.3], which summarizes results of [NTV18])

‖hn(ω)− hn+k(ω)‖L1(m) ≤ ‖Pω−1Pω−2 . . . Pω−n(1− Pω−n−1 . . . Pω−n−k1)‖L1(m)

≤ Cγmaxn
1− 1

γmax (log n)
1

γmax

whence hω ∈ L1(m). In later arguments we will use the approximation

(5.8) ‖hn(ω)− hω‖L1(m) ≤ Cγmaxn
1− 1

γmax (log n)
1

γmax .

We mention also the recent paper [KL21] where the logarithm term in Equation (5.8) is shown to
be unnecessary and moment estimates are given.

We now show that hω is a Hölder function of ω on (Ω, dθ) in the setting of Example 5.10.
For θ ∈ (0, 1), we introduce on Ω the symbolic metric

dθ(ω, ω
′) = θs(ω,ω

′)

where s(ω, ω′) = inf {k ≥ 0 : ω` 6= ω′` for some |`| ≤ k}.
Suppose ω, ω′ agree in coordinates |k| ≤ n (i.e. backwards and forwards in time) so that

dθ(ω, ω
′
) ≤ θn in the symbolic metric on Ω. Then

‖hω − hω′‖BV ≤ ‖Pω−1Pω1 . . . Pω−n+1(h(σ−n+1ω) − h(σ−n+1ω′))‖BV

≤ Cλn−1 = C ′dθ(ω, ω
′)logθ λ

Recall that ‖f‖∞ ≤ C‖f‖BV, see e.g. [BG97, Lemma 2.3.1].
That is, Condition U (see Definition 5.13) holds for Example 5.10, see Remark 5.15.
The map ω 7→ hω is not Hölder in the setting of Example 5.12; in several arguments we will use

the regularity properties of the approximation hn(ω) for hω.
However, on intervals that stay away from zero, all functions in the cone L are comparable to

their mean. Therefore, on sets that are uniformly away from zero, all the above densities/measures
(dν = hdx, hω, hn(ω)) are still comparable.

Namely,

(5.9)
for any δ ∈ (0, 1) there is Cδ > 0 such that

h ∈ L =⇒ 1/Cδ < h(x)/m(h) < Cδ for x ∈ [δ, 1]
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Indeed, h/m(h) is bounded below by [LSV99, Lemma 2.4], and the upper bound follows from the
definition of the cone.

5.5. Random uniformly expanding maps of [0, 1]. We now consider a slightly more general
set-up than Example 5.10. As before, we assume the existence of an invariant probability measure
ν for the Markov chain associated to the random system, with disintegration along the fibers given
by dνω = hωdm.

Definition 5.13 (Condition U). We assume that almost each νω is absolutely continuous with
respect to the Lebesgue measure m, and

for some C > 0, P-a.e. ω ∈ Ω =⇒ C−1 ≤ hω :=
dνω

dν
≤ C, m-a.e.(5.10)

the map ω ∈ Ω 7→ hω ∈ L∞(m) is Hölder continuous.(5.11)

Consequently, the stationary measure ν is also absolutely continuous with respect to m, with density
h ∈ L∞(m) given by h(x) =

∫
Ω hω(x)P(dω) and satisfying (5.10).

We consider random i.i.d. compositions described in Section 5.2 with additional assumptions of
uniform expansion. Let S be a finite collection of m piecewise C2 uniformly expanding maps of
the unit interval [0, 1]. More precisely, we assume that for each T ∈ S, there exist a finite partition
AT of [0, 1] into intervals, such that for each I ∈ AT , T can be continuously extended as a strictly
monotonic C2 function on Ī and

λ := inf
I∈AT

inf
x∈Ī
|T ′(x)| > 1.

As in Section 5.2, the maps Tω (determined by the 0-th coordinate of ω) are chosen from S in

an i.i.d. fashion according to a Bernoulli probability measure P on Ω := {1, . . . ,m}Z. We will
denote by Aω the partition of monotonicity of Tω, and by Anω = ∨n−1

k=0(T kω )−1(Aσkω) the partition
associated to Tnω . We introduce

D = ∪n≥0 ∪ω∈Ω ∂Anω
the set of discontinuities of all the maps Tnω . Note that D is at most a countable set.

For each ω ∈ Ω, we denote the transfer operator Pω of Tω with respect to the Lebesgue measure
m: for all φ ∈ L∞(m) and ψ ∈ L1(m),∫

[0,1]
(φ ◦ Tω) · ψ dm =

∫
[0,1]

φ · Pωψ dm.

We can then form, for ω ∈ Ω and n ≥ 1, the cocycle

Pnω = Pσn−1ω ◦ . . . ◦ Pω.

These operators are contractions on L1(m): ‖Pnω f‖L1(m) ≤ ‖f‖L1(m), and, from the duality relation,
it easily follows that

Pnω (f · g ◦ Tnω ) = Pnω (f)g.

We will let them act on the space BV of functions of bounded variation on [0, 1], whose norm is
given by

‖f‖BV = ‖f‖L1(m) + Var(f),
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where Var(f) is, as usual, the infimum, over all functions g with f = g m-a.e., of the total variation
of g on [0, 1]. The space BV is continuously embedded in L∞(m), as ‖f‖L∞(m) ≤ ‖f‖BV, and,
furthermore, for all f, g ∈ BV, we have

Var(fg) ≤ Var(f)‖g‖L∞(m) + ‖f‖L∞Var(g),

see for instance [BG97].
We assume that the class of transfer operators {Pω}ω∈Ω satisfies a uniform Lasota-Yorke inequal-

ity on the space BV:

(LY): there exist r ≥ 1, M > 0 and D > 0 and ρ ∈ (0, 1) such that for all ω ∈ Ω and all
f ∈ BV,

‖Pωf‖BV ≤M‖f‖BV,

and
Var(P rωf) ≤ ρVar(f) +D‖f‖L1(m).

Iterating these two inequalities, we obtain that there exists λ ∈ (0, 1) and C > 0 such that

‖Pnω f‖BV ≤ Cλn‖f‖BV + C‖f‖L1(m).

In particular, ‖Pnω f‖BV ≤ C‖f‖BV.
We also assume the following two other conditions from Conze and Raugi [CR07]:

(Dec): there exists C > 0 and θ ∈ (0, 1) such that for all n ≥ 1, all ω ∈ Ω and all f ∈ BV
with Em(f) = 0:

‖Pnω f‖BV ≤ Cθn‖f‖BV

and

(Min): there exists c > 0 such that for all n ≥ 1 and all ω ∈ Ω,

inf
x∈[0,1]

(Pnω 1)(x) ≥ c > 0.

Lemma 5.14. Properties (LY), (Min) and (Dec) imply Condition U. Namely, there exists a
unique Hölder map ω ∈ Ω 7→ hω ∈ BV such that Pωhω = hσω and (5.10), (5.11) are satis-
fied [ANV15].

Proof. By (Dec), and as all the operators Pω are Markov with respect to m, we have

(5.12) ‖Pn+k
σ−(n+k)ω

1− Pnσ−nω1‖BV ≤ Cκn‖1− P kσ−(n+k)ω
1‖BV ≤ Cκn,

which proves that (Pnσ−nω1)n≥0 is a Cauchy sequence in BV converging to a unique limit hω ∈ BV
satisfying Pωhω = hσω for all ω. The lower bound in (5.10) follows from the condition (Min),
while the upper bound is a consequence of the uniform Lasota-Yorke inequality (LY), as actually
the family {hω}ω∈Ω is bounded in BV. To prove the Hölder continuity of ω 7→ hω with respect to
the distance dθ, we remark that if ω and ω′ agree in coordinates |k| ≤ n, then

‖hω − hω′‖BV = ‖P kσ−kω(hσ−kω − hσ−kω′)‖BV ≤ Cθn ≤ Cdθ(ω, ω′).
Note that the density h of the stationary measure ν also belongs to BV and is uniformly bounded

from above and below, as the average of hω over Ω. �

Remark 5.15. As mentioned above, a class of maps satisfying these assumptions is given by the
β-transformations of Example 5.10: if all maps T ∈ S, with S finite, are of the form T : x 7→ βx
mod 1, with β > 1 + a, a > 0, then (LY), (Dec) and (Min) are satisfied. We refer to [CR07] for
a proof, and for a more in-depth treatment of these assumptions.
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6. Main Results

6.1. A simple class of unbounded observables. Let x0 ∈ [0, 1], and, for α ∈ (0, 2), consider
the function

φx0(x) = |x− x0|−
1
α , x ∈ [0, 1].

Then, we have for t small enough

ν(|φx0 | > t) =

∫
|x−x0|<t−α

h(x)dx.

This proves that φx0 is regularity varying with index α, having a constant slowly varying function

L given by L(t) ≡ b and scaling sequence bn = b
1
αn

1
α , where

b := lim
ε→0

1

ε

∫
|x−x0|<ε

h(x)dx.

Under the setting of condition U, the limit exists for all x0 ∈ [0, 1] since h ∈ BV and b > 0 as h is
bounded from below. If h admits a continuous version at x0 and x0 ∈ (0, 1), then b = 2h(x0). In
the setting of Example 5.12, the limit exists for all x0 ∈ (0, 1] since the density h belongs to the
cone L and is thus Lipschitz on any interval [δ, 1], δ > 0.

As the observable φx0 is positive, the parameter p ∈ [0, 1] such that

lim
t→∞

ν(φx0 > t)

ν(|φx0 | > t)
= p

is equal to 1.
Recall that the (deterministic) centering is defined in Definition 2.4 by

cn =


0 if α ∈ (0, 1)
n
bn
Eν(φ1{|φ|≤bn}) if α = 1

n
bn
Eν(φ) if α ∈ (1, 2)

.

Definition 6.1. We say that x0 is periodic if there exist ω ∈ Ω and n ≥ 1 such that Tnω (x0) = x0.

Remark 6.2. For the sake of concreteness, we restricted ourselves to observables of the form

φx0(x) = |x − x0|−
1
α , but it is possible to consider more general regularly varying observables φ

which are piecewise monotonic with finitely many branches, see for instance [TK10b, Section 4.2]
in the deterministic case.

6.2. Exponential law and point process results. We denote by J the family of all finite unions
of intervals of the form (x, y], where −∞ ≤ x < y ≤ ∞ and 0 /∈ [x, y].

For a measurable subset U ⊂ [0, 1], we define the hitting time of (ω, x) ∈ Ω× [0, 1] to U by

(6.1) RU (ω)(x) := inf
{
k ≥ 1 : T kω (x) ∈ U

}
.

Recall that φx0(x) := d(x, x0)−
1
α depends on the choice of x0 ∈ [0, 1].

Theorem 6.3. In the setting of Section 5.5, assume(LY), (Min) and (Dec). If x0 /∈ D is not
periodic, then, for P-a.e. ω ∈ Ω and all 0 ≤ s < t,

lim
n→∞

νσ
bnscω

(
RAn(σbnscω) > bn(t− s)c

)
= e−(t−s)Πα(J).

where An := φ−1
x0 (bnJ), J ∈ J .
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Theorem 6.4. Assume the conditions of Example 5.12 and that γmax <
1
3 . Then for m-a.e. x0

for P-a.e. ω ∈ Ω and all 0 ≤ s < t,

lim
n→∞

νσ
bnscω

(
RAn(σbnscω) > bn(t− s)c

)
= e−(t−s)Πα(J).

where An := φ−1
x0 (bnJ), J ∈ J .

