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Abstract. We establish a theory for multivariate extreme value analysis of dynamical sys-
tems. Namely, we provide conditions adapted to the dynamical setting which enable the
study of dependence between extreme values of the components of Rd-valued observables
evaluated along the orbits of the systems. We study this cross-sectional dependence, which
results from the combination of a spatial and a temporal dependence structures. We give sev-
eral illustrative applications, where concrete systems and dependence sources are introduced
and analysed.

1. Introduction

The study of rare events for dynamical systems is recent but has experienced a vast de-
velopment in the last decade, partly motivated by applications to climate dynamics, where
dynamical systems (such has the Lorenz models) provide accurate description of meteorologi-
cal phenomena. This development has been anchored in a connection between the observation
of rare events, detected by the appearance of extreme values, and the recurrence properties of
sensitive regions, under the action of the underlying dynamics. The main idea is that chaotic
systems lose memory quickly which makes their orbits behave like random asymptotically
independent observations. This strategy has been successfully applied to prove the existence
of limit theorems regarding the distribution of the extremal order statistics, point processes,
records, as well as ergodic averages of heavy tailed observables.
In some sense, the study of extreme events for dynamical systems has only recently caught
up with the state of the art of univariate Extreme Value Theory. However, since the 1980s,
many extreme value theorists have moved from the univariate theory to the multivariate
context, where one is concerned with extremes in a multivariate random sample, i.e., events
for which at least one of the components reaches exceptionally high (or low) values. Of course,
focusing on the behaviour of one of the components is the subject of univariate extreme value
theory. The main point of multivariate extreme value analysis is understanding the interplay
between the extremes in the different components. This insight is of crucial importance in
climate dynamics, where the influence between extremal observations of different variables
(such as pressure and temperature) as well as their spatial and temporal dependence is vital
for predicting extreme weather events. The dependence structure of extreme phenomena is
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pivotal for anticipating compound risks such as in the case of the 2022 European drought
addressed in [FPB23] or the study of co-occurring extremes in [MF23] or multivariate rainfall
time series in [BN23], just to give some recent examples.
The main goal of this paper is to introduce the first (to our knowledge) theoretical results on
multivariate extreme value analysis for dynamical systems, thus closing the gap in theories
described above. The differences in proof techniques between the univariate and multivariate
cases are few, so the technical work presented in this paper is brief: our focus is on beginning
to put the multivariate approach in the dynamical setting on a firm basis and presenting some
elementary examples of its application. Unlike independent sequences or the strong mixing ex-
tremal properties of the stationary processes from the classical literature, the processes arising
from dynamical systems require a more flexible time dependence structure, which we provide
here. We will then study the cross-sectional dependence of the vector valued observables
evaluated along the orbits of the systems, which will describe the spatial relationships where
an extreme observation of one of the components is responsible for the appearance of other
extreme observation in another component, but we will also analyse how the short recurrence
properties may introduce a source of time dependence, so that the co-occurrence of extremes of
different quantities appear slightly out of sync in time. This phenomenon is directly connected
with clustering of extremal observations which can be viewed through an extremal index func-
tion: here we give a dynamically natural formula for this. Interestingly, while the spatial
dependence pertaining to the cross-sectional relations between the components was copiously
studied, the literature regarding to the time dependence and the extremal index function is
relatively scarce. One of the advantages of this dynamical approach to multivariate extremes
is that we can see, in a natural and simple way, how the local (or fast) recurrence properties
of the maximal regions contribute to the overall dependence structure of extremes, making it
one of the interests of the present paper.
We emphasise that the multivariate extremes perspective here is completely new in the dynam-
ical systems setting, although there have been works considering higher dimensional variables
such as [FV18] or multidimensional point processes accounting for the extremes of Rd-valued
dynamically defined stationary processes as in [FFMa20, FFT21]. While in the former case,
the authors take observables corresponding to the distance to the diagonal, reducing it to a
univariate problem, in the latter case the relations between the d-components are not consid-
ered.
The paper is organised as follows. In Section 2 we make a brief introduction to Multivariate
Extreme Value Analysis, present the pertinent concepts and objects and then, in Section 2.2,
we give the main theoretical results which enable its application to dynamical systems. In
Section 3, we give some illustrative applications, introducing some mechanisms to create both
spatial and temporal dependence, based on particular choices of observables and dynamics so
that the recurrence properties of the respective maximal sets give rise to different dependence
profiles. We remark that the examples presented and the respective mechanisms are meant to
illustrate the potential of the theory and of its applications, so as to make a clear contribution
in both the dynamical and the extreme settings: there is ample scope to elaborate further
on these, but here we are focused on presenting the main ideas in a simple way. Our main
focus is on stable dependence functions (and Pickands dependence functions), so we explain
the connection of this theory to copulas in a short appendix.
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2. Multivariate extreme value analysis

