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Abstract. We provide a necessary and sufficient condition under which the quenched cen-
tral limit theorem without random centering holds for one-dimensional random systems that
are uniformly expanding. This condition holds in particular when all the maps preserve a
common measure. We also give a counter example which shows that this condition is not
necessarily satisfied when the maps do not preserve a common measure.

1. Introduction

Precise understanding of the statistical properties and the limit theorems for sums of the
form

Sn(x, ω1, ω2, . . .) =
n−1∑
k=0

ϕ(Tωk . . . Tω1x),

where the maps Tω are randomly drawn transformations of a space X, has been the object
of numerous works in the previous years, see [1, 3, 5, 9, 13] and references therein. Two
different kinds of limit theorems can be distinguished: annealed results, which refer to the
sums Sn seen as functions of both the variable x and the choice of the maps ω1, ω2, . . ., and
quenched results, where Sn is considered as a function of the sole variable x, this for almost
every sequence ω1, ω2, . . . of maps. A similar analysis is also possible when the sequence of
maps is deterministic, see for instance [6, 10], even though it often requires drastic conditions
on the particular sequence, in contrast to the almost sure nature of quenched theorems.
In this note, we will review results from [3] on the annealed and quenched central limit the-
orem for random dynamical systems which present some uniform expansion. The setting,
rather general and based on the quasi-compactness of a transfer operator, will be quickly spe-
cialized to one dimensional uniformly expanding systems. Building upon a strategy employed
first by [1] and inspired by previous works on random walks in random environments, we will
give a necessary and sufficient condition for the quenched central limit theorem without ran-

dom centering to hold. More precisely, we will characterize when Sn(x,ω1,ω2,...)√
n

converges to

a normal law for almost every sequence ω1, ω2, . . ., where ϕ is a BV observable with mean
0 with respect to the unique absolutely continuous stationary probability of the system. It
should be stressed that, in contrast to [1] and [3], we do not assume that all the maps Tω
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preserve a common measure. Nevertheless, we will show by a counter example that our
necessary and sufficient condition can fail when the maps preserve different measures, which
suggests to seek for a different formulation of the quenched central limit theorem, with a
random centering. We will remark upon this in the last section of the paper.

2. Random dynamical systems: definition, assumptions and examples

2.1. Basic definitions. We first give the definition of the class of random dynamical systems
we will consider. Let (Ω,P) be a finite probability space, where P = {pω}ω∈Ω is a probability
vector with pω > 0 for all ω ∈ Ω. Let T = {Tω}ω∈Ω be a finite collection of measurable maps
Tω : X → X on a Polish space X. We will refer to (Ω,P, T ) as a random dynamical system
(RSD).
For a sequence ω = (ω1, ω2, . . .) ∈ ΩN, we denote by T nω the composition Tωn ◦ . . . ◦ Tω1 .
The corresponding Markov chain (Xn) is defined by:{

X0 ∼ µ

Xn+1 = Tωn+1(Xn),

where µ is probability measure on X and (ωn)n is a sequence of independent and identically
distributed random variables with common law P. The measure µ is stationary if Xn is
distributed accordingly to µ for all n.
We can relate this stochastic process to a deterministic dynamical system as follows. We
define a skew-product transformation

S : ΩN ×X → ΩN ×X
(ω, x) 7→ (σω, Tω1x)

where σ : ΩN → N is the unilateral shift. We have Sn(ω, x) = (σnω, T nω x) for any n ≥ 0.

A probability measure µ on X is stationary if and only if the measure P⊗N ⊗ µ is invariant
under S.

2.2. A functional analytic framework. We assume the space X is endowed with a ref-
erence probability measure m such that each map Tω is non singular with respect to m.
We will be interested in the existence and properties of absolutely continuous stationary
probability (acsp) with respect to m. In this case, each map Tω admits a transfer operator
Pω : L1(m)→ L1(m) satisfying:∫

X

(Pωf)g dm =

∫
X

f(g ◦ Tω) dm for all f ∈ L1(m) and g ∈ L∞(m).

Definition 1. The annealed transfer operator P : L1(m) → L1(m) of the RDS (Ω,P, T ) is
defined by

P =
∑
ω∈Ω

pωPω.