Theorem 6.5. In the setting of Section 5.5, assume (LY), (Min) and (Dec). If x0 /∈ D is not
periodic, then for P-a.e. ω ∈ Ω, then

Nω
n

d→N(α),

under the probability νω.

Theorem 6.6. In the setting of Example 5.12 for m-a.e. x0 for P-a.e. ω,

Nω
n ((0, 1]× ·) d→N(α)((0, 1]× ·)

6.3. Limit theorems.

Theorem 6.7. In the setting of Section 5.5, assume (LY), (Min) and (Dec). Suppose that
x0 /∈ D is not periodic for P-a.e. ω ∈ Ω and consider the observable φx0.

If α ∈ (0, 1) then for P-a.e. ω ∈ Ω, the Functional Stable Limit holds:

Xω
n (t) :=

1

bn

bntc−1∑
j=0

φx0 ◦ T jω − tcn
d→X(α)(t) in D[0,∞)

in the J1 topology under the probability measure νω, where X(α)(t) is the α-stable process with Lévy

measure Πα(dx) = α|x|−(α+1) on [0,∞).
If α ∈ [1, 2) then the same result holds for m-a.e. x0.

Remark 6.8. It would be possible to remove the assumption that x0 /∈ D by doubling the disconti-
nuity points, see [AFV15, Section 3.3] for the deterministic case. In the case of β-transformations
of Example 5.10, we can consider each map as a map of the unit circle, by identifying 0 and 1, in
which case the only discontinuity point is 1, and thus the assumption x0 /∈ D reduces in assuming
that all the random orbits of x0 never hit 1.

Theorem 6.9. In the setting of Example 5.12 suppose α ∈ (0, 1) and γ < 1
3 . Then, for m-a.e. x0

1
bn

∑n−1
j=0 φx0 ◦ T

j
ω

d→X(α)(1) under the probability measure νω for P-a.e. ω (recall that cn = 0 for

α ∈ (0, 1)).

7. Scheme of proofs

7.1. Two useful lemmas. We now proceed to the proofs of the main results. We will use the
following technical propositions which are a form of spatial ergodic theorem which allows us to
prove exponential and Poisson limit laws.

Lemma 7.1. Under the setting of Condition U, let χn : Y → R be a sequence of functions in

L1(m) such that Em(|χn|) = O(n−1L̃(n)) for some slowly varying function L̃. Then, for P-a.e.
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ω ∈ Ω and for all ` ≥ 1,

lim
n→∞

sup
0≤k≤`

∣∣∣∣∣∣
kn−1∑
j=0

(
E
νσ
jω(χn)− Eν(χn)

)∣∣∣∣∣∣ = 0.

Therefore, given (s, t] ⊂ [0,∞) and ε > 0, for P-a.e. ω there exists N(ω) such that∣∣∣∣∣∣
bntc∑

r=bnsc+1

(
E
νσ
jω(χn)− Eν(χn)

)∣∣∣∣∣∣ ≤ ε
for all n ≥ N(ω).

Proof. We obtain the second claim by taking the difference between two values of ` in the first
claim.

Fix ` ≥ 1. For δ > 0, let

Unk (δ) =

ω ∈ Ω :

∣∣∣∣∣∣
kn−1∑
j=0

(
E
νσ
jω(χn)− Eν(χn)

)∣∣∣∣∣∣ ≥ δ
 ,

and

Bn(δ) =

ω ∈ Ω : sup
0≤k≤`

∣∣∣∣∣∣
kn−1∑
j=0

(
E
νσ
jω(χn)− Eν(χn)

)∣∣∣∣∣∣ ≥ δ
 .

Note that

Bn(δ) =
⋃̀
k=0

Unk (δ).

We define fn(ω) = Eνω(χn) and fn = EP(fn). We claim that fn : Ω → R is Hölder with norm

‖fn‖θ = O(n−1L̃(n)). Indeed, for ω ∈ Ω, we have

|fn(ω)| =
∣∣∣∣∫
Y
χn(x)dνω(x)

∣∣∣∣ ≤ ‖hω‖L∞m ‖χn‖L1
m
≤ C

n
L̃(n),

and for ω, ω′ ∈ Ω, we have

|fn(ω)− fn(ω′)| =
∣∣∣∣∫
Y
χn(x)dνω(x)−

∫
Y
χn(x)dνω

′
(x)

∣∣∣∣
≤
∫
Y
|χn(x)| · |hω(x)− hω′(x)|dm(x)

≤ ‖hω − hω′‖L∞m ‖χn‖L1
m

≤ C

n
L̃(n)dθ(ω, ω

′),

since ω ∈ Ω 7→ hω ∈ L∞(m) is Hölder continuous. In particular, we also have that fn =

O(n−1L̃(n)).
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We have, using Chebyshev’s inequality,

P(Unk (δ)) = P

ω ∈ Ω :

∣∣∣∣∣∣
kn−1∑
j=0

(
fn ◦ σj − fn

)∣∣∣∣∣∣ ≥ δ



≤ 1

δ2
EP

kn−1∑
j=0

(
fn ◦ σj − fn

)2
≤ 1

δ2

kn−1∑
j=0

(EP|fn ◦ σj − fn|2 + 2
∑

0≤i<j≤kn−1

EP((fn ◦ σi − fn)(fn ◦ σj − fn))

 .
By the σ-invariance of P, we have

EP|fn ◦ σj − fn|2 = EP|fn − fn|2,
and, since (Ω,P, σ) admits exponential decay of correlations for Hölder observables, there exist
λ ∈ (0, 1) and C > 0 such that

EP((fn ◦ σi − fn)(fn ◦ σj − fn)) = EP((fn − fn)(fn ◦ σj−i − fn))

≤ Cλj−i‖fn − fn‖2θ.
We then obtain that

P(Unk (δ)) ≤ C

δ2

kn‖fn − fn‖2L2
m

+ 2
∑

0≤i<j≤kn−1

λi−j‖fn − fn‖2θ


≤ Cnk

δ2
‖fn‖2θ

≤ C k

nδ2
(L̃(n))2,

which implies that

P(Bn(δ)) ≤ C `2

nδ2
(L̃(n))2.

Let η > 0. By the Borel-Cantelli lemma, it follows that for P-a.e. ω ∈ Ω, there exists N(ω, δ) ≥ 1

such that ω /∈ Bbp1+ηc(δ) for all p ≥ N(ω, δ).
Let now P := bp1+ηc < n ≤ P ′ = b(p + 1)1+ηc for p large enough. Let 0 ≤ k ≤ `. Then, since

‖fn‖∞ = O(n−1L̃(n)),∣∣∣∣∣∣
kP−1∑
j=0

(
fn(σjω)− fn

)
−
kn−1∑
j=0

(
fn(σjω)− fn

)∣∣∣∣∣∣ ≤
kn−1∑
j=kP

∣∣fn(σjω)− fn
∣∣

≤ CP
′ − P
P

L̃(n) ≤ C L̃(p1+η)

p
,

because on the one hand

P ′ − P
P

=
b(p+ 1)1+ηc − bp1+ηc

bp1+ηc
= O

(
1

p

)
,
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and on the other hand, by Potter’s bounds, for τ > 0,

L̃(n) ≤ CL̃(P )
( n
P

)τ
≤ CL̃(P )

(
P ′

P

)τ
≤ CL̃(P ).

Since ∣∣∣∣∣∣
kP−1∑
j=0

(
fn(σjω)− fn

)∣∣∣∣∣∣ < δ

for all 0 ≤ k ≤ `, it follows that for P-a.e. ω, there exists N(ω, δ) such that ω /∈ Bn(2δ) for all
n ≥ N(ω, δ), which concludes the proof. �

We now consider a corresponding result to Lemma 7.1 in the setting of Example 5.12.

Lemma 7.2. In the setting of Example 5.12, assume that γmax < 1/2, and that χn ∈ L1(m) is
such that Em(|χn|) = O(n−1), ‖χn‖∞ = O(1) and there is δ > 0 such that supp(χn) ⊂ [δ, 1] for all
n.

Then, for P-a.e. ω ∈ Ω and for all ` ≥ 1,

lim
n→∞

sup
0≤k≤`

∣∣∣∣∣∣
kn−1∑
j=0

(
E
νσ
jω(χn)− Eν(χn)

)∣∣∣∣∣∣ = 0.

Proof. In the setting of Example 5.12 we must modify the argument of Lemma 7.1 slightly as hω
is not a Hölder function of ω. Instead, we consider hiω = P i

σ−iω1. and use that, by (5.8),

(7.1) ‖hiω − hω‖L1(m) ≤ Ci
1− 1

γmax (leaving out the log term).

Note that hiω is the i-th approximate to hω in the pullback construction of hω. Let νiω be the

measure such that dνiω
dm = hiω.

Consider
f in(ω) = Eνiω(χn) , fn(ω) = Eνω(χn)

f
i
n = EP(f in) , fn = EP(fn).

By (5.9), on the set [δ, 1] the densities involved (hkω, hω, h = dν/dm) are uniformly bounded above
and away from zero. Thus ‖f in‖∞ = O(n−1).

Pick 0 < a < 1 is such that β := ( 1
γmax

− 1)a− 1 > 0.

For a given n take i = in = na. By (7.1), for all ω, n and i = na

|f in(ω)− fn(ω)| ≤ ‖hiω − hω‖L1(m)‖χn‖L∞(m) = O(n−(β+1)).

Then
|f in − fn| = O(n−(β+1))

and ∣∣∣∣∣
kn−1∑
r=0

[f in(σrω)− fn(σrω)]

∣∣∣∣∣ ≤ C`n−β.
Given ε, choose n large enough that for all 0 ≤ k ≤ `,{

ω ∈ Ω :

∣∣∣∣∣
kn−1∑
r=0

(fn(σrω)− fn)

∣∣∣∣∣ > ε

}
⊂

{
ω ∈ Ω :

∣∣∣∣∣
kn−1∑
r=0

(f in(σrω)− f in)

∣∣∣∣∣ > ε

2

}
.
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By Chebyshev

P

( ∣∣∣∣∣
kn−1∑
r=0

(f in ◦ σr − f
i
n)

∣∣∣∣∣ > ε

2

)
≤ 4

ε2

kn−1∑
r=0

EP

([
f in ◦ σr − f

i
n

]2
)

+
4

ε2

[
2

kn−1∑
r=0

kn−1∑
u=r+1

∣∣∣EP[(f in ◦ σr − f
i
n)(f in ◦ σu − f

i
n)]
∣∣∣]

We bound
kn−1∑
r=0

EP

([
f in − f

i
n

]2
)
≤ C

kn−1∑
r=0

‖f in‖2∞ ≤
C`

n

and note that if |r − u| > na then by independence

EP

[
(f in ◦ σr − f

i
n)(fn ◦ σu − f

i
n)
]

= EP

[
f in ◦ σr − f

i
n

]
EP

[
f in ◦ σu − f

i
n

]
= 0

and hence we may bound

kn−1∑
r=0

kn−1∑
u=r+1

∣∣∣EP[(f in ◦ σr − f
i
n)(f in ◦ σu − f

i
n)]
∣∣∣ ≤ C`

n1−a .