Let (X ,BX , µ, f) be a discrete time dynamical system, where X is a compact manifold
equipped with a norm ‖ ·‖, BX is its Borel σ-algebra, f : X → X is a measurable map and µ is
an f -invariant probability measure, i.e., µ(f−1(B)) = µ(B) for all B ∈ BX . Let 	 : X → Rd
be an observable (measurable) function and define the stochastic process X0,X1, . . . given by

Xn = 	 ◦ fn, for every n ∈ N0. (2.1)

We will use the notation Xn = (Xn1, . . . , Xnd) and 	 = (ψ1, . . . , ψd) whenever we need to refer
to the respective components specifically.
In order to establish notation, we will use blackboard bold for vectors or vector valued functions
taking values in Rd. In particular, 0, 1 correspond to the vectors in Rd with all entries equal
to 0 and 1, respectively. Operations and functions applied to vectors are to be interpreted
componentwise, so for example: for t, � ∈ (0,∞)d and c > 0, we write

e−� :=
(
e−τ1 , . . . , e−τd

)
, (� + t)c := ((τ1 + t1)c, . . . , (τd + td)

c), �/t :=

(
τ1

t1
, . . . ,

τd
td

)
.

Our main goal is to study the multivariate extremal behaviour of such stochastic processes
arising from chaotic dynamics. For that purpose we introduce the componentwise maxima
sequence

Mn := (Mn1, . . . ,Mnd), where Mnj := max
i=0,...,n−1

Xij , for j = 1, . . . , d.

For an asymptotic frequency vector � = (τ1, . . . , τd) ∈ [0,+∞)d \ 0, we consider a sequence of
normalising vectors (un(�))n such that un(�) = (un1(τ1), . . . , und(τd)) and

lim
n→∞

nµ(X0j > unj(τj)) = lim
n→∞

nµ ({x ∈ X : ψj(x) > unj(τj)}) = τj , j = 1, . . . , d. (2.2)

Let t ∈ (0, 1)d be such that t = e−� (or equivalently � = − log t). We aim to find a multivariate
extreme value distribution function (d.f.) H supported [0, 1]d and such that

lim
n→∞

µ(Mn ≤ un(− log t)) = H(t). (2.3)

2.1. The classical setting. Let X̂0, X̂1, . . . denote an associated i.i.d. sequence of random
vectors with X̂0 = 	 (i.e., µ(X̂i > t) = µ({x : 	(x) > t})). Also define the respective sequence
of partial maxima vectors (M̂n)n with components M̂nj , j = 1, . . . , d and multivariate extreme
value d.f. Ĥ analogously as for Xn. Note that by (2.2) and the definition of t we have that Ĥ
has uniform marginals, namely,

Ĥj(tj) = lim
n→∞

µ
(
M̂nj ≤ unj(− log tj)

)
= lim

n→∞
(µ (ψj ≤ unj(− log tj)))

n = tj , j = 1, . . . , d.

This fact and the fact that the joint distribution function of M̂n is the n-th power of that of
X̂0 allow us to obtain that Ĥ satisfies the homogeneity property (further elaborated in (A.1)):

Ĥ(tc) =
(
Ĥ(t)

)c
for all t ∈ [0, 1]d and c > 0. (2.4)

The main interest of multivariate analysis is understanding the dependence between the var-
ious components of the multivariate observations. For this purpose several devices such as
dependence functions and intensity measures have been introduced and thoroughly studied
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(see [FHR11, Seg12], for example). Our main tool here will be the stable tail dependence
function (or the D-norm in the terminology of [FHR11], where D is the Pickands dependence
function). In order to introduce it in a simple and compact way, we assume that the marginals
Hj are continuous and H−1

j denotes the respective generalised inverse distribution function
(H−1

j (u) = inf{t : Hj(t) = u}). This will be the case in all our applications (recall that in the
i.i.d. case Ĥj is the uniform distribution).

Definition 2.1. Assuming that (2.3) holds, we define the respective stable dependence function
for each � ∈ [0,∞)d as

Γ(�) := − logH
(
H−1

1

(
e−τ1

)
, . . . ,H−1

d

(
e−τd

))
.