An absolutely continuous probability measure µ is stationary if and only if its density f = dµ
dm

verifies Pf = f .
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We make the following hypothesis on P :

Assumptions. There exists a Banach space (B, ‖ · ‖) such that

(H1) B is compactly embedded in L1(m), with dense image;
(H2) Constant functions lie in B;
(H3) B is a complex Banach lattice: for all f ∈ B, |f | and f̄ belong to B;
(H4) B is stable under P : P (B) ⊂ B and P acts continuously on (B, ‖ · ‖);
(H5) Lasota-Yorke inequality: there exist N ≥ 1, ρ < 1 and K > 0 such that

‖PNf‖ ≤ ρ‖f‖+K‖f‖L1
m
, for all f ∈ B.

It follows from Hennion’s theorem [8] that P is a quasi-compact operator on B of spectral
radius 1, with 1 as an isolated eigenvalue of finite mulitplicity. We also assume:

(H6) 1 is a simple eigenvalue of P on B and there is no other eigenvalue on the unit circle.

Proposition 2. Under these assumptions, there exists a unique acsp µ. Its density h = dµ
dm

belongs to B. Furthermore, the skew-product system (ΩN×X,S,P⊗N⊗µ) is exact, and hence
ergodic and mixing.

Existence and uniqueness is classic, see for instance the discussion in [3]. Exactness of the
skew-product follows from arguments of Morita [11], see also Proposition 1.1.4 in [2].
The transfer operator P can be decomposed as

P = Π +Q,

where Π is the one-dimensional projector given by Π(f) =
(∫

X
f dm

)
h and Q is a bounded

operator on B with spectral radius strictly less than 1 and satisfying ΠQ = QΠ = 0. We
thus have P n = Π +Qn, where ‖Qn‖ ≤ Cλn for some λ ∈ (0, 1).

2.3. Example: one-dimensional expanding maps. Suppose X = [0, 1] and m is the
Lebesgue measure. All maps Tω are piecewise C2 uniformly expanding maps on X, i.e.
λ(Tω) := inf |T ′ω| > 1. Assume also that the system (Ω,P, T ) has the random covering
property: for all non trivial interval I ⊂ [0, 1], there exist n ≥ 1 and ω ∈ Ωn such that
T nω (I) = [0, 1] up to finitely many points.
Then, as proved in [3, Example 2.1], the assumptions (H1)-(H6) are satisfied with the Banach
space B = BV of functions with bounded variation. Furthermore, the density of the unique
acsp is bounded uniformly away from 0.

3. Annealed central limit theorem

In this section, we review results from [3] on annealed limit theorems. We assume that the
RDS (Ω,P, T ) satisfied the assumptions (H1)-(H6) with a Banach space B. Let MB denote
the set of probability measures on X that are absolutely continuous with respect to m, with
density in B.
Let B0 ⊂ L1(m) be a Banach space with norm ‖ · ‖0 for which there exists C > 0 such that

(C) ‖fg‖ ≤ C‖f‖0‖g‖, ∀f ∈ B0, ∀g ∈ B.
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If B is a Banach algebra, as it is the case for the space involved in example 2.3, we can choose
B0 = B.
We have the annealed central limit theorem for observables belonging to B0:

Theorem 3. [3, Proposition 3.2, Proposition 3.4, Theorem 3.5] Let ϕ : X → R be a bounded
observable, with ϕ ∈ B0 and

∫
X
ϕdµ = 0. Define Sn(ω, x) =

∑n−1
k=0 ϕ(T kωx).

(1) The limit σ2 = limn→∞
1
n

∫
ΩN

∫
X
S2
n dµ dP⊗N exists.

(2) The asymptotic variance σ2 is 0 if and only if there exists ψ ∈ L2(µ) such that
ϕ = ψ − ψ ◦ Tω, µ-a.e. for all ω ∈ Ω. In this case, we say that ϕ is a random
coboundary.

(3) For all ν ∈MB, Sn√
n

converges in law to N (0, σ2) under the probability P⊗N ⊗ ν.

As a consequence of the proof of [3], we also have an estimation on the speed of convergence
of the characteristic function of Sn√

n
:

Lemma 4. [3, Lemma 3.10] For all ν ∈MB,∣∣∣EP⊗N⊗ν(e
i t√

n
Sn)− e−

t2σ2

2

∣∣∣ = O
(

1 + |t|3√
n

)
for all t ∈ R and n ≥ 1 such that t√

n
is small enough.