Thus, for n large enough,

P

({
ω ∈ Ω :

∣∣∣∣∣
kn−1∑
r=0

[fn(σrω)− fn]

∣∣∣∣∣ > ε

})
≤ C`

n1−aε2
.

The rest of the argument proceeds as in the case of Lemma 7.1 using a speedup along a sequence
n = p1+η where η > a

1−a , since ‖fn‖∞ = O(n−1) still holds. �

7.2. Criteria for stable laws and functional limit laws. The next theorem shows that for
regularly varying observables, Poisson convergence and Condition U imply convergence in the J1

topology if α ∈ (0, 1) and gives an additional condition to be verified in the case α ∈ [1, 2).
Note that (7.2) is essentially condition (5.5) of Proposition 5.7.

Theorem 7.3. Assume φ is regularly varying, Condition U holds and that

Nω
n

d→N(α)

for P-a.e. ω ∈ Ω.
If α ∈ [1, 2), assume furthermore that for all δ > 0, and P-a.e. ω ∈ Ω

(7.2) lim
ε→0

lim sup
n→∞

ν

 max
1≤k≤n

∣∣∣∣∣∣ 1

bn

k−1∑
j=0

[
φ ◦ T jω1{|φ◦T jω |≤εbn} − E

νσ
jω(φ1{|φ|≤εbn})

]∣∣∣∣∣∣ ≥ δ
 = 0.

Then Xω
n

d→X(α) in D[0,∞) under the probability measure νω for P-a.e. ω ∈ Ω.

Remark 7.4. From (5.10) and Theorem 5.1, it follows that the convergence of Xω
n also happens

under the probability measure ν.
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Proof of Theorem 7.3. When α ∈ (0, 1), we check the hypothesis of Proposition 5.4. Using (5.10),
we have ∣∣∣∣∣∣ 1

bn

n`−1∑
j=0

E
νσ
jω(|φ|1{|φ|≤εbn})

∣∣∣∣∣∣ ≤ Cn`bnEν(|φ|1{|φ|≤εbn})

Using (2.3) and Proposition 2.6, we see that condition (5.3) is satisfied since α < 1, thus proving
the theorem in this case.

When α ∈ [1, 2), we consider instead Proposition 5.7. Firstly, we remark that condition (5.5) is
implied by (7.2) and (5.10). It remains to check condition (5.4), which constitutes the rest of the
proof.

If α ∈ (1, 2), since cn = nb−1
n Eν(φ), we have

(7.3)

∣∣∣∣∣∣ 1

bn

bntc−1∑
j=0

E
νσ
jω(φ1{|φ|≤εbn})− t(cn − cα(ε))

∣∣∣∣∣∣ ≤ Aωn(t) +Bω
n,ε(t) + Cωn,ε(t)

with

Aωn(t) =

∣∣∣∣∣∣ 1

bn

bntc−1∑
j=0

E
νσ
jω(φ)− tcn

∣∣∣∣∣∣ ,
Bω
n,ε(t) =

∣∣∣∣∣∣ 1

bn

bntc−1∑
j=0

E
νσ
jω(φ1{|φ|>εbn})−

nt

bn
Eν(φ1{|φ|>εbn})

∣∣∣∣∣∣
and

Cωn,ε(t) =

∣∣∣∣ntbnEν(φ1{|φ|>εbn})− tcα(ε)

∣∣∣∣ .
Since φ is regularity varying with index α > 1, it is integrable and the function ω 7→ Eνω(φ) is

Hölder. Hence, it satisfies the law of the iterated logarithm, and we have for P-a.e. ω ∈ Ω∣∣∣∣∣∣1k
k−1∑
j=0

E
νσ
jω(φ)− Eν(φ)

∣∣∣∣∣∣ = O
(√

log log k√
k

)
.

Thus, we have

sup
0≤t≤`

Aωn(t) = O

(√
n`
√

log log(n`)

bn

)
.

As a consequence, we can deduce that limn→∞ sup0≤t≤`A
ω
n(t) = 0 since bn = n

1
α L̃(n) for a slowly

varying function L̃, with α < 2.
By Proposition 2.6, we also have

lim
n→∞

nb−1
n Eν(φ1{|φ|>εbn}) = cα(ε).

In particular, we have

lim
n→∞

sup
0≤t≤`

Cωn,ε(t) = 0.
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This also implies that Em(|χn|) = O(n−1) if we define χn = b−1
n φ1{|φ|>εbn}. From Lemma 7.1, it

follows that limn→∞ sup0≤t≤`B
ω
n,ε(t) = 0.

Putting all these estimates together concludes the proof when α ∈ (1, 2).

When α = 1, we estimate (7.3) by Aωn,ε(t) +Bω
n,ε(t) with

Aωn,ε(t) =

∣∣∣∣∣∣ 1

bn

bntc−1∑
j=0

E
νσ
jω(φ1{|φ|≤εbn})−

nt

bn
Eν(φ1{|φ|≤εbn})

∣∣∣∣∣∣
and

Bω
n,ε(t) =

∣∣∣∣ntbnEν(φ1{εbn<|φ|≤bn})− tcα(ε)

∣∣∣∣ .
instead, since cn = nb−1

n Eν(φ1{|φ|≤εbn}).

We define χn = b−1
n φ1{|φ|≤εbn}. By Proposition 2.6, we have Em(|χn|) = O(n−1L̃(n)) for some

slowly varying function L̃, and so by Lemma 7.1,

lim
n→∞

sup
0≤t≤`

Aωn,ε(t) = 0.

On the other hand, by Proposition 2.6, we have

lim
n→∞

nb−1
n Eν(φ1{εbn<|φ|≤εbn}) = cα(ε)

and so limn→∞ sup0≤t≤`B
ω
n,ε(t) = 0 which completes the proof. �

8. An exponential law

8.1. General considerations. We denote by J the family of all finite unions of intervals of the
form (x, y], where −∞ ≤ x < y ≤ ∞ and 0 /∈ [x, y]. For J ∈ J , we will establish a quenched
exponential law for the sequence of sets An = φx0

−1(bnJ). Similar results were obtained in [CF20,
FFV17, HRY20, RSV14, RT15].

Since φ is regularly varying, it is easy to verify that

lim
n→∞

nν(An) = Πα(J).

In particular, m(An) = O(n−1).

Lemma 8.1. Assume Condition U and that φ is regularly varying with index α.
If An ⊂ [0, 1] is a sequence of measurable subsets such that m(An) = O(n−1), then for all

0 ≤ s < t,

lim
n→∞

 bntc∑
j=bnsc+1

νσ
jω(An)

− n(t− s)ν(An)

 = 0.

The same result holds in the setting of Example 5.12 if An ⊂ [δ, 1] for some δ > 0 with m(An) =
O(n−1). In particular, if An = φ−1

x0 (bnJ) for J ∈ J , then for all 0 ≤ s < t.

lim
n→∞

bntc∑
j=bnsc+1

νσ
jω(An) = (t− s)Πα(J).
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Proof. For the first statement, it suffices to apply Lemma 7.1 or Lemma 7.2 with χn = 1An . The
second statement immediately follows since limn nν(An) = Πα(J). �

Corollary 8.2. Assume the hypothesis of Lemma 8.1.
Let J ∈ J , and set An = φ−1(bnJ). Then for P-a.e. ω ∈ Ω, and all 0 ≤ s < t,

lim
n→∞

bntc∏
j=bnsc+1

(
1− νσjω(An)

)
= e−(t−s)Πα(J).

Proof. Since νω(An) is of order at most n−1 uniformly in ω ∈ Ω, it follows that

log

 bntc∏
j=bnsc+1

(
1− νσjω(An)

) = −

 bntc∑
j=bnsc+1

νσ
jω(An)

+O(n−1).

By Lemma 8.1,

lim
n→∞

bntc−1∑
j=bnsc

νσ
jω(An) = (t− s)Πα(J),

which yields the conclusion. �

Definition 8.3. For a measurable subset U ⊂ Y = [0, 1], we define the hitting time of (ω, x) ∈ Ω×Y
to U by

RU (ω)(x) := inf
{
k ≥ 1 : T kω (x) ∈ U

}
.

and the induced measure by ν on U by

νU (A) :=
ν(A ∩ U)

ν(U)

In order to establish our exponential law, we will first obtain a few estimates, based on the proof

of [HSV99, Theorem 2.1], to relate νω(RAn(ω) > bntc) to
∑bntc−1

j=0 νσ
jω(An) so that we are able to

invoke Corollary 8.2.
The next lemma is basically [RSV14, Lemma 6].

Lemma 8.4. For every measurable set U ⊂ [0, 1], we have the bound∣∣∣∣∣∣νω(RU (ω) > k)−
k∏
j=1

(1− νσjω(U))

∣∣∣∣∣∣ ≤
k∑
j=1

νσ
jω(U) cσjω(k − j, U)

j−1∏
i=1

(1− νσiω(U))

≤
k∑
j=1

νσ
jω(U) cσjω(U)

where

cω(k, U) := |νωU (RU (ω) > k)− νω(RU (ω) > k)|
and

cω(U) := sup
k≥0

cω(k, U).



26 R. AIMINO, M. NICOL, AND A. TÖRÖK

Proof. Note that {RU (ω) > k} = [T 1
ω ]−1(U c ∩ {RU (σω) > k− 1}) and so, using the equivariance of

{νω}ω∈Ω,

νω(RU (ω) > k) = νσω(U c ∩ {RU (σω) > k − 1}).
Hence

νω(RU (ω) > k) = νσω(RU (σω) > k − 1)− νσω(U ∩ {RU (σω) > k − 1}).
We note that

νω(RU (ω) > k) = νσω(RU (σω) > k − 1)− νσω(U)[νσω(RU (σω) > k − 1) + cσω(k − 1, U)]

= (1− νσω(U))νσω(RU (σω) > k − 1)− νσω(U)cσω(k − 1, U).

Iterating we obtain, using the fact that for P-a.e. ω, νω(RU (ω) ≥ 1) = 1,

νω(RU (ω) > k) =

k∏
j=1

(1− νσjω(U))−
k∑
j=1

νσ
jω(U)cσjω(k − j, U)

j−1∏
i=1

(1− νσiω(U))

which yields the conclusion. �

We will estimate now the coefficients cω(U).

Lemma 8.5. Fix N . Then, for any measurable subset U ⊂ Y such that 1U ∈ BV, we have

(8.1) cω(U) ≤ νωU (RU (ω) ≤ N) + νω(RU (ω) ≤ N) +
1

νω(U)

∥∥PNω ([1U − νω(U)]hω)
∥∥
L1(m)

with C independent of N and

(8.2) νωU (RU (ω) ≤ N) ≤ 1

νω(U)
νω(RU (ω) ≤ N), νω(RU (ω) ≤ N) ≤

N∑
i=1

νσ
iω(U)

Proof. The estimates (8.2) follow from

{RU (ω) ≤ N} =
N⋃
i=1

(T iω)−1(U).

and therefore

νω(RU (ω) ≤ N) ≤
N∑
i=1

νσ
iω(U)

For (8.1), note that

cω(U) = |νωU (RU (ω) ≤ j)− νω(RU (ω) ≤ j)|
If j ≤ N then

cω(U) ≤ νωU (R(ω) ≤ N) + νω(R(ω) ≤ N)

If j > N we write

νωU (RU (ω) ≤ j)− νω(RU (ω) ≤ j) = νωU (RU (ω) ≤ j)− νωU (T−Nω (RU (σNω) ≤ j −N))

+ νωU (T−Nω (RU (σNω) ≤ j −N))− νω(T−Nω (RU (σNω) ≤ j −N))

+ νω(T−Nω (RU (σNω) ≤ j −N))− νω(RU (ω) ≤ j)
= (a) + (b) + (c).
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To bound (a) and (c) note that

{RU (ω) ≤ j} = {RU (ω) ≤ N} ∪ T−Nω ({RU (σNω) ≤ j −N)})

so

(8.3) |νω(RU (ω) ≤ j)− νω(T−Nω (RU (σNω) ≤ j −N))| ≤ νω(RU (ω) ≤ N)

and similarly for νωU .