The stable dependence function can alternatively be written as a log transformation of the
limiting extreme value copula, see the appendix. Sometimes Γ(�) is referred to as the D-
norm of � ([FHR11]). Note that in the i.i.d. setting, since we have uniform marginals, Γ̂(�) =

− log Ĥ (e−�). Let Ĝ(�) := e−Γ̂(�). As in the univariate context (see [LLR83, Theorem 1.5.1]),
one can show that the existence of the limit limn→∞ µ(M̂n ≤ un(�)) = Ĝ(�) is equivalent to
the existence of the limit

lim
n→∞

nµ(X0 6≤ un(�)) = lim
n→∞

nµ

(
d⋃
i=1

{X0j > un(τj)}

)
= Γ̂(�). (2.5)

The homogeneity property (2.4) translates to

Γ̂(c�) = c Γ̂(�) and Ĝ(c�) = (Ĝ(�))c, for all c > 0. (2.6)

Moreover, we have that

max{τ1, . . . , τd} ≤ Γ̂(�) ≤ τ1 + · · ·+ τd. (2.7)

where the upper bound corresponds to asymptotic component independence, while the lower
bound corresponds to asymptotic perfect association. Note that both bounds correspond to
realisable stable dependence functions.
When we consider stationary stochastic processes and drop the independence assumption, a
new source of dependence may appear. This temporal dependence is associated to clustering
of extremal multivariate observations (corresponding to at least one component taking an
extremal value), which is conveniently described by a multivariate extremal index function θ(�)
introduced in [Nan94]. Recall that, in the univariate case, the extremal index is a parameter
θj ∈ [0, 1] that appears when, for every τj ≥ 0 and (unj(τj))n as in (2.2), we have

lim
n→∞

µ(Mnj ≤ unj(τj)) = e−θjτj . (2.8)

Note that, when this limit exists (which we express by saying that θj exists or is well defined)
then the marginals of H are such that Hj(tj) = t

θj
j . Therefore, assuming that for each

j = 1, . . . , d, every θj is well defined and putting

� := (θ1, . . . , θd),

we have that
H
(
e−�
)

= e−Γ(��) =: G(�).
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Definition 2.2. For every � ∈ [0,∞)d \ 0, we define the multivariate extremal index function
as:

θ(�) :=
logG(�)

log Ĝ(�)
=

Γ(��)

Γ̂(�)
. (2.9)

In [Nan94, Proposition 3.1], under a distributional mixing assumption inspired by Leadbetter’s
D condition, denoted there by ∆, it was proved that θ(c�) = θ(�) for all c > 0, which means
that both Γ and G share the same homogeneity property of their hat versions stated in (2.6),
and the univariate marginal extremal indices θj , j = 1, . . . , d, can be recovered from the
multivariate extremal index function by setting all coordinates of � equal to 0 except the j-th.
Moreover, one can check that the bounds of (2.7) also apply to Γ.
As we explain below, motivated by the dynamical applications, we will assume a mixing
condition weaker than Leadbetter’s, we will use a more tractable formula for the multivariate
extremal index function and we will prove that these properties still hold in that context.
The homogeneity property of Γ suggests a reduction to the (d− 1)-dimensional unit simplex
Sd = {� ∈ [0, 1]d : α1 + · · · + αd = 1}: the restriction of Γ to Sd is often called the Pickands
dependence function D:

Γ(�) = (τ1 + · · ·+ τd)D (α1, . . . , αd−1) , where αj =
τj

τ1 + · · ·+ τd
.

2.2. A dynamically adapted approach to the study of multivariate extremes. Our
main goal here is to study the convergence (2.3) for dynamically defined multivariate stochas-
tic processes as in (2.1) and to give a more computable formula for θ(�). Convergence for
general stationary stochastic processes was initiated in [Hsi89, Hüs89] under a distributional
mixing condition very much akin to the original D condition introduced by Leadbetter in the
univariate context. This condition has been used ubiquitously to study extremes of stationary
random vectors. The problem is that this condition is not amenable to application in the dy-
namical setting and therefore we propose a weaker version adapted to this context motivated
by our earlier works in the univariate framework, where this weakness is compensated by a
condition similar to the D(k) condition from [CHM91], which allows clustering but forbids
the concentration of clusters, so that we can still recover the existence of an extremal limit.
This is accomplished using an idea introduced in [FFT12] and further elaborated in [FFT15],
which essentially says that we may replace the occurrence of an abnormal observation by that
consisting of an abnormal observation followed by a block of regular observations, which in
the dynamical setting corresponds to replacing balls by annuli. For that purpose, for q ∈ N
and � ∈ [0,∞)d we define

A(q)
n (�) =

{
X0 6≤ un(�) ∩ f−1(Mq ≤ un(�))

}
= {X0 6≤ un(�),X1 ≤ un(�), . . . ,Xq ≤ un(�)} .

We also set A(0)
n (�) := {X0 6≤ un(�)}. Let B ∈ BX be an event. For some s, ` ∈ N0, we define:

Ws,`(B) =

s+max{`−1, 0}⋂
i=s

f−i(Bc).

We will write W c
s,`(B) := (Ws,`(B))c. Observe that W0,n(A

(0)
n (�)) = {Mn ≤ un(�)}.