The asymptotic variance σ2 can be expressed in terms of any initial measure ν ∈MB:

Lemma 5. For all ν ∈MB,

σ2 = lim
n→∞

1

n

∫
ΩN

∫
X

S2
n dν dP⊗N

Proof. Let ν ∈ MB with density f . Expanding the squares and using the duality property
of the transfer operators, we obtain∫∫

ΩN×X
S2
n dν dP⊗N−

∫∫
ΩN×X

S2
n dµ dP⊗N =

n−1∑
k=0

∫
X

ϕ2P k(f−h) dm+2
n−1∑
i,j=0
i<j

∫
X

ϕP j−i(ϕP i(f−h)) dm.

Since
∫
X
f dm =

∫
X
h dm = 1, we have∣∣∣∣∫

X

ϕ2P k(f − h) dm

∣∣∣∣ ≤ ‖ϕ‖2
∞‖P k(f − h)‖L1

m
≤ C‖ϕ‖2

∞‖Qk(f − h)‖ ≤ C‖ϕ‖2
∞λ

k,

On the other hand,∫
X

ϕP j−i(ϕP i(f − h)) dm =

∫
X

ϕ

(∫
X

ϕP i(f − h) dm

)
h dm+

∫
X

ϕQj−i(ϕP i(f − h)) dm,

and since
∫
X
ϕh dm =

∫
X
ϕdµ = 0 and ‖Qj−i(ϕP i(f − h))‖L1

m
≤ Cλj−i‖ϕ‖0‖P i(f − h)‖ ≤

C‖ϕ‖0λ
j, we obtain that ∣∣∣∣∫

X

ϕP j−i(ϕP i(f − h)) dm

∣∣∣∣ ≤ C‖ϕ‖0λ
j,
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whence the result after summation. �

We will also make use of an estimate for annealed large deviations:

Lemma 6. For all ν ∈MB, there exists C > 0 such that for all ε > 0 small enough,

P⊗N ⊗ ν(|Sn| > nε) ≤ Ce−Cε
2n.

This lemma is a straightforward consequence of the large deviation principle [3, Theorem
3.6], see also [2, Lemma 1.2.17]. It can alternatively be deduced from the exponential decay
of annealed correlations [3, Proposition 3.1] and the Gordin’s martingale approach described
in [4, Proposition 2.5] (see [3, Section 4] for the construction of the martingales).

4. Quenched central limit theorem

4.1. A general approach. We describe here an approach for the quenched central limit
theorem originating from the fields of random walks in random environments, which was
first employed in the context of random dynamical systems by Ayyer, Liverani and Stenlund
[1].
Consider a RDS (Ω,P, T ) on a space X, with a stationary measure µ and an observable

ϕ : X → R with
∫
X
ϕdµ = 0. We introduce an auxiliary RDS (Ω̃, P̃, T̃ ) on the space X2 as

follows. We set Ω̃ = Ω, P̃ = P, and for ω ∈ Ω, the map T̃ω(x, y) = (Tωx, Tωy). We define
a new observable ϕ̃ : X2 → R by ϕ̃(x, y) = ϕ(x) − ϕ(y), and denote its associated Birkhoff

sums by S̃n.

Theorem 7. [1] Assume there exists σ2 > 0 and a constant C > 0 such that for all t ∈ R
and n ≥ 1 with t√

n
small enough :

(1)
∣∣∣EP⊗N⊗µ(e

i t√
n
Sn)− e− t

2σ2

2

∣∣∣ ≤ C 1+|t|3√
n

,

(2)
∣∣∣EP⊗N⊗(µ⊗µ)(e

i t√
n
S̃n)− e−t2σ2

∣∣∣ ≤ C 1+|t|3√
n

.

Suppose also that for n ≥ 1 and ε > 0 :

(3) P⊗N ⊗ µ
(∣∣Sn

n

∣∣ ≥ ε
)
≤ Ce−Cε

2n.

Then, the quenched CLT without random centering holds: for P⊗N-a.e. ω ∈ ΩN, Sn(ω,·)√
n

converges in law to N (0, σ2) under the probability measure µ.

We now present a procedure to check the assumptions of Theorem 7.