To bound (b) we use the decay of P kω . Setting V =
{
RU (σNω) ≤ j −N

}
, we have

|νωU (T−Nω (V ))− νω(T−Nω (V ))| = 1

νω(U)

∣∣∣∣∫
Y

1U1V ◦ TNω hωdm− νω(U)

∫
Y

1V ◦ TNω hωdm
∣∣∣∣

=
1

νω(U)

∣∣∣∣∫
Y

1V P
N
ω ([1U − νω(U)]hω)dm

∣∣∣∣
≤ 1

νω(U)

∥∥PNω ([1U − νω(U)]hω)
∥∥
L1(m)

.

�

8.2. Uniformly expanding maps. We can now prove the exponential law for An = φ−1(bnJ),
J ∈ J .

Proof of Theorem 6.3. Due to rounding errors when taking the integer parts, we have∣∣∣νσbnscω (RAn(σbnscω) > bn(t− s)c
)
− νσbnscω

(
RAn(σbnscω) > bntc − bnsc

)∣∣∣
≤ νσbntcω(An) ≤ Cm(An)→ 0,

and it is thus enough to prove the convergence of νσ
bnscω

(
RAn(σbnscω) > bntc − bnsc

)
.

By Lemmas 8.4 and 8.5, for all N ≥ 1, we have

(8.4)

∣∣∣∣∣∣νσbnscω
(
RAn(σbnscω) > bntc − bnsc

)
−

bntc∏
j=bnsc+1

(1− νσjω(An))

∣∣∣∣∣∣ ≤ (I) + (II) + (III),

with

(I) =

bntc∑
j=bnsc+1

νσ
jω
(
An ∩

{
RAn(σjω) ≤ N

})
,

(II) =

bntc∑
j=bnsc+1

νσ
jω(An)νσ

jω(RAn(σjω) ≤ N)

and

(III) =

bntc∑
j=bnsc+1

∥∥∥PNσjω ([1An − νσjω(An)
]
hσjω

)∥∥∥
L1(m)

.
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To estimate (I), we choose ε > 0 such that J ⊂ {|x| > ε} and we introduce Vn = {|φ| > εbn}.
For a measurable subset V ⊂ Y , we also define the shortest return to V by

rω(V ) = inf
x∈V

RV (ω)(x),

and we set
r(V ) = inf

ω∈Ω
rω(V ).

We have

νσ
jω
(
An ∩

{
RAn(σjω) ≤ N

})
≤ νσjω

(
Vn ∩

{
RVn(σjω) ≤ N

})
≤

N∑
i=r

σjω
(Vn)

νσ
jω
(
Vn ∩ (T iσjω)−1(Vn)

)

≤
N∑

i=r
σjω

(Vn)

∫
Y

1VnP
i
σjω(1Vnhσjω)dm.

It follows from (Dec) that∣∣∣∣∫
Y

1VnP
i
σjω(1Vnhσjω)dm− νσjω(Vn)νσ

i+jω(Vn)

∣∣∣∣ ≤ ‖1Vn‖L1
m

∥∥∥P iσjω ([1Vn − νσjω(Vn)
]
hσjω

)∥∥∥
L∞m

≤ Cθim(Vn)
∥∥∥[1Vn − νσjω(Vn)

]
hσjω

∥∥∥
BV

≤ Cθim(Vn),

as BV is a Banach algebra, and both ‖1Vn‖BV and ‖hσjω‖BV are uniformly bounded. 2.
Consequently,

(I) ≤
bntc∑

j=bnsc+1

N∑
i=r

σjω
(Vn)

[
νσ

jω(Vn)νσ
i+jω(Vn) +O

(
θim(Vn)

)]
≤ C

(
m(Vn)2nN +m(Vn)nθr(Vn)

)
.

On the other hand, we have by (8.2),

(II) ≤
bntc∑

j=bnsc+1

νσ
jω(An)

N∑
i=1

νσ
i+jω(An)

≤ CnNm(An)2,

and it follows from (Dec) that

(III) ≤ CθN
bntc∑

j=bnsc+1

∥∥∥[1An − νσjω(An)
]
hσjω

∥∥∥
BV

≤ CnθN ,

2Recall that, from the definition of φ, it follows that Vn is an open interval, and thus 1Vn has a uniformly bounded
BV norm.
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since {hω}ω∈Ω is a bounded family in BV, An is the union of at most two intervals and thus ‖1An‖BV

is uniformly bounded. We can thus bound (8.4) by

C
(
m(Vn)2nN +m(Vn)nθr(Vn) +m(An)2nN + nθN

)
≤ C

(
n−1N + θr(Vn) + nθN

)
,

and, assuming for the moment that r(Vn) → +∞, we obtain the conclusion by choosing N =
N(n) = 2 log n and letting n→∞.

It thus remains to show that r(Vn) → +∞. Recall that Vn is the ball of centre x0 and radius
b−1ε−αn−1. Let R ≥ 1 be a positive integer. Since x0 is assumed to be non-periodic, and that the

collection of maps T jω for ω ∈ Ω and 0 < j < R is finite, we have that

δR := inf
ω∈Ω

inf
0<j<R

|T jω(x0)− x0| > 0

is positive. Since all the maps T jω are continuous at x0 by assumption, there exists nR ≥ 1 such
that for all n ≥ nR, j < R and ω ∈ Ω,

x ∈ Vn =⇒ |T jω(x)− T jω(x0)| < δR
2
.

Increasing nR if necessary, we can assume that b−1ε−αn−1 < δR
2 for all n ≥ nR.

Then, for all n ≥ nR, ω ∈ Ω, j < R and x ∈ Vn, we have

|T jω(x)− x0| ≥ |T jω(x0)− x0| − |T jω(x)− T jω(x0)| > δR
2
> b−1ε−αn−1,

and thus T jω(x) /∈ Vn.
This implies that r(Vn) > R for all n ≥ nR, which concludes the proof as R is arbitrary. �

Remark 8.6. A quenched exponential law for random piecewise expanding maps of the interval is
proved in Theorem 7.1 [HRY20, Section 7.1]. Our proof follows the same standard approach. We
are able to specify that Theorem 6.3 holds for non-periodic x0, since our assumptions imply decay
of correlations against L1 observables, which is known to be necessary for this purpose, see [AFV15,
Section 3.1]. Our proof is shorter, as we consider the simpler setting of finitely many maps, which
are all uniformly expanding. In addition we use the exponential law in the intermittent case of
Theorem 7.2 [HRY20, Section 7.2] to establish the short returns condition of Lemma 8.7 below.

8.3. Intermittent maps. In order to prove the exponential law in the intermittent setting, Theorem 6.4,
we need a genericity condition on the point x0 in the definition (2.5) of φx0 .

Lemma 8.7. In the setting of Example 5.12, with γmax <
1
3 , for m-a.e. x0 and for P-a.e. ω ∈ Ω

lim
n→∞

btnc∑
j=bsnc+1

m
(
Bcn−1(x0) ∩

{
Rσ

jω
Bcn−1 (x0) ≤ bn(log n)−1c

})
= 0.

for all c > 0 and all 0 ≤ s < t.

Proof. Let N = bn(log n)−1c an Vn = Bcn−1(x0). First, we remark that for m-a.e. x0 and P-a.e. ω,

(8.5) m (Vn ∩ {RVn(ω) ≤ N}) = o(n−1).

This is a consequence of [HRY20, Theorem 7.2]. Their result is stated for two intermittent LSV
maps both with γ < 1

3 but generalizes immediately to a finite collection of maps with a uniform
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bound of γmax <
1
3 . The exponential law for return times to nested balls imples that for a fixed t,

for m-a.e x0 and P-a.e. ω

lim
n→∞

1

νω(Vn)
νω (Vn ∩ {RVn(ω) ≤ nt}) = 1− e−t.

which shows in particular, since {RVn(ω) ≤ N} ⊂ {RVn(ω) ≤ nt} for all n large enough, that for
all t > 0, m-a.e x0 and P-a.e. ω

(8.6) lim sup
n→∞

1

νω(Vn)
νω (Vn ∩ {RVn(ω) ≤ N}) ≤ 1− e−t.

Using (5.9), taking the limit t→ 0 proves (8.5). Note that, even though the set of full measure
of x0 and ω such that (8.6) holds may depend on t, it is enough to consider only a sequence tk → 0.

Now, for k ≥ 0 and n0 ≥ 1, we introduce the set

Ωn0
k =

{
ω ∈ Ω : m (Vn ∩ {RVn(ω) ≤ N}) ≤ 2−k

n
for all n ≥ n0

}
.

According to (8.5), we have for all k ≥ 0,

lim
n0→∞

P(Ωn0
k ) = P

 ⋃
n0≥1

Ωn0
k

 = 1.

By the Birkhoff ergodic theorem, for al k ≥ 0, n0 ≥ 1 and P-a.e. ω,

lim
n→∞

1

n

n−1∑
j=0

1Ω
n0
k

(σjω) = P(Ωn0
k ),

which implies that for all 0 ≤ s < t,

lim
n→∞

1

(bntc − bnsc)

bntc∑
j=bnsc+1

1Ω
n0
k

(σjω) = P(Ωn0
k ).

Let n0 = n0(ω, k) such that P(Ωn0
k ) ≥ 1− 2−k, and for all n ≥ n0,

1

(bntc − bnsc)

bntc∑
j=bnsc+1

1Ω
n0
k

(σjω) ≥ P(Ωn0
k )− 2−k.

Then, for all n ≥ n0(ω, k) we have

1

(bntc − bnsc)

bntc∑
j=bnsc+1

1(Ω
n0
k )c(σ

jω) ≤ 2−(k−1).

Consequently,

bntc∑
bnsc+1

m (Vn ∩ {RVn(ω) ≤ N}) ≤ (bntc − bnsc) 2−k

n
+ (bntc − bnsc) 2−(k−1)m(Vn).
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This proves that

lim sup
n→∞

bntc∑
bnsc+1

m (Vn ∩ {RVn(ω) ≤ N}) ≤ C 2−k,

and the result follows by taking the limit k →∞.
Note that the set of x0 and ω for which the lemma holds depends a priori on c > 0, but it is

enough to consider a countable and dense set of c, since for c < c′,{
Bcn−1(x0) ∩

{
RωBcn−1 (x0) ≤ N

}}
⊂
{
Bc′n−1(x0) ∩

{
RωBc′n−1 (x0) ≤ N

}}
.