We state now the two main conditions on the time dependence structure of the process.
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Condition (Д(un)). We say that Д(un) holds for the sequence X0,X1, . . . if for every `, t, n ∈ N
and q ∈ N0,∣∣∣µ(A(q)

n (�) ∩Wt,`

(
A(q)
n (�)

))
− µ

(
A(q)
n (�)

)
µ
(
W0,`

(
A(q)
n (�)

))∣∣∣ ≤ γ(q, n, t),

where γ(q, n, t) is decreasing in t for each q, n and, for every q ∈ N0, there exists a sequence
(tn)n∈N such that tn = o(n) and limq→∞ lim supn→∞ nγ(q, n, tn) = 0.

The condition above is a mixing type condition obtained from adjusting to the multivariate
setting the homonymous condition from our previous work (see [FFT15] for example), which
has the advantage of not imposing a uniform bound on q. This means that, as with its
univariate version, it will follow easily for systems with sufficiently fast decay of correlations
as in all the examples considered below.
We now introduce the corresponding clustering separation condition. For some fixed q ∈ N0,
consider the sequence (tn)n∈N, given by condition Д(un) and let (kn)n∈N be another sequence
of integers such that

kn →∞ and kntn = o(n). (2.10)

Condition (Д′(un)). We say that Д′(un) holds for the sequence X0,X1,X2, . . . if there exists
a sequence (kn)n∈N satisfying (2.10) and such that

lim
q→∞

∆(q)(un(�)) := lim
q→∞

lim sup
n→∞

n

bn/knc−1∑
j=q+1

µ
(
A(q)
n (�) ∩ f−j

(
A(q)
n (�)

))
= 0.

The cluster separating condition we give here uses a double limit as the original anti-clustering
condition D′ from Leadbetter, as opposed to the more general version we used in [FFT21],
with a diverging (qn)n sequence. This option guarantees a cleaner and easier proof of some
of the properties of θ(�) and Γ(�), without compromising the applications since it will be
satisfied in all examples considered below. Note that Д′(un) does not forbid the appearance
of clustering, it just imposes the clusters to appear sufficiently well separated in the time line.
We give now a formula for the extremal index function, which together with the dependence
conditions above, will allow us to verify that it actually provides an alternative definition,
which coincides with the original one and enjoys the same properties:

θ(�) = lim
q→∞

lim
n→∞

µ
(
A

(q)
n (�)

)
µ
(
A

(0)
n (�)

) . (2.11)

Note that as in condition Д′(un) we use a double limit, which is also the case in [Per97, HV20],
for example.

Theorem 2.3. Let X0,X1, . . . be a stationary multivariate stochastic process as in (2.1) and
for � ∈ [0,∞)d \ 0, let un(�) be a sequence such that both (2.2) and (2.5) hold, for some Γ̂(�).
Assume further that conditions Д(un) and Д′(un) hold and that θ(�) given by (2.11) is well
defined. Then, we have

lim
n→∞

µ(Mn ≤ un(�)) = e−θ(�)Γ̂(�) = e−Γ(��) = G(�),

where G(�) and Γ(�) satisfy the homogeneity property stated in (2.6). Moreover, the marginal
univariate extremal indices θj, j = 1, . . . , d, can be recovered from θ(�) by setting all coordinates
of � equal to 0 except for the j-th and Γ satisfies (2.7).
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Proof. We follow the proof of [FFT15, Corollary 2.4] closely, whose main steps we recap here
since the conditions Д(un) and Д′(un) are somewhat different because they involve double
limits. We start by noting that by direct application of [FFT15, Proposition 2.7] we have∣∣∣µ(Mn ≤ un(�))− µ

(
W0,n(A(q)

n (�))
)∣∣∣ ≤ qµ(A(0)

n (�) \A(q)
n (�)) −−−→

n→∞
0.

Now, from [FFT15, Proposition 2.10] we obtain∣∣∣∣∣µ(W0,n(A(q)
n (�))

)
−
(

1−
⌊
n

kn

⌋
µ(A(q)

n (�))

)kn∣∣∣∣∣ ≤ Υ(q, n) := 2kntnµ(A(0)
n (�)) + nγ(q, n, tn)

+ n

bn/knc−1∑
j=q+1

µ
(
A(q)
n (�) ∩ f−j

(
A(q)
n (�)

))
.

From the definitions of the sequences (kn)n, (tn)n and conditions Д(un) and Д′(un) we have
that limq→∞ limn→∞Υ(q, n) = 0. Moreover, since (2.9) and (2.5) hold, we have that

lim
q→∞

lim
n→∞

(
1−

⌊
n

kn

⌋
µ(A(q)

n (�))

)kn
= lim

q→∞
lim
n→∞

(
1− µ(A

(q)
n (�))

µ(A
(0)
n (�))

nµ(A
(0)
n (�))
kn

)kn
= e−θ(�)Γ̂(�).