Step 1. One checks the RDS (Ω,P, T ) satisfies (H1)-(H6) with a Banach space B. One then
verifies that ϕ belongs to a Banach space B0 satisfying the condition ( C). Thus the RDS
(Ω,P, T ) admits a unique stationary probability µ absolutely continuous with respect to m.
If ϕ is not a random coboundary, by Theorem 3, Lemma 4 and Lemma 6, hypothesis (1) and
(3) of Theorem 7 hold true.

Step 2. One checks the auxiliary RDS (Ω̃, P̃, T̃ ) satisfies (H1)-(H6) for a Banach space B̃ of
functions on X2, with reference measure m̃ = m⊗m and that ϕ̃ belongs to a Banach space
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B̃0 satisfying ( C) with B̃. The system (Ω̃, P̃, T̃ ) admits then a unique acsp µ̃. It is easy to
see that the marginals of µ̃ are absolutely continuous with respect to m and are stationary
for (Ω,P, T ). Since µ is the unique acsp of (Ω,P, T ), we deduce the marginals of µ̃ are given

by µ, and consequently,
∫
X2 ϕ̃ dµ̃ = 0. If the measure µ⊗ µ belongs to MB̃, i.e. h⊗ h ∈ B̃,

by Lemma 4, there exists σ̃2 ≥ 0 such that∣∣∣EP⊗N⊗(µ⊗µ)(e
i t√

n
S̃n)− e−

t2σ̃2

2

∣∣∣ ≤ C
1 + |t|3√

n

for all t ∈ R and n ≥ 1 with t√
n

small enough.

Step 3. One checks that σ̃2 = 2σ2. This implies assumption (2) of Theorem 7.

Steps 1 and 2 usually present no conceptual difficulties if the system at hand is uniformly
expanding. The only subtlety resides in the fact that the auxiliary RDS acts on a space
whose dimension is twice the dimension of the original system, which requires to work with

a Banach space B̃ that might be slightly more complicated than B. This is particularly true

when X = [0, 1], since B will be the space BV and B̃ the Quasi-Hölder space (or any other
valid option in higher dimension, like the multidimensional version of BV). This implies to
take into account the accumulation of discontinuities (the complexity), a phenomenon which
only occurs in dimension 2 or higher. Nevertheless, the rather simple structure of the maps

T̃ω (direct products) and the regularity partitions (made of rectangles) makes this study more
accessible.
The only genuine difficulty then lies in step 3. Asymptotic variances can be compared with
the help of Lemma 5. As surprising as the condition σ̃2 = 2σ2 might seem, it is actually
necessary for the quenched central limit theorem without random centering to hold:

Lemma 8. [3, Lemma 7.2] Using the same notations introduced above, assume that there
exists σ2 > 0 and σ̃2 > 0 such that

(1) Sn√
n

converges in law to N (0, σ2) under the probability P⊗N ⊗ µ,

(2) S̃n√
n

converges in law to N (0, σ̃2) under the probability P⊗N ⊗ (µ⊗ µ),

(3) for a.e. ω, Sn(ω,·)√
n

converges in law to N (0, σ2) under the probability µ.

Then σ̃2 = 2σ2.

4.2. One-dimension systems: a necessary and sufficient condition. In this section,
we will make use of Theorem 7 to provide a concrete necessary and sufficient condition for
the quenched central limit theorem without random centering to hold for one-dimensional
expanding RDS. Even though the strategy could be equally applied to higher dimensional
systems, we will focus on the one-dimensional case in order to maintain the technicality at a
reasonable level.
As in example 2.3, let (Ω,P, T ) be a RDS on X = [0, 1], where all maps Tω are piecewise C2

and uniformly expanding. Assume the RDS has the random covering property, and let µ be
its unique acsp. Let ϕ : X → R be an observable belonging to BV, with

∫
X
ϕdµ = 0, which
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is not a random coboundary. By Theorem 3, ϕ satisfies the annealed CLT, with asymptotic
variance σ2 > 0.

Theorem 9. The quenched CLT without random centering (i.e. Sn(ω,·)√
n

converges in law to

N (0, σ2) for a.e. ω) holds if and only if:

lim
n→∞

1

n

∫
ΩN

(
n−1∑
k=0

∫
X

ϕ ◦ T kω dµ

)2

dP⊗N(ω) = 0.