�

The exponential law for random intermittent maps follows from Lemma 8.7:

Proof of Theorem 6.4. We consider the three terms in (8.4) with N = bn(log n)−1c.
Let Vn = {|φ| > εbn} where ε > 0 is such that An ⊂ Vn for all n ≥ 1. Since Vn is a ball of centre

x0 and radius b−1ε−αn−1, and since Vn ⊂ [δ, 1], the term

(I) =

bntc∑
j=bnsc+1

νσ
jω
(
An ∩

{
RAn(σjω) ≤ N

})
≤ C

bntc∑
j=bnsc+1

m
(
Vn ∩

{
RVn(σjω) ≤ N

})
tends to zero by Lemma 8.7 for m-a.e x0.

The term

(II) =

bntc∑
j=bnsc+1

νσ
jω(An)νσ

jω(RAn(σjω) ≤ N) ≤ CnNm(An)2

also tends to zero since N = o(n). Lastly we consider

(III) =

bntc∑
j=bnsc+1

∥∥∥PNσjω ([1An − νσjω(An)
]
hσjω

)∥∥∥
L1(m)

.

We approximate 1An by a C1 function g such that ‖g‖C1 ≤ nτ , g = 1An on An and ‖g−1An‖L1 ≤
n−τ (recall An is two intervals of length roughly 1

n so a simple smoothing at the endpoints of the
intervals allows us to find such a function g). Later we will specify τ > 1 will suffice. By [NPT21,
Lemma 3.4] with h = hω and ϕ = g −m(ghω), for all ω,∥∥PNω ([g −m(ghω)]hω)

∥∥
L1 ≤ CnτN

1− 1
γmax (logN)

1
γmax

≤ Cnτ+1− 1
γmax (log n)

2
γmax

−1
.

Using the decomposition 1An−νω(An) = (1An−g)−(νω(An)−m(ghω))+(g−m(ghω)) we estimate,
leaving out the log term,

(III) ≤ C
[
n1−τ + n

τ+2− 1
γmax

]
where the value of C may change line to line. Taking γmax <

1
3 and 1 < τ < 1

γmax
− 2 suffices. �
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9. Point process results

We now proceed to the proof of the Poisson convergence. In Section 11 we will consider an
annealed version of our results.

Recall that the counting point processes Nω
n are defined by

Nω
n (B) := #

{
j ≥ 1 :

(
j

n
,
φ ◦ T j−1

ω

bn

)
∈ B

}
, n ≥ 1,

for B ∈ B((0,∞)× (R \ {0})).

9.1. Uniformly expanding maps. Recall Theorem 6.5: under the conditions of Section 5.5, in
particular (LY), (Min) and (Dec), if x0 /∈ D is not periodic, then for P-a.e. ω ∈ Ω

Nω
n

d→N(α)

under the probability measure νω.
Our proof of Theorem 6.5 uses the existence of a spectral gap for the associated transfer operators

Pnω , and breaks down in the setting of Example 5.12. The use of the spectral gap is encapsulated
in the following lemma.

Lemma 9.1. Assume (LY). Then there exists C > 0 such that for all ω ∈ Ω, all f, fn ∈ BV with

sup
j≥1
‖fj‖L∞(m) ≤ 1 and sup

j≥1
‖fj‖BV <∞,

we have

sup
n≥0

∥∥∥∥∥∥Pnω
f · n∏

j=1

fj ◦ T jω

∥∥∥∥∥∥
BV

≤ C‖f‖BV

(
sup
j≥1
‖fj‖BV

)

Proof. We proceed in four steps.
Step 1. We define

gnω =
n∏
j=0

fj ◦ T jω,

where we have set f0 = 1. We observe that for all n ≥ 0, there exists Cn > 0 such that for all
ω ∈ Ω,

(9.1) ‖gnω‖L∞(m) ≤

(
sup
j≥1
‖fj‖L∞(m)

)n+1

≤ 1 and ‖gnω‖BV ≤ Cn

(
sup
j≥1
‖fj‖BV

)
.
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The first estimate is immediate, and the second follows, because

Var(gn+1
ω ) ≤ Var(gnω)‖fn+1 ◦ Tn+1

ω ‖L∞(m) + ‖gnω‖L∞(m)Var(fn+1 ◦ Tn+1
ω )

≤ Var(gnω) + Var(fn+1 ◦ Tn+1
ω )

= Var(gnω) +
∑

I∈An+1
ω

VarI(fn+1 ◦ Tn+1
ω )

= Var(gnω) +
∑

I∈An+1
ω

VarTn+1
ω (I)(fn+1)

≤ Var(gnω) +
(
#An+1

ω

)
Var(fn+1),

and so we can define by induction Cn+1 = Cn + supω∈Ω #An+1
ω which is finite, as there are only

finitely many maps in S.
Step 2. We first prove the lemma in the case where r = 1 in the condition (LY). Before, we

claim that for f ∈ BV and sequences (fj) ⊂ BV as in the statement, we have

(9.2) Var (Pnω (fgnω)) ≤
n∑
j=0

ρj‖Pn−jω (fgn−j−1
ω )‖L∞(m)‖fn−j‖BV

+D

n−1∑
j=0

ρj‖Pn−1−j
ω (fgn−1−j

ω )‖L1(m)‖fn−j‖L∞(m).

This implies the lemma when r = 1, since

‖Pn−jω (fgn−j−1
ω )‖L∞(m) ≤ ‖gn−j−1

ω ‖L∞(m)‖Pn−jω |f |‖L∞(m) ≤ C‖f‖BV,

and

‖Pn−jω (fgn−jω )‖L1(m) ≤ ‖fgn−jω ‖L1(m) ≤ ‖f‖L∞(m)‖gn−jω ‖L1(m) ≤ ‖f‖BV.

We prove the claim by induction on n ≥ 0. It is immediate for n = 0, and for the induction step,
we have, using (LY),

Var(Pn+1
ω (fgn+1

ω ))

= Var(Pn+1
ω (fgnωfn+1 ◦ Tn+1

ω )) = Var(Pn+1
ω (fgnω)fn+1)

≤ Var(Pn+1
ω (fgnω))‖fn+1‖L∞(m) + ‖Pn+1

ω (fgnω)‖L∞(m)Var(fn+1)

≤
(
ρVar(Pnω (fgnω)) +D‖Pnω (fgnω)‖L1(m)

)
‖fn+1‖L∞(m) + ‖Pn+1

ω (fgnω)‖L∞(m)Var(fn+1)

≤ ρVar(Pnω (fgnω)) +D‖Pnω (fgnω)‖L1(m)‖fn+1‖L∞(m) + ‖Pn+1
ω (fgnω)‖L∞(m)‖fn+1‖BV,

which proves (9.2) for n+ 1, assuming it holds for n.
Step 3. Now, we consider the general case r ≥ 1 and we assume that n is of the particular

form n = pr, with p ≥ 0. We note that the random system defined with T = {T rω}ω∈Ω satisfies the
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condition (LY) with r = 1. Consequently, by the second step and (9.1), we have

‖Pnω (fgnω)‖BV =

∥∥∥∥∥∥P rσr−1ω ◦ . . . ◦ P
r
ω

f p∏
j=1

grσjrω ◦ T
jr
ω

∥∥∥∥∥∥
BV

≤ C‖f‖BV

(
sup
j≥1
‖grσjrω‖BV

)
≤ CCr‖f‖BV

(
sup
j≥1
‖fj‖BV

)
.

Step 4. Finally, if n = pr+ q, with p ≥ 0 and q ∈ {0, . . . , r− 1}, as an immediate consequence
of (LY), we obtain

‖Pnω (fgnω)‖BV = ‖P qσprωP prω (fgprω g
q
σprω ◦ T prω )‖BV

= ‖P qσprω(P prω (fgprω )gqσprω)‖BV ≤ C‖P prω (fgprω )gqσprω‖BV.

But, from Step 3, we have

‖P prω (fgprω )gqσprω‖L1(m) ≤ ‖g
q
σprω‖L∞(m)‖P prω (fgprω )‖L1(m)

≤ ‖P prω (fgprω )‖L1(m) ≤ C‖f‖BV

(
sup
j≥1
‖fj‖BV

)
,

and, using (9.1),

Var(P prω (fgprω )gqσprω) ≤ ‖P prω (fgprω )‖L∞(m)Var(gqσprω) + Var(P prω (fgprω ))‖gqσprω‖L∞(m)

≤
[
Cq‖gprω ‖L∞(m)‖P prω |f |‖L∞(m) + C‖f‖BV

](
sup
j≥1
‖fj‖BV

)

≤ C
(

1 + max
q=0,...,r−1

Cq

)
‖f‖BV

(
sup
j≥1
‖fj‖BV

)
,

which concludes the proof of the lemma. �

Proof of Theorem 6.5. We denote by R the family of finite unions of rectangles R of the form
R = (s, t]×J with J ∈ J . By Kallenberg’s theorem, see [Kal76, Theorem 4.7] or [Res87, Proposition

3.22], Nω
n

d→N(α) if for any R ∈ R,

(a) lim
n→∞

νω(Nω
n (R) = 0) = P(N(α)(R) = 0),

and

(b) lim
n→∞

EνωNω
n (R) = EN(α)(R).

We first prove (b). We write

R =

k⋃
i=1

Ri,

with Ri = (si, ti]× Ji disjoint.
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Then

EN(α)(R) =
k∑
i=1

(ti − si)Πα(Ji)

and

EνωNω
n (R) =

k∑
i=1

EνωNω
n ((si, ti]× Ji) =

k∑
i=1

∑
nsi<j≤nti

Eνω(1φ−1
x0

(bnJi)
◦ T j−1

ω )

=

k∑
i=1

∑
nsi<j≤nti

νσ
j−1ω(φ−1

x0 (bnJi))

=

k∑
i=1

bntic−1∑
j=bnsic

νσ
jω(φ−1

x0 (bnJi)).

By Lemma 8.1, for P-a.e. ω ∈ Ω, we have

lim
n→∞

k∑
i=1

bntic−1∑
j=bnsic

νσ
jω(φ−1

x0 (bnJi)) = (ti − si)Πα(Ji),

which proves (b).
We next establish (a). We will use induction on the number of “time” intervals (si, ti] ⊂ (0,∞].

Let R = (s1, t1]× J1 where J1 ∈ J . Define

An = φ−1
x0 (bnJ1).