The homogeneity of Γ̂(�) can be derived easily from that of CĤ or Ĝ (see for example [Seg12,
Equations (2.4) and (2.7)]). The homogeneity of Γ and G will follow once we show that

θ(c�) = θ(�) for all � ∈ [0,∞)d \ 0 and c ∈ (0,∞).

For that purpose, we start by noting that for c > 0 and � as before, one can replace un(c�) by
ubn/cc(�). In fact, for all i = 1, . . . , d,

lim
n→∞

µ (X0i > uni(cτi))

µ
(
X0i > ubn/cci(τi)

) = lim
n→∞

c
nb

n
c cnµ (X0i > uni(cτi))

cn 1
nb

n
c cµ

(
X0i > ubn/cci(τi)

) =
cτi
cτi

= 1.

We observe now that this implies that∣∣µ(X0 6≤ un(c�))− µ(X0 6≤ ubn/cc(�))
∣∣

µ(X0 6≤ un(c�))
≤
n
∑d

i=1

∣∣µ (X0i > uni(c�i))− µ
(
X0i > ubn/cci(�i)

)∣∣
nµ(X0 6≤ un(c�))

−−−→
n→∞

0

Γ̂(�)
= 0,

and therefore µ (X0 6≤ un(c�)) ∼ µ
(
X0 6≤ ubn/cc(�)

)
. A similar argument also shows that

µ
(
X0 6≤ un(c�) ∩ f−1 (Mq ≤ un(c�))

)
∼ µ

(
X0 6≤ ubn/cc(�) ∩ f−1

(
Mq ≤ ubn/cc(�)

))
. Whence,

θ(c�) = lim
q→∞

lim
n→∞

µ
(
X0 6≤ un(c�) ∩ f−1 (Mq ≤ un(c�))

)
µ(X0 6≤ un(c�))

= lim
q→∞

lim
n→∞

µ
(
X0 6≤ ubn/cc(�) ∩ f−1

(
Mq ≤ ubn/cc(�)

))
µ(X0 6≤ ubn/cc(�))

= θ(�).

For the statement regarding the marginal extremal indices, take w.l.o.g. � = (τ1, 0, . . . , 0)

for some τ1 > 0 and observe that {Mn ≤ un(�)} = {Mn1 ≤ un1(1)}, A(q)
n (�) = {X01 >

un1(τ1), X11 ≤ un1(τ1), . . . Xq1 ≤ un1(τ1)} =: A
(q)
n1 (τ1), A(0)

n (�) = {X01 > un1(τ1)} := A
(0)
n1 (τ1).

Then by applying [FFT15, Corollary 2.4], the univariate sequenceX01, X11, . . . has a univariate
extremal index θ1, say, that must coincide with θ((τ1, 0, . . . , 0)).
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Regarding the bounds in (2.7), the first inequality follows trivially from observing that {Mn ≤
un(�)} ⊂ {Mnj ≤ unj(τj)} for all j = 1, . . . , d and that from [FFT15, Corollary 2.4] we have
µ(Mnj ≤ unj(τj)) = e−θjτj .
For the second inequality, start by observing that

Γ(��) = θ(�)Γ̂(�) = lim
q→∞

lim
n→∞

− log

(
1−

⌊
n

kn

⌋
µ(A(q)

n (�))

)kn
.

Then since −kn log
(

1−
⌊
n
kn

⌋
µ(A

(q)
n (�))

)
∼ nµ

(
A

(q)
n (�)

)
and A(q)

n (�) ⊂
⋃d
j=1A

(q)
nj (τj), with

the necessary adjustments to [FFT15, Corollary 2.4] we get

nµ
(
A(q)
n (�)

)
≤

d∑
j=1

nµ
(
A

(q)
nj (τj)

)
=

d∑
j=1

nµ
(
A

(0)
nj (τj)

) µ(A(q)
nj (τj)

)
µ
(
A

(0)
nj (τj)

) → d∑
j=1

τjθj .

�

3. Applications to dynamical systems

In our examples the extremes are realised on sets Z = ∪di=1Zi. We will assume that ψi(x) =
gi(d(x,Zi)) for a set Zi, where d is the induced Hausdorff metric. As usual, in order for (2.8)
to hold, the gi should each be one of the three types, see [LFF+16, (4.2.3)–(4.2.5)] for the
general case, examples of each are:

(1) gi(t) = − log t; (2) gi(t) = t−1/α; (3) gi(t) = D − t1/α, (3.1)

where α > 0 and D ∈ R. We set U (n)(�) := {X0 6≤ un} (note that in this paper we also call
this set A(0)

n (�)). Moreover, we write U (n)
i (τi) := {X0i > uni(τi)}, so U (n)(�) = ∪di=1U

(n)
i .