Remark 10. (1) The condition of Theorem 9, even though looking difficult to check in

practice, has the advantage over the condition σ̃2 = 2σ2 to involve only quantities
associated to the RDS we are interested in, and not an auxiliary system.

(2) This condition is trivially satisfied if all the maps Tω preserve the same measure µ.
We thus generalize the result from [3].

(3) We will see in the next section that, for a large class of RDS, whenever the maps do
not share a common invariant measure, we can always construct an observable for
which this condition does not hold.

Proof. We follow the strategy described in section 4.1.

Step 1. By section 2.3, the transfer operator P of (Ω,P, T ) satisfies (H1)-(H6) with B = BV.
Since B is a Banach algebra and ϕ ∈ B0 = B, this concludes the step 1.

Step 2. We will show the annealed transfer operator P̃ of the RDS (Ω̃, P̃, T̃ ) satisfied (H1)-
(H6) with the Banach space V1(X2) of Quasi-Hölder functions. We first recall from Saussol
[12] the definition of this space.
Let md denotes the Lebesgue measure on Rd. Let f : Rd → C be a measurable function.
For a Borel subset A ⊂ Rd, define osc(f, A) = ess sup

x,y∈A
|f(x) − f(y)|. For any ε > 0, the

map x 7→ osc(f,Bε(x)) is a positive lower semi-continuous function, so that the integral∫
Rd osc(f,Bε(x))dx makes sense. For f ∈ L1(Rd) and 0 < α ≤ 1, define

|f |α = sup
0<ε≤ε0

1

εα

∫
Rd

osc(f,Bε(x))dx.

For a regular compact subset M ⊂ Rd, define

Vα(M) = {f ∈ L1(Rd) / supp(f) ⊂M, |f |α <∞},
endowed with the norm ‖f‖α = ‖f‖L1

m
+ |f |α, where m is the Lebesgue measure normalized

so that m(M) = 1. Note that while the norm depends on ε0, the space Vα does not, and two
choices of ε0 give rise to two equivalent norms. This space is a Banach algebra.
Note that we will only work with α = 1. To emphasize the dependence on ε0, we will also
denote the semi-norm by | · |ε0 .
Let T̃ : M → M be a piecewise C2 map, with regularity partition {Ui}i, satisfying the

assumptions (PEi), i = 1, 2, 3, 4 of [12], with associated constants ε0(T̃ ) > 0, c(T̃ ) and
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s(T̃ ) < 1. It is easy to check that if T is a piecewise C2 uniformly expanding map on [0, 1],

then T̃ = T × T verifies these hypothesis with M = [0, 1]2 and s(S) = λ(T )−1.

Define for 0 ≤ δ ≤ ε0(T̃ ):

GT̃ (ε, δ) = sup
x

∑
i

md(T̃
−1
i Bε(∂T̃Ui) ∩B(1−s(T̃ ))δ(x))

md(B(1−s(T̃ ))δ(x))
,

where T̃i is a smooth extension of T̃ on a neighborhood of Ūi, and Bε(A) denotes the ε-

neighborhood in the euclidean metric of the set A. Set ηT̃ (δ) = s(T̃ ) + 2
(

sup0<ε≤δ
G
T̃

(ε,δ)

ε

)
δ.

We have the following Lasota-Yorke inequality for the transfer operator PT̃ of T̃ on V1(M):

Lemma 11. [12, Lemma 4.1] For all 0 < ε0 ≤ ε0(T̃ ) and all f ∈ V1(M), one has

|PT̃f |ε0 ≤
(

1 + c(T̃ )s(T̃ )ε0

)
ηT̃ (ε0)|f |ε0 + A(T̃ , ε0)‖f‖L1

md
,

where A(T̃ , ε0) depends only on T̃ and ε0.

We will estimate GT̃ when T̃ = T × T , with T a piecewise C2 uniformly expanding map on

[0, 1]. Remark that if {Ii}i is the regularity partition of the map T , the partition of T̃ is
given by {Ii × Ij}i,j.

Lemma 12. Let T : [0, 1] → [0, 1] be a piecewise C2 uniformly expanding map and T̃ =
T × T : [0, 1]2 → [0, 1]. There exists δ(T ) > 0 such that for all 0 < ε ≤ δ ≤ δ(T ), one has

GT̃ (ε, δ) ≤ 64s(T̃ )

π(1−s(T̃ ))

ε
δ
.