Since

{Nω
n (R) = 0} = {x : T jω(x) 6∈ An, ns1 < j + 1 ≤ nt1}

=
{

1Acn ◦ T
bns1c
ω · 1Acn ◦ T

bns1c+1
ω · . . . · 1Acn ◦ T

bnt1c−1
ω 6= 0

}
=

x :

bnt1c−1−bns1c∏
j=0

1Acn ◦ T
j

σbns1cω

 ◦ T bns1cω (x) 6= 0

 ,

we have that,

(9.3)
∣∣∣νω(Nω

n (R) = 0)− νσbns1cω
(
RAn(σbns1cω) > bn(t1 − s1)c

)∣∣∣
≤ νσbns1cω(RAn(σbns1cω) = 0) = νσ

bns1cω(An) ≤ Cm(An)→ 0,

because, due to rounding when taking integer parts, bnt1c−bns1c−1 is either equal to bn(t1−s1)c−1
or to bn(t1 − s1)c. By Theorem 6.3,

νσ
bns1cω(RAn(σbns1cω) > bn(t1 − s1)c)→ e−(t1−s1)Πα(J)

as desired.
Now let R = ∪kj=1(si, ti]× Ji with 0 ≤ s1 < t1 < . . . < sk < tk and Ji ∈ J . Furthermore, define

s′i = si − s1 and t′i = ti − s1.
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Observe that, accounting for the rounding errors when taking integer parts as for (9.3), we get

(9.4)

∣∣∣∣∣νω
(
Nω
n

(
k⋃
i=1

(si, ti]× Ji

)
= 0

)
− νσbns1cω

(
Nσbns1cω
n

(
k⋃
i=1

(s′i, t
′
i]× Ji

)
= 0

)∣∣∣∣∣
≤ 2C

k∑
i=1

m(φ−1
x0 (bnJi))→ 0

so, after replacing ω by σbns1cω, we can assume that s1 = 0. Let

R1 = (0, t1]× J1

R2 =

k⋃
i=2

(si, ti]× Ji

R′2 =
k⋃
i=2

(si − s2, ti − s2]× Ji

Then, with An = φ−1
x0 (bnJ1),

(9.5)
∣∣∣νη (Nη

n (R1 ∪R2) = 0)− νη
[
{RAn(η) > bnt1c} ∩ T−bns2cη

(
Nσbns2cη
n (R′2) = 0

)]∣∣∣→ 0

as n→∞, uniformly in η ∈ Ω, as in (9.4). Moreover, as we check below,

(9.6)
∣∣∣νη [{RAn(η) > bnt1c} ∩ T−bns2cη

(
Nσbns2cη
n (R′2) = 0

)]
− νη(RAn(η) > bnt1c) · νη(Nη

n(R2) = 0)
∣∣∣→ 0

as n → ∞, uniformly in η ∈ Ω. Therefore, setting η = σbns2cω in (9.5) and (9.6), we have, by
Theorem 6.3,

lim
n→∞

∣∣∣νσbns2cω(Nσbns2cω
n (R1 ∪R2) = 0)− e−t1Πα(J1)νσ

bns2cω(Nσbns2cω
n (R2) = 0)

∣∣∣ = 0

which gives the induction step in the proof of (a).
We prove now (9.6). Our proof uses the spectral gap for Pnω and breaks down for random

intermittent maps.
Similarly to (9.4),∣∣∣νη(Nη

n(R2) = 0)− νη(T−bns2cη (Nσbns2cη
n (R′2) = 0))

∣∣∣→ 0 as n→∞, uniformly in η.

We have, using the notation

U = {RAn(η) > bnt1c} , V =
{
Nσbns2cη
n (R′2) = 0

}
,
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that ∣∣∣νη (U ∩ T−bns2cη (V )
)
− νη(U)νη

(
T−bns2cη (V )

) ∣∣∣
=

∣∣∣∣∫ P bns2cη ((1U − νη(U))hη) 1V dm

∣∣∣∣
≤ C

∥∥∥P bns2cη ((1U − νη(U))hη)
∥∥∥
BV

=
∥∥∥P bns2c−bnt1c

σbnt1cη
P bnt1cη ((1U − νη(U))hη)

∥∥∥
BV

≤ Cθbns2c−bnt1c
∥∥∥P bnt1cη ((1U − νη(U))hη)

∥∥∥
BV

where the last inequality follows from the decay, uniform in η, of {P kη }k in BV (condition (Dec)).
But

(9.7) sup
η

sup
n

∥∥∥P bnt1cη

(
(1{RAn (η)>bnt1c} − ν

η(RAn(η) > bnt1c))hη
)∥∥∥

BV
<∞,

which proves (9.6). This follows from Lemma 9.1 below applied to f = hη and fj = 1Acn , because

1{RAn (η)>bnt1c} =

bnt1c∏
j=1

1Acn ◦ T
j
η ,

and both ‖hη‖BV and ‖1Acn‖BV are uniformly bounded. Note that for the stationary case the
estimate (9.7) is used in the proof of [TK10b, Theorem 4.4], which refers to [ADSZ04, Proposition
4]. �

9.2. Intermittent maps. We prove a weaker form of convergence in the setting of Example 5.12,
which suffices to establish stable limit laws but not functional limit laws.

In the setting of Example 5.12, we will show that for P-a.e. ω,

Nω
n ((0, 1]× ·) d→N(α)((0, 1]× ·)

Proof of Theorem 6.6. We will show that for P-a.e. ω ∈ Ω, the assumptions of Kallenberg’s theorem
[Kal76, Theorem 4.7] hold.

Recall that J denotes the set of all finite unions of intervals of the form (x, y] where x < y and
0 6∈ [x, y].

By Kallenberg’s theorem [Kal76, Theorem 4.7], Nω
n [(0, 1]× ·)→d N(α)((0, 1]× ·) if for all J ∈ J ,

(a) lim
n→∞

νω(Nω
n ((0, 1]× J) = 0) = P(N(α)((0, 1]× J) = 0)

and

(b) lim
n→∞

EνωNω
n ((0, 1]× J) = E[N(α)((0, 1]× J)]

We prove first (b) following [TK10b, page 12]. Write

J =

k⋃
i=1

Ji

with Ji = (xi, yi] disjoint.
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Then

EN(α)((0, 1]× J) =
k∑
i=1

Πα(Ji) = Πα(J)

and

EνωNω
n ((0, 1]× J) =

k∑
i=1

n∑
j=1

Eνω [1(φ−1
x0

(bnJi))
◦ T j−1

ω ] =
n∑
j=1

Eνω [1(φ−1
x0

(bnJ)) ◦ T
j−1
ω ]

We check that

lim
n→∞

n∑
j=1

Eνω
(
1{φ−1

x0
(bnJ)} ◦ T

j
ω

)
= Πα(J)

for J = ∪ki=1Ji.
Write An := φ−1

x0 (bnJ). Then

Eνω [1(φ−1
x0

(bnJ)) ◦ T
j
ω] = νσ

jω(An)

hence

lim
n→∞

n∑
j=1

Eνω [1(φ−1
x0

(bnJi))
◦ T jω(x)] = Πα(J)

by Lemma 7.2.
Now we prove (a), i.e.

lim
n→∞

νω(Nω
n ((0, 1]× J) = 0) = P (N(α)((0, 1]× J) = 0)

for all J ∈ J .
Let J ∈ J and denote as above An := φ−1

x0 (bnJ) ⊂ X = [0, 1]. Then

{Nω
n ((0, 1]× J) = 0} = {x : T jω(x) 6∈ An, 0 < j + 1 ≤ n} = {RAn(ω) > n− 1} ∩Acn

Hence

|νω(Nω
n ((0, 1]× J) = 0)− νω(RAn(ω) > n)| ≤ Cm(An)→ 0

and by Theorem 6.4, for m-a.e. x0

νω(RAn(ω) > n)→ e−Πα(J).

This proves (a). �

10. Stable laws and functional limit laws

10.1. Uniformly expanding maps. In this section, we prove Theorem 6.7, under the conditions
given in Section 5.5, in particular (LY), (Dec) and (Min).

For this purpose, we consider first some technical lemmas regarding short returns. For ω ∈ Ω,
n ≥ 1 and ε > 0, let

Eωn (ε) = {x ∈ [0, 1] : |Tnω (x)− x| ≤ ε} .

Lemma 10.1. There exists C > 0 such that for all ω ∈ Ω, n ≥ 1 and ε > 0,

m(Eωn (ε)) ≤ Cε.
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Proof. We follow the proof of [HNT12, Lemma 3.4], conveniently adapted to our setting of random
non-Markov maps. Recall that Anω is the partition of monotonicity associated to the map Tnω .
Consider I ∈ Anω. Since infI |(Tnω )′| ≥ λn > 1, there exists at most one solution x±I ∈ I to the
equation

(10.1) Tnω (x±I ) = x±I ± ε,

and since there is no sign change of (Tnω )′ on I, we have

(10.2) Eωn (ε) ∩ I ⊂ [x−I , x
+
I ].

We have

Tnω (x+
I )− Tnω (x−I ) = x+

I − x
−
I + 2ε,

and by the mean value theorem,∣∣Tnω (x+
I )− Tnω (x−I )

∣∣ =
∣∣(Tnω )′(c)

∣∣ ∣∣x+
I − x

−
I

∣∣ , for some c ∈ I.

Consequently,

(10.3)
∣∣x+
I − x

−
I

∣∣ ≤ (sup
I

1

|(Tnω )′|

)[∣∣x+
I − x

−
I

∣∣+ 2ε
]
≤ λ−n

∣∣x+
I − x

−
I

∣∣+ 2ε sup
I

1

|(Tnω )′|
.

Note that if there is no solutions to (10.1), then the estimate (10.3) is actually improved. Rearranging
(10.3) and summing over I ∈ Anω, we obtain thanks to (10.2)

m(Eωn (ε)) ≤
∑
I∈Anω

∣∣x+
I − x

−
I

∣∣ ≤ 2ε

1− λ−n
∑
I∈Anω

sup
I

1

|(Tnω )′|
≤ Cε.

The fact that

(10.4)
∑
I∈Anω

sup
I

1

|(Tnω )′|
≤ C

for a constant C > 0 independent from ω and n follows from a standard distortion argument for
one-dimensional maps that can be found in the proof of part 3 of [ANV15, Lemma 8.5] (see also
[AR16, Lemma 7]), where finitely many piecewise C2 uniformly expanding maps with finitely many
discontinuities are also considered. Since it follows from (LY) that ‖Pnω f‖BV ≤ C‖f‖BV for some
uniform C > 0, we do not have to average (10.4) over ω as in [ANV15], but instead we can simply
have an estimate that holds uniformly in ω. �

Recall that, for a measurable subset U , RωU (x) ≥ 1 is the hitting time of (ω, x) to U defined by
(6.1).

Lemma 10.2. Let a > 0, 2
3 < ψ < 1 and 0 < κ < 3ψ − 2. Then there exist sequences (γ1(n))n≥1

and (γ2(n))n≥1 with γ1(n) = O(n−κ) and γ2(n) = o(1), and for all ω ∈ Ω, a sequence of measurable
subsets (Aωn)n≥1 of [0, 1] with m(Aωn) ≤ γ1(n) and such that for all x0 /∈ Aωn,

(log n)
n−1∑
i=0

m
(
Bn−ψ(x0) ∩

{
Rσ

iω
B
n−ψ (x0) ≤ ba log nc

})
≤ γ2(n).
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Proof. Let

Eωn =
{
x ∈ [0, 1] : |T jω(x)− x| ≤ 2n−ψ for some 0 < j ≤ ba log nc

}
.

Since Bn−ψ(x0) ∩
{
Rσ

iω
B
n−ψ (x0) ≤ ba log nc

}
⊂ Bn−ψ(x0) ∩ Eσiωn , it is enough to consider

(log n)
n−1∑
i=0

m
(
Bn−ψ(x0) ∩ Eσiωn

)
.

According to Lemma 10.1, we have

m(Eωn ) ≤
ba lognc∑
j=1

m
(
Eωj (2n−ψ)

)
≤ C log n

nψ
.