For us to be able to satisfy (2.2) and (2.11), we will need some regularity of our measure and
our observables. These will generally involve the scaling of the measures of the sets U (n)

i (τi),

A
(q)
n (�), and preimages of (parts of) such sets. To keep the setup flexible, we refer to the

required properties as ‘regularity’, but note that there will be concrete examples where these
will be satisfied, for example when 	 is continuous in some Bε(ζ) \ {ζ} and µ has a smooth
density with respect to Lebesgue at ζ ∈ Z.
We also need to check that conditions Д(un) and Д′(un) hold. Here, is where we take advantage
of the design of the conditions, which were purposely adapted to the dynamical setting. These
conditions are not much different from the ones in the multidimensional setting of [FFMa20,
FFT21] and follow in practically the same way.
Condition Д(un) follows easily from sufficiently fast decay of correlations (summable rates
are enough). We refer to the discussions in [Fre13, Section 5.1] or [LFF+16, Section 4.4], for
non-uniformly expanding systems or to [GHN11, Section 2], for higher dimensional systems
with contracting directions.
Condition Д′(un) is typically more involved because depends a lot on the recurrence properties
of the maximal set, which often requires a local analysis of the dynamics there. However, if
the systems have a strong form of decay of correlations, like uniformly expanding systems do,
it can actually be easily checked globally see ([LFF+16, Section 4.2.4]).
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Moreover, adapting [FFMa18, Section 5, Theorem 2.C] we can show that if the system admits
an induced system for which we can check conditions Д(un) and Д′(un), then the conclusion
of Theorem 2.3 applies to both the induced and the original system, which means that we can
immediately apply our findings to slowly mixing systems (with non-summable rates), such
as Manneville-Pomeau type of maps with indifferent fixed points as well as some quadratic
maps, both with measures absolutely continuous with respect to Lebesgue (acips). We refer
to [FFMa20, Section 4.2] for a list of systems for which we can apply our results.
In many of the examples in this section, we will work out the theory in the general settings
just described, for example giving a formula for θ(�), and then to clarify the phenomena at
play and provide more concrete formulae we restrict to the specific example of the doubling
map f : x 7→ 2x mod 1 or the tripling map f : x 7→ 3x mod 1 on [0, 1] with Lebesgue as
the invariant measure µ: we use the latter when either we need a fixed point where f is a
diffeomorphism in a 2-sided neighbourhood or when we need a map of degree greater than
two. Note that these systems satisfies our regularity requirements and Д(un),Д′(un).

3.1. Points not dynamically linked. We start by illustrating the theory with the elemen-
tary case of bivariate processes arising from observables where the components are maximised
at the same point or at two distinct points with no dynamical link between them, which in
particular means that the common point is not periodic.

3.1.1. Common non-periodic maximal point. Let Z = {ζ} and ψi(x) = gi(dist(x, ζ)), for
i = 1, 2, where

⋂
j≥0 f

−j(Z) = ∅. Assuming that gi is as in (3.1) and µ is sufficiently regular
then for every � = (τ1, τ2) ∈ (0,∞)2 there exists (un(�))n such that (2.2) holds.
Observe that {X0i > uni(τi)} = Bg−1

i (uni(τi))
(ζ), i = 1, 2, where Bε(ζ) denotes a ball of radius

ε around ζ and, therefore, whenever τ1 < τ2 we must have that for all n sufficiently large
{X01 > un1(τ1)} ⊂ {X02 > un2(τ2)}, and vice-versa if τ1 > τ2. It follows that

Γ̂(�) = lim
n→∞

nµ(X0 6≤ un(�)) = lim
n→∞

nµ

(
2⋃
i=1

{X0i > uni(τi)}

)
= lim

n→∞
n

2∑
i=1

µ (X0i > uni(τi))

− lim
n→∞

nµ

(
2⋂
i=1

{X0i > uni(τi)}

)
= τ1 + τ2 −min{τ1, τ2} = max{τ1, τ2}.

This means that in this case we have perfect association and Ĥ(t) = CĤ(t) = min{t1, t2}.
Moreover, assuming that the dynamical system has sufficiently fast decay of correlations, we
have that condition both conditions Д(un(�)) and Д′(un(�)) hold, where in fact one can show
that ∆(0)(un(�)) = 0, which implies that θ(�) = 1 and therefore in this case Γ(�) = Γ̂(�),
G(�) = e−max{τ1,τ2} and we also have H(t) = CH(t) = min{t1, t2}. Note that we can also
write

Γ(�) = (τ1 + τ2)