Proof. Let denote by B∞ε (A) the ε-neighborhood of the set A for the `∞-metric. We have

Bε(A) ⊂ B∞ε (A). For any i and j, one T̃ (Ii×Ij) = TIi×TIj, which is a rectangle whose sides

are parallel to the coordinate axes. Hence, Bε(∂T̃ (Ii× Ij)) ⊂ B∞ε (∂T̃ (Ii× Ij)), which implies

T̃−1
i,j Bε(∂T̃ (Ii×Ij)) ⊂ B∞

s(T̃ )ε
(∂Ii×Ij). This inclusion follows from the product-structure of T̃ .

We then have m̃(T̃−1
i,j Bε(∂T̃ (Ii × Ij)) ∩B(1−s(T̃ ))δ(x)) ≤ m̃(B∞

s(T̃ )ε
(∂Ii × Ij) ∩B(1−s(T̃ ))δ(x)) ≤

16s(T̃ )ε(1−s(T̃ ))δ 1. For δ small enough, depending on T , any ball B(1−s(T̃ ))δ(x) will intersect

at most 4 elements T̃−1
i,j Bε(∂T̃ (Ii × Ij), whence the lemma. �

We are now in position to prove a Lasota-Yorke inequality for the transfer operator P̃ of the

RDS (Ω̃, P̃, T̃ ) on the space V1(X2). Remark first that T̃ nω = T nω × T nω . Let λ > 1 such that

λ(Tω) ≥ λ for all ω ∈ Ω. Then s(T̃ω) = λ(Tω)−1 ≤ λ−1.

Lemma 13. There exists n ≥ 1, ε0 > 0, θ < 1 and K > 0 such that for all f ∈ V1(X2),

|P̃ nf |ε0 ≤ θ|f |ε0 +K‖f‖L1
m̃
.

1For any disk D of radius R and any rectangle R = [a, b]× [c, d] in the plane, one has m̃(D∩B∞
r (∂R) ≤ 16rR

for any r > 0.
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Proof. Let ε
(n)
0 > 0 smaller than ε0(T̃ nω ), 1

c(T̃nω )
and δ(T nω ) for any ω ∈ Ωn. Taking into account

Lemma 12, if we sum the inequalities given by Lemma 11 for all maps T̃ nω , we obtain:

|P̃ nf |
ε
(n)
0
≤ (1 + λ−n)

(
λ−n +

128λ−n

π(1− λ−n)

)
|f |

ε
(n)
0

+ A(ε
(n)
0 )‖f‖L1

m̃
,

where A(ε
(n)
0 ) depends only on ε

(n)
0 . Since the term in front of |f |

ε
(n)
0

goes to 0 as n goes to

∞, we can choose n large enough so that the lemma holds. �

This proves that P̃ satisfies assumptions (H1)-(H5). In order to prove (H6), according to [3,

Proposition 2.9], we need to prove that the RDS (Ω̃, P̃, T̃ ) has the random covering property.

Lemma 14. The RDS (Ω̃, P̃, T̃ ) has the random covering property: for any non-trivial ball

B ⊂ [0, 1]2, there exists n ≥ 1 and ω ∈ Ωn such that T̃ nω (B) = [0, 1]2

Proof. Let B ⊂ [0, 1]2 be a ball. There exist two non trivial subintervals I and J of [0, 1]
such that I × J ⊂ B. Since (Ω,P, T ) has the random covering property, there exist n1 ≥ 1
and ω(1) ∈ Ωn1 such that Tω(1)(I) = [0, 1]. Let K ⊂ T n1

ω(1)(J) be an non trivial interval. By

the random covering property, there exist n2 ≥ 1 and ω(2) ∈ Ωn2 such that T n2

ω(2)(K) = [0, 1]

and thus T n2

ω(2)(T
n1

ω(1)(J)) = [0, 1]. In particular, T n2

ω(2) is onto. Set n = n1 +n2 and ω = ω(2)ω(1)

(the concatenation of the two finite sequences). We have

T̃ nω (I × J) = T nω (I)× T nω (J)

= T n2

ω(2)(T
n1

ω(1)(I))× T n2

ω(2)(T
n1

ω(1)(J))

= T n2

ω(2)([0, 1])× [0, 1]

= [0, 1]2,

since T n2

ω(2) is onto. �

This proves that P̃ has a spectral gap on V1(X2). Since ϕ, h ∈ BV, it is easy to check that

ϕ̃ ∈ V1(X2) = B̃0 and h⊗ h ∈ V1(X2), which achieves the step 2.