We introduce the maximal function

Mω
n (x0) = sup

t>0

1

2t

∫ x0+t

x0−t

(
n−1∑
i=0

1
Eσiωn

(z)

)
dz = sup

t>0

1

2t

n−1∑
i=0

m
(
Bt(x0) ∩ Eσiωn

)
By [Rud87, Equation (5) page 138], for all λ > 0, we have

(10.5) m(Mω
n > λ) ≤ C

λ

∥∥∥∥∥
n−1∑
i=0

1
Eσiωn

∥∥∥∥∥
L1
m

≤ C

λ

n−1∑
i=0

m(Eσ
iω

n ) ≤ C

λ

log n

nψ−1

Let ρ > 0 and ξ > 0 to be determined later. We define

Fωn =
{
x0 ∈ [0, 1] : m (Bn−ψ(x0) ∩ Eωn ) ≥ 2n−ψ(1+ρ)

}
,

so that we have
n−1∑
i=0

m
(
Bn−ψ(x0) ∩ Eσiωn

)
≥

(
n−1∑
i=0

1
Fσiωn

(x0)

)
2n−ψ(1+ρ).

By definition of the maximal function Mω
n , this implies that

Mω
n (x0) ≥ n−ψρ

(
n−1∑
i=0

1
Fσiωn

(x0)

)
,

from which it follows, by (10.5) with λ = (log n)nξ−ψρ,

m (Aωn) ≤ m
(
Mω
n > (log n)nξ−ψρ

)
≤ Cn−(ξ+(1−ρ)ψ−1) =: γ1(n),

where

Aωn =

{(
n−1∑
i=0

1
Fσiωn

)
> (log n)nξ

}
.

If x0 /∈ Aωn , then

(log n)
n−1∑
i=0

m
(
Bn−ψ(x0) ∩ Eσiωn

)
≤ (log n)

(
n−1∑
i=0

1
Fσiωn

(x0)

)
m(Bn−ψ(x0)) + 2(log n)n1−ψ(1+ρ)

≤ C(log n)
(

(log n)n−(ψ−ξ) + n−(ψ(1+ρ)−1)
)

=: γ2(n).
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Since 2
3 < ψ < 1 and 0 < κ < 3ψ − 2, it is possible to choose ρ > 0 and ξ > 0 such that

κ = ξ + (1− ρ)ψ − 1, ψ > ξ and ψ(1 + ρ) > 1 3, which concludes the proof. �

Lemma 10.3. Suppose that a > 0 and 3
4 < ψ < 1. Then for m-a.e. x0 ∈ [0, 1] and P-a.e. ω ∈ Ω

and , we have

lim
n→∞

(log n)
n−1∑
i=0

m
(
Bn−ψ(x0) ∩

{
Rσ

iω
B
n−ψ (x0) ≤ ba log nc

})
= 0.

Proof. Let 0 < κ < 3ψ−2 to be determined later. Consider the sets (Aωn)n≥1 given by Lemma 10.2,
with m(Aωn) ≤ γ1(n) = O(n−κ). Since κ < 1, we need to consider a subsequence (nk)k≥1 such that∑

k≥1 γ1(nk) <∞. For such a subsequence, by the Borel-Cantelli lemma, for m-a.e. x0, there exists

K = K(x0, ω) such that for all k ≥ K, x0 /∈ Aωnk . Since limk→∞ γ2(nk) = 0, this implies

lim
k→∞

(log nk)

nk−1∑
i=0

m

(
B
n−ψk

(x0) ∩
{
Rσ

iω
B
n
−ψ
k

(x0) ≤ ba log nkc
})

= 0.

We take nk = bkζc, for some ζ > 0 to be determined later. In order to have
∑

k≥1 γ1(nk) < ∞,

we need to require that κζ > 1. Set Uωn (x0) = Bn−ψ(x0) ∩
{
RωB

n−ψ (x0) ≤ ba log nc
}

. To obtain the

convergence to 0 of the whole sequence, we need to prove that

(10.6) lim
k→∞

sup
nk≤n<nk+1

∣∣∣∣∣(log n)
n−1∑
i=0

m(Uσ
iω

n (x0))− (log nk)

nk−1∑
i=0

m(Uσ
iω

nk
(x0))

∣∣∣∣∣ = 0.

For this purpose, we estimate∣∣∣∣∣(log n)
n−1∑
i=0

m(Uσ
iω

n (x0))− (log nk)

nk−1∑
i=0

m(Uσ
iω

nk
(x0))

∣∣∣∣∣ ≤ (I) + (II) + (III) + (IV) + (V).

where

(I) = |log n− log nk|
n−1∑
i=0

m(Uσ
iω

n (x0)), (II) = (log nk)

n−1∑
i=nk

m(Uσ
iω

n (x0)),

(III) = (log nk)

nk−1∑
i=0

∣∣∣m(Bn−ψ(x0) ∩
{
Rσ

iω
B
n−ψ (x0) ≤ ba log nc

})
−m

(
B
n−ψk

(x0) ∩
{
Rσ

iω
B
n−ψ (x0) ≤ ba log nc

})∣∣∣ ,
(IV) = (lognk)

nk−1∑
i=0

∣∣∣∣m(Bn−ψk (x0) ∩
{
Rσ

iω
B
n−ψ (x0) ≤ ba log nc

})
−m

(
B
n−ψk

(x0) ∩
{
Rσ

iω
B
n
−ψ
k

(x0) ≤ ba log nc
})∣∣∣∣ ,

(V) = (log nk)

nk−1∑
i=0

∣∣∣∣m(Bn−ψk (x0) ∩
{
Rσ

iω
B
n
−ψ
k

(x0) ≤ ba log nc
})
−m

(
B
n−ψk

(x0) ∩
{
Rσ

iω
B
n
−ψ
k

(x0) ≤ ba log nkc
})∣∣∣∣ .

Before proceeding to estimate each term, we note that |nk+1 − nk| = O(k−(1−ζ)), |n−ψk+1 − n
−ψ
k | =

O(k−(1+ζψ)), |log nk+1 − log nk| = O(k−1) and m(Uωn (x0)) ≤ m(Bn−ψ(x0)) = O(k−ζψ).

3For instance, take ξ = ψ − δ and ρ = ψ−1 − 1 + δψ−1 with δ = 3ψ−2−κ
2

.
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From these observations, it follows

(I) ≤ C |log nk+1 − log nk|nk+1k
−ζψ ≤ Ck−(1−(1−ψ)ζ),

(II) ≤ C(log nk)|nk+1 − nk|k−ζψ ≤ C(log k)k−(1−(1−ψ)ζ),

(III) ≤ C(log nk)nkm(B
n−ψk

(x0) \Bn−ψ(x0)) ≤ C(log nk)nk|n−ψk+1 − n
−ψ
k | ≤ C(log k)k−(1−(1−ψ)ζ),

(IV) ≤ C(log nk)

nk−1∑
i=0

m

(
B
n−ψk

(x0) ∩
{
Rσ

iω
B
n
−ψ
k

(x0)\B
n−ψ (x0) ≤ ba log nc

})

≤ C(log nk)

nk−1∑
i=0

a(log n)m
(
B
n−ψk

(x0) \Bn−ψ(x0)
)

≤ C(log k)2k−(1−(1−ψ)ζ)

and

(V) ≤ C(log nk)

nk−1∑
i=0

m

(
B
n−ψk

(x0) ∩
{
ba log nkc < Rσ

iω
B
n
−ψ
k

(x0) ≤ ba log nc
})

≤ C(log nk)

nk−1∑
i=0

a |log nk+1 − log nk|m(B
n−ψk

(x0))

≤ C(log k)k−(1−(1−ψ)ζ).

To obtain (10.6), it is thus sufficient to choose κ > 0 and ζ > 0 such that κ < 3ψ − 2, κζ > 1
and (1− ψ)ζ < 1, which is possible if ψ > 3

4 . �

We can now prove the functional convergence to a Lévy stable process for i.i.d. uniformly ex-
panding maps.

Proof of Theorem 6.7. We apply Theorem 7.3. By Theorem 6.5, we have Nω
n

d→N(α) under the
probability νω for P-a.e. ω ∈ Ω. It thus remains to check that equation (7.2) holds for m-a.e. x0

when α ∈ [1, 2) to complete the proof. For this purpose, we will use a reverse martingale argument
from [NTV18] (see also [AR16, Proposition 13]). Because of (5.10), it is enough to work on the
probability space ([0, 1], νω) for P-a.e. ω ∈ Ω. Let B denote the σ-algebra of Borel sets on [0, 1] and

Bω,k = (T kω )−1(B)

To simplify notation a bit let

fω,j,n(x) = φx0(x)1{|φx0 |≤εbn}(x)− E
νσ
jω(φx01{|φx0 |≤εbn}).

From (5.10), it follows that Em(|fω,j,n|) ≤ Cεbn, and from the explicit definition of φ, we can
estimate the total variation of fω,j,n and obtain the existence of C > 0, independent of ω, ε, n and
j, such that

(10.7) ‖fω,j,n‖BV ≤ Cεbn.
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We define

Sω,k,n :=
k−1∑
j=0

fω,j,n ◦ T jω

and

(10.8) Hω,k,n ◦ Tnω := Eνω(Sω,k,n|Bω,k)
Hence Hω,1,n = 0 and an explicit formula for Hω,k,n is

Hω,k,n =
1

hσkω

k−1∑
j=0

P k−j
σjω

(fω,j,nhσjω).

From the explicit formula, the exponential decay in the BV norm of Pn−j
σjω

from (Dec), (5.10) and
(10.7), we see that ‖Hω,k,n‖BV ≤ Cεbn, where the constant C may be taken as constant over ω ∈ Ω.
If we define

Mω,k,n = Sω,k,n −Hω,k,n ◦ T kω
then the sequence {Mω,k,n}k≥1 is a reverse martingale difference for the decreasing filtration Bω,k =
(Tnω )−1(B) as

Eνω(Mω,k,n|Bω,k) = 0

The martingale reverse differences are

Mω,k+1,n −Mω,k,n = ψω,k,n ◦ T kω
where

ψω,k,n := fω,k,n +Hω,k,n −Hω,k+1,n ◦ Tσk+1ω.

We see from the L∞ bounds on ‖Hω,k,n‖∞ ≤ Cbnε and the telescoping sum that

(10.9)

∣∣∣∣∣∣
k−1∑
j=0

ψω,j,n ◦ T jω −
k−1∑
j=0

fω,j,n ◦ T jω

∣∣∣∣∣∣ ≤ Cεbn.
By Doob’s martingale maximal inequality

νω

 max
1≤k≤n

∣∣∣∣∣∣
k−1∑
j=0

ψω,j,n ◦ T jω

∣∣∣∣∣∣ ≥ bnδ
 ≤ 1

b2nδ
2
Eνω

∣∣∣∣∣∣
n−1∑
j=0

ψω,j,n ◦ T jω

∣∣∣∣∣∣
2

.

Note that
n−1∑
j=0

Eνω
[
ψ2
ω,j,n ◦ T jω

]
= Eνω

n−1∑
j=0

ψω,j,n ◦ T jω

2

by pairwise orthogonality of martingale reverse differences.
As in [HNTV17, Lemma 6]

Eνω [(Sω,n,n)2] =

n−1∑
j=0

Eνω [ψ2
ω,j,n ◦ T jω] + Eνω [H2

ω,1,n]− Eνω [H2
ω,n,n ◦ Tnω ].