(
1−min

{
τ1

τ1 + τ2
,

τ2

τ1 + τ2

})
,

which means that D(α) = 1−min{α, 1− α} = max{α, 1− α}.
To make our example slightly more concrete, suppose that µ(Br(ζ)) ∼ crd, g1(t) = − log t
and g2(t) = t−1. Then in the above argument we can take un1(τ1) = 1

d (log(cn)− log τ1) and

un2(τ2) =
(
cn
τ2

) 1
d .
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3.1.2. Distinct non-linked maximal points. For ζ1 6= ζ2 let Z1 = {ζ1}, Z2 = {ζ2} and ψi(x) =
gi(dist(x,Zi)), for i = 1, 2, where

⋂
j≥0 f

−j(Z1 ∪Z2) = ∅. Assume that gi, µ and (un(�))n are
as above.
Observe that {X0i > uni(τi)} = Bg−1

i (uni(τi))
(ζi) for i = 1, 2 and since ζ1 and ζ2 are distinct

then for every fixed � and n sufficiently large we have {X01 > un1(τ1)}∩{X02 > un2(τ2)} = ∅.
It follows that

Γ̂(�) = lim
n→∞

nµ(X0 6≤ un(�)) = lim
n→∞

nµ

(
2⋃
i=1

{X0i > uni(τi)}

)

= lim
n→∞

n
2∑
i=1

µ (X0i > uni(τi))− lim
n→∞

nµ

(
2⋂
i=1

{X0i > uni(τi)}

)
= τ1 + τ2.

This means that in this case we have asymptotic extremal independence and Ĥ(t) = CĤ(t) =
t1 ·t2. Moreover, assuming that the dynamical system has sufficiently fast decay of correlations,
we have that condition both conditions Д(un(�)) and Д′(un(�)) hold, where in fact one can
show that ∆(0)(un(�)) = 0, which implies that θ(�) = 1 and therefore in this case Γ(�) = Γ̂(�),
G(�) = e−(τ1+τ2) and we also have H(t) = CH(t) = t1 · t2. Clearly, D(α) = 1, in this case.

3.2. Distinct linked points. In this case we will build up a lot of the notation and machinery
also required for later cases. Assume Z1 = {ζ} and Z2 = {f(ζ)}.

3.2.1. Non-periodic case. Assume first that {ζ, f(ζ)} ∩ {∪n≥2f
n(ζ)} = ∅. So in particular,

given q ∈ N and � = (τ1, τ2), for sufficiently large n, x ∈ U (n)
2 (τ2) implies

{f(x), . . . , f q(x)} ∩
(
U

(n)
1 (τ1) ∪ U (n)

2 (τ2)
)

= ∅ =⇒ A(q)
n (�) = A(1)

n (�). (3.2)

Given α ∈ [0, 1], define

θζ(α) := lim
n→∞

µ
(
U

(n)
1 (α) \ f−1U

(n)
2 (1− α)

)
µ
(
U

(n)
1 (α)

) ,

and observe that by regularity, for α = τ1
τ1+τ2

,

θζ(α) := lim
n→∞

µ
(
U

(n)
1 (τ1) \ f−1U

(n)
2 (τ2)

)
µ
(
U

(n)
1 (τ1)

) ,

so θζ(α) represents the asymptotic probability, given x ∈ U (n)
1 (τ1), that f(x) /∈ U (n)

2 (τ2), and
since n can be assumed large, that f(x) /∈ U (n)

1 (τ1) ∪ U (n)
2 (τ2). We will use this type of idea

throughout our examples.

Then X0 = X0(x) � un(τ1, τ2) means that x ∈ U (n)
1 (τ1) ∪ U (n)

2 (τ1), which implies, for all large
n,

(1) with asymptotic probability α we have X01 > un1(τ1) (i.e., x ∈ U (n)
1 (τ1)). Then X11 <

un1(τ1) with probability 1, but X12 < un2(τ2) (i.e., f(x) ∈ U (n)
1 (τ1)\f−1U

(n)
2 (τ2)) with

probability θζ(α, 1− α);
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(2) with asymptotic probability 1 − α we have X02 > un2(τ2) (i.e., x ∈ U (n)
2 (τ2)). Then

X11 < un1(τ1) and X12 < un2(τ2) with probability 1 (since f(x) /∈ U (n)
2 (τ2)∪U (n)

1 (τ1)).

As in (3.2), there are no other entries of importance up to time q. So summing the probabilities
gives

θ(α, 1− α) = αθζ(α) + 1− α.

To find θζ(α), we observe that U (n)
1 (α) = Bg−1

1 (un1(α))(ζ) and U (n)
2 (1−α) = Bg−1

2 (un2(1−α))(f(ζ)).