Step 3. By Lemma 8, the quenched CLT without random centering is true if and only
if σ̃2 = 2σ2. The next lemma shows this condition is equivalent to the condition given in
Theorem 9, which concludes the proof. �

Lemma 15. We have σ̃2 = 2σ2 if and only if

lim
n→∞

1

n

∫
ΩN

(
n−1∑
k=0

∫
X

ϕ ◦ T kω dµ

)2

dP⊗N(ω) = 0.

Proof. Since the density h ⊗ h of the measure µ ⊗ µ belongs to B̃ = V1(X2), one has by
Lemma 5:

σ̃2 = lim
n→∞

1

n
EP⊗N⊗µ⊗µ(S̃2

n).
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We have

EP⊗N⊗µ⊗µ(S̃2
n) =

n−1∑
k,l=0

∫
ΩN

∫
X

∫
X

ϕ̃(T̃ kω (x, y))ϕ̃(T̃ lω(x, y))dµ(x)dµ(y)dP⊗N(ω)

=
n−1∑
k,l=0

∫
ΩN

∫
X

∫
X

(
ϕ(T kωx)− ϕ(T kωy)

) (
ϕ(T lωx)− ϕ(T lωy)

)
dµ(x)dµ(y)dP⊗N(ω).

But∫
ΩN

∫
X

∫
X

(
ϕ(T kωx)− ϕ(T kωy)

) (
ϕ(T lωx)− ϕ(T lωy)

)
dµ(x)dµ(y)dP⊗N(ω)

=

∫
ΩN

∫
X

ϕ(T kωx)ϕ(T lωx)dµ(x)dP⊗N(ω)−
∫

ΩN

(∫
X

ϕ(T kωx)dµ(x)

)(∫
X

ϕ(T lωy)dµ(y)

)
dP⊗N(ω)

−
∫

ΩN

(∫
X

ϕ(T kωy)dµ(x)

)(∫
X

ϕ(T lωx)dµ(y)

)
dP⊗N(ω) +

∫
ΩN

∫
X

ϕ(T kωy)ϕ(T lωy)dµ(y)dP⊗N(ω).

We then obtain

EP⊗N⊗µ⊗µ(S̃2
n) = 2

∫
ΩN

∫
X

(
n−1∑
k=0

ϕ(T kωx)

)2

dµ(x)dP⊗N(ω)− 2

∫
ΩN

(
n−1∑
k=0

∫
X

ϕ(T kωx)dµ(x)

)2

dP⊗N(ω)

= 2EP⊗N⊗µ(S2
n)− 2

∫
ΩN

(
n−1∑
k=0

∫
X

ϕ ◦ T kωdµ

)2

dP⊗N(ω),

which concludes the proof, since σ2 = limn→∞
1
n
EP⊗N⊗µ(S2

n) by Lemma 5. �

4.3. A counter-example. We present here a construction that suggests the quenched CLT
without random centering holds for all observables in BV only if all the maps share a common
invariant measure. We consider the case where Ω = {0, 1}, p0 = p1 = 1

2
, and the two maps

T0 and T1 are piecewise C2, uniformly expanding, both having the covering property. They
hence admit both a unique absolutely continuous invariant probability, denoted respectively
by µ0 and µ1. We assume that µ0 6= µ1. We also suppose there exist C > 0 and λ < 1 such
that for all ω ∈ ΩN, all n ≥ 1 and all f ∈ BV with

∫
X
f dm = 0,

‖Pωn . . . Pω1f‖BV ≤ Cλn‖f‖BV.