So we see that
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(10.10) νω

 max
1≤k≤n

∣∣∣∣∣∣
k−1∑
j=0

ψω,j,n ◦ T jω

∣∣∣∣∣∣ ≥ bnδ
 ≤ 1

b2nδ
2
Eνω [(Sω,n,n)2] + 2

C2ε2

δ2

where we have used ‖H2
ω,j,n‖∞ ≤ C2b2nε

2.
Now we estimate

(10.11) Eνω [(Sω,n,n)2] ≤
n−1∑
j=0

Eνω [f2
ω,j,n ◦ T jω] + 2

n−1∑
i=0

∑
i<j

Eνω [fω,j,n ◦ T jω · fω,i,n ◦ T iω].

Using the equivariance of the measures {νω}ω∈Ω and (5.10), we have

(10.12)
n−1∑
j=0

Eνω [f2
ω,j,n ◦ T jω] ≤ CnEν(φ2

x01{|φx0 |≤εbn}) ∼ Cε
2−αb2n,

by Proposition 2.6 and (2.3).
On the other hand, we are going to show that for m-a.e. x0

lim
ε→0

lim sup
n→∞

1

b2n

n−1∑
i=0

∑
i<j

Eνω [fω,j,n ◦ T jω · fω,i,n ◦ T iω] = 0.(10.13)

The first observation is that, due to condition (Dec),

Eνω [fω,j,n ◦ T jω · fω,i,n ◦ T iω] ≤ Cθj−i‖fω,i,n‖BV‖fω,j,n‖L1
m
≤ Cε2b2nθ

j−i

where θ < 1. Hence there exists a > 0 independently of n and ε such that∑
j−i>ba lognc

Eνω [fω,j,n ◦ T jω · fω,i,n ◦ T iω] ≤ Cε2n−2b2n

and it is enough to prove that for ε > 0,

n−1∑
i=0

i+ba lognc∑
j=i+1

Eνω [fω,j,n ◦ T jω · fω,i,n ◦ T iω] = o(b2n) = o(n
2
α ).

By construction, the term Eνω [fω,i,n ◦ T iω · fω,j,n ◦ T
j
ω] is a covariance, and since φ is positive, we

can bound this quantity by Eνω [fn ◦T iω · fn ◦T
j
ω] = E

νσiω
[fn · fn ◦T j−iσiω

] where fn = φx01{|φx0 |≤εbn}.
Then, since the densities are uniformly bounded by (5.10), we are left to estimate

(10.14)
n−1∑
i=0

i+ba lognc∑
j=i+1

Em[fn · fn ◦ T j−iσiω
].

Let 3
4 < ψ < 1 and Un = Bn−ψ(x0). We bound (10.14) by (I) + (II) + (III), where

(I) =
n−1∑
i=0

i+ba lognc∑
j=i+1

∫
Un∩(T j−i

σiω
)−1(Un)

fn · fn ◦ T j−iσiω
dm,
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(II) =

n−1∑
i=0

i+ba lognc∑
j=i+1

∫
Un∩(T j−i

σiω
)−1(Ucn)

fn · fn ◦ T j−iσiω
dm

and

(III) =

n−1∑
i=0

i+ba lognc∑
j=i+1

∫
Ucn

fn · fn ◦ T j−iσiω
dm.

Since ‖fn‖∞ ≤ εbn, it follows that

(I) ≤ ε2b2n

n−1∑
i=0

i+ba lognc∑
j=i+1

m
(
Un ∩ (T j−i

σiω
)−1(Un)

)

≤ aε2b2n(log n)

n−1∑
i=0

m
(
Un ∩

{
Rσ

iω
Un ≤ a log n

})
,

which by Lemma 10.3 is a o(b2n) as n→∞ for m-a.e. x0.
To estimate (II) and (III), we will use Hölder’s inequality. We first observe by a direct compu-

tation that

(10.15)

∫
Ucn

φ2
x0dm = O(nψ( 2

α
−1)).

We consider (III) first. Let A = U cn. We have∫
Ucn

fn · fn ◦ T j−iσiω
dm ≤

∫
A
φx0 · fn ◦ T

j−i
σiω

dm ≤
(∫

A
φ2
x0dm

) 1
2
(∫

f2
n ◦ T

j−i
σiω

dm

) 1
2

(10.16)

≤ C
(∫

A
φ2
x0dm

) 1
2
(∫

f2
ndm

) 1
2

.(10.17)

By (10.15),
(∫
A φ

2
x0dm

) 1
2 ≤ Cn

ψ
2 ( 2

α
−1) and by Proposition 2.6,

(∫
f2
ndm

) 1
2 ≤ Cn

1
α
− 1

2 . Hence we

may bound (10.16) by Cn(1+ψ)( 1
α
− 1

2).

To bound (II), let B = Un ∩ (T j−i
σiω

)−1(U cn). Then,

∫
Un∩(T j−i

σiω
)−1(Ucn)

fn · fn ◦ T j−iσiω
dm ≤

∫
B
fn · φx0 ◦ T

j−i
σiω

dm ≤
(∫

f2
ndm

) 1
2
(∫

B
φ2
x0 ◦ T

j−i
σiω

dm

) 1
2

.

(10.18)

As before
(∫
f2
ndm

) 1
2 ≤ Cn

1
α
− 1

2 and(∫
B
φ2
x0 ◦ T

j−i
σiω

dm

) 1
2

≤
(∫

φ2
x0 ◦ T

j−i
σiω

1
(T j−i
σiω

)−1(Ucn)
dm

) 1
2

≤ C

(∫
Ucn

φ2
x0dm

) 1
2

≤ Cn
ψ
2 ( 2

α
−1)

by (10.15), and so (10.18) is bounded by Cn(1+ψ)( 1
α
− 1

2).

It follows that (II) + (III) ≤ C(log n)n1+(1+ψ)( 1
α
− 1

2) = o(n
2
α ), since ψ < 1. This proves that

(10.14) is a o(b2n) and concludes the proof of (10.13).
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Finally, from (10.11), (10.12) and (10.13), we obtain

lim
ε→0

lim sup
n→∞

1

b2n
Eνω [(Sω,n,n)2] = 0,(10.19)

which gives the result by taking the limit first in n and then in ε in (10.10). �

10.2. Intermittent maps. We prove convergence to a stable law in the setting of Example 5.12
when α ∈ (0, 1).

Proof of Theorem 6.9. We apply Proposition 5.8. By Theorem 6.6, it remains to prove (5.7), since
α ∈ (0, 1). We will need an estimate for Eνω(|φx0 |1{φx0≤εbn}) which is independent of ω. For this

purpose, we introduce the absolutely continuous probability measure νmax whose density is given
by hmax(x) = κx−γmax . Since all densities hω belong to the cone L, we have that hω ≤ a

κhmax for
all ω. Thus,

1

bn

n−1∑
j=0

E
νσ
jω(φx01{|φx0 |≤εbn}) ≤

n

bn

a

κ
Eνmax(φx01{|φx0 |≤εbn}).

We can easily verify that φx0 is regularly varying of index α with respect to νmax, with scaling
sequence equal to (bn)n≥1 up to a multiplicative constant factor. Consequently, by Proposition 2.6,
we have that, for some constant c > 0,

Eνmax(φx01{|φx0 |≤εbn}) ∼ cε
1−αn

1
α
−1,

which implies (5.7). �

11. The annealed case

In this section, we consider the annealed counterparts of our results. Even though the annealed
versions do not seem to follow immediately from the quenched version, it is easy to obtain them

from our proofs in the quenched case. We take φx0(x) = d(x, x0)−
1
α as before we consider the

convergence on the measure space Ω × [0, 1] with respect to νF (dω, dx) = P(dω)νω(dx). We give
precise annealed results in the case of Theorems 6.7 and 6.9, where we consider

Xa
n(ω, x)(t) :=

1

bn

bntc−1∑
j=0

φx0(T jωx)− tcn, t ≥ 0,

viewed as a random process defined on the probability space (Ω× [0, 1], νF ).

Theorem 11.1. Under the same assumptions as Theorem 6.7, the random process Xa
n(t) converges

in the J1 topology to the Lévy α-stable process X(α)(t) under the probability measure νF .

Proof. We apply [TK10b, Theorem 1.2] to the skew-product system (Ω × [0, 1], F, νF ) and the
observable φx0 naturally extended to Ω × [0, 1]. Recall that νF is given by the disintegration
νF (dω, dx) = P(dω)νω(dx).

We have to prove that

(a) Nn
d→N(α),
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(b) if α ∈ [1, 2), for all δ > 0,

lim
ε→0

lim sup
n→∞

νF

(ω, x) : max
1≤k≤n

∣∣∣∣∣∣ 1

bn

k−1∑
j=0

[
φx0(T jωx)1{|φx0◦T jω |≤εbn}(x)− Eν(φx01{|φx0 |≤εbn})

]∣∣∣∣∣∣ ≥ δ
 = 0,

where

Nn(ω, x)(B) := Nω
n (x)(B) = #

{
j ≥ 1 :

(
j

n
,
φx0(T j−1

ω (x))

bn

)
∈ B

}
, n ≥ 1.

To prove (a), we take f ∈ C+
K((0,∞)× (R \ {0})) arbitrary. Then, by Theorem 6.5, we have for

P-a.e. ω
lim
n→∞

Eνω(e−N
ω
n (f)) = E(e−N(f)).

Integrating with respect to P and using the dominated convergence theorem yields

lim
n→∞

EνF (e−Nn(f)) = E(e−N(f)),

which proves (a).
To prove (b), we simply have to integrate with respect to P in the estimates in the proof of

Theorem 6.7, which hold uniformly in ω ∈ Ω, and then to take the limits as n→∞ and ε→ 0. �

Similarly, we have:

Theorem 11.2. Under the same assumptions as Theorem 6.9, Xa
n(1)

d→X(α)(1) under the proba-
bility measure νF .

Proof. We can proceed as for Theorem 11.1 in order to check the assumptions of [TK10b, Theorem
1.3] for the skew-product system (Ω× [0, 1], F, νF ) and the observable φx0 . �

12. Appendix

The observation that our distributional limit theorems hold for any measures µ � νω follows
from Theorem 1, Corollary 1 and Corollary 3 of Zweimüller’s work [Zwe07].

Let

Sn(x) =
1

bn
[
n−1∑
j=0

φ ◦ T jω(x)− an].

and suppose

Sn →νω Y

where Y is a Lévy random variable.
We consider first the setup of Example 5.12. We will show that for any measure ν with density

h i.e. dν = hdm in the cone L of Example 5.12, in particular Lebesgue measure m with h = 1,

Sn →ν Y

We focus on m. According to [Zwe07, Theorem 1] it is enough to show that∫
ψ(Sn)dνω −

∫
ψ(Sn)dm→ 0.

for any ψ : R→ R which is bounded and uniformly Lipschitz.
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Fix such a ψ and consider ∫
ψ(

1

bn
[
n−1∑
j=0

φ ◦ T jω(x)− an])(hω − 1)dm

≤
∫
ψ(

1

bn
[
n−1∑
j=0

φ ◦ T j
σkω

(x)− an])P kω (hω − 1)dm

≤ ‖ψ‖∞‖P kω (hω − 1)‖L1(m).

Since ‖P kω (hω − 1)‖L1
m
→ 0 in case of Example 5.12 and maps satisfying (LY), (Dec) and (Min)

the assertion is proved. By [Zwe07, Corollary 3], the proof for continuous time distributional limits
follows immediately.
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