This assumption is for instance verified if the two maps are sufficiently close in a convenient
topology, or if they are β-transformations with β very close, see [6] for more details.
The RDS admits a unique acsp, denoted by µ. Let ψ be a C∞ observable for which

∫
X
ψ dµ0 6=∫

X
ψ dµ1 and set ϕ = ψ −

∫
X
ψ dm. Then ϕ does not satisfy the quenched CLT without

random centering.
By Theorem 9, it is equivalent to show that

(1)

∫
ΩN

(∑n−1
k=1

∫
X
ϕ ◦ Tωk ◦ . . . Tω1 dµ√

n

)2

dP⊗N(ω)
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does not go to 0.
Changing the time direction, i.e. replacing (ω1, . . . , ωn) by (ωn, . . . , ω1), and applying the
transfer operator, 1 can be rewritten as

(2)

∫
ΩN

(∑n−1
k=1

∫
X
ϕPωk . . . Pωnh dm√

n

)2

dP⊗N(ω),

where h is the density of µ.
For any sequence ω, by assumption we have

‖Pω1 . . . Pωnh− Pω1 . . . PωnPωn+1h‖BV = ‖Pω1 . . . Pωn(h− Pωn+1h)‖BV ≤ Cλn‖h− Pωn+1h‖BV

≤ Cλn.

Consequently, Pω1 . . . Pωn converges exponentially fast to a function hω ∈ BV: there exists
C > 0 and λ < 1 such that for any n ≥ 1 and any ω,

‖Pω1 . . . Pωnh− hω‖BV ≤ Cλn.

Equation 2 can then be rewritten as∫
ΩN

(∑n−1
k=1

[∫
X
ϕhσk−1ω dm+O(λn−k)

]
√
n

)2

dP⊗N(ω).

Set G(ω) =
∫
X
ϕhω dm. This function is Lipschitz on ΩN for the symbolic metric dλ(ω, ω

′) =

λs(ω,ω
′) with

s(ω, ω′) = inf{n ≥ 1 : ωn 6= ω′n}.
Indeed, if ω1 = ω′1, . . . , ωn = ω′n, then

|G(ω)−G(ω′)| ≤ ‖ϕ‖∞‖hω − hω′‖BV

≤ ‖hω − Pω1 . . . Pωnh‖BV + ‖(Pω1 . . . Pωn − Pω′1 . . . Pω′n)h‖BV + ‖Pω′1 . . . Pω′nh− hω′‖BV

≤ Cλn.

We can then rewrite 2 as ∫
ΩN

(
O(1) +

∑n−1
k=0 G(σkω)√
n

)2

dP⊗N(ω).

If G was not of mean 0, then Birkhoff’s ergodic theorem for σ would imply that the previous
equation blows up, and we would prove that the equation 1 does not go to 0. Howerer,
G is of mean 0 with respect to P⊗N, and one has to work a little bit more. Since G is
Lipschitz, it satisfies a central limit theorem for the deterministic system (ΩN, σ). If the
corresponding asymptotic variance is non zero, we obtain the desired conclusion. Otherwise,
G is L2 coboundary, and even a Hölder coboundary. In particular, G must vanish on the
fixed point of σ and thus G(0, 0, . . .) = G(1, 1, . . .) = 0. Since h(0, 0, . . .) = limn P

n
0 h is
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the density of the invariant measure µ0 for T0, we have G(0, 0, . . .) =
∫
X
ϕdµ0. Similarly,

G(1, 1, . . .) =
∫
X
ϕdµ1. We thus have∫

ϕdµ0 =

∫
ϕdµ1(= 0),

which contradicts our choice of the function ϕ.

4.4. Concluding remarks. The previous counter example strongly suggests that, in the
generic situation where the stationary measure µ is not preserved by all the maps Tω, the
quenched central limit theorem without random centering does not hold. One might then be
tempted to conjecture that a random centering is necessary, i.e. that for P⊗N-a.e. ω,

Sn(ω, ·)− µ(Sn(ω, ·))√
n

=⇒µ N (0, σ2).

A clue in this direction is given by Theorem 9, since it affirms that the quenched CLT without

random centering is valid if and only if µ(Sn(ω,·))√
n

goes to 0 in L2(P⊗N), i.e. if and only if the

difference between the two formulations is negligible in L2.
In a recent paper by Dobbs and Stenlund [7], the importance of the centering has been
highlighted in the context of quasistatic dynamical systems, and in particular the fact that
the regularity of the initial distribution plays a role to determine whether a centering is
admissible or not, see section 3.2 and the discussion after Theorem 3.6. It would be interesting
to investigate if this phenomenon occurs also in the different but related topic of random
dynamical systems.
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