Moreover, if f is conformal then f−1U
(n)
2 (1−α) is an approximate ball of radius 1

|Df(ζ)|g
−1
2 (un2(1−

α)), so we are left to find the relative (to U (n)
1 (α)) measure of the annulus

A 1
|Df(ζ)|g

−1
2 (un2(1−α)),g−1

1 (un1(α),

assuming that the inner radius is strictly smaller than the outer radius so that this makes sense.
In a setting where µ is an acip with density ρ, f is conformal and the observables are all of
the same form, for cd the volume of the d-dimensional unit ball, the measure of our annulus
is asymptotically 1

cd

(
α

nρ(ζ) −
1

|Df(ζ)|
1−α

nρ(f(ζ))

)
(we are assuming that 1

|Df(ζ)|
1−α

cdnρ(f(ζ)) <
α

cdnρ(ζ) ,

if not then θζ(α, 1− α) = 0). Since µ(U
(n)
1 (α)) ∼ α

cdnρ(ζ) , hence,

θζ(α) = max

{
0, 1− ρ(ζ)

ρ(f(ζ))

1− α
α

1

|Df(ζ)|

}
.

Thus

θ (α, 1− α) = αmax

{
0, 1− ρ(ζ)

ρ(f(ζ))

1− α
α

1

|Df(ζ)|

}
+ 1− α.

In the doubling map case with Lebesgue measure, this becomes

θ(α, 1− α) =

{
1− α if α ≤ 1

3 ,
1+α

2 if α > 1
3 ,

G(τ1, τ2) =

{
e−τ2 if τ1 ≤ τ2

2 ,

e−(τ1+
τ2
2 ) if τ1 ≤ τ2

2 .

Where G is obtained by adding in the Ĥ term from Section 3.1.2. Moreover, we see here that
θ1 = θ2 = 1, so Γ(�) = θ(�)Γ̂(�) and D(α) = Γ(α, 1− α) = θ(α, 1− α), see Figure 3.1.

3.2.2. Periodic case. Next we assume that Z1 = {ζ}, Z2 = {f(ζ)} with f2(ζ) = ζ (and
f(ζ) 6= ζ). As we will see below, in contrast to (3.2), here we need only consider A(2)

n (�).
Then X0 � un(τ1, τ2) implies, for all large n and α as above,

(1) with asymptotic probability α we have X01 > un1(τ1) (i.e., x ∈ U
(n)
1 (τ1)). Then

X11 < un1(τ1) with probability 1 (since f(x) /∈ U (n)
1 (τ1)), butX12 < un2(τ2) only if x ∈

U
(n)
1 (τ1) \ f−1U

(n)
2 (τ2); then X21 < un1(τ1) only if x ∈ U (n)

1 (τ1) \ f−2U
(n)
1 (τ1); in total

we require the relative probability that x ∈ U (n)
1 (τ1) \

(
f−1U

(n)
2 (τ2) ∪ f−2U

(n)
1 (τ1)

)
;

(2) with asymptotic probability 1 − α we have X02 > un2(τ2) (i.e., x ∈ U (n)
2 (τ2)). Then

X12 < un2(τ2) with probability 1 (since f(x) /∈ U (n)
2 (τ2)), butX11 < un1(τ1) only if x ∈

U
(n)
2 (τ2) \ f−1U

(n)
1 (τ1); then X22 < un2(τ2) only if x ∈ U (n)

2 (τ2) \ f−2U
(n)
2 (τ2); in total

we require the relative probability that x ∈ U (n)
2 (τ2) \

(
f−1U

(n)
1 (τ1) ∪ f−2U

(n)
2 (τ2)

)
.
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We can see that for given q ∈ N, for any large n, A(q)
n (�) = A

(2)
n (�). So setting

θζ(α) := lim
n→∞

µ
(
U

(n)
1 (α) \

(
f−1U

(n)
2 (1− α) ∪ f−2U

(n)
1 (α)

))
µ
(
U

(n)
1 (α)

)

θf(ζ)(α) := lim
n→∞

µ
(
U

(n)
2 (1− α) \

(
f−1U

(n)
1 (α) ∪ f−2U

(n)
2 (1− α)

))
µ
(
U

(n)
2 (1− α)

) ,

we obtain

θ(α, 1− α) = αθζ(α) + (1− α)θf(ζ)(α).

To compute the annuli here is more involved since we need to incorporate the relative strengths
of the derivatives Df(ζ) and Df2(ζ) for θζ and Df(f(ζ)) and Df2(f(ζ)) for θf(ζ), as well as
the relative sizes of α and 1 − α. If f is conformal, for θζ(α, 1 − α) we consider the relative
size of the annulus Lebesgue measure

α

nρ(ζ)
−max

{
1

|Df(ζ)|
1− α

nρ(f(ζ))
,

1

|Df2(ζ)|
α

nρ(ζ)

}
,

which gives

θζ(α) = max

{
0, 1−max

{
1

|Df(ζ)|
1− α
α

ρ(ζ)

ρ(f(ζ))
,

1

|Df2(ζ)|

}}
Similarly,

θf(ζ)(α) = max

{
0, 1−max

{
1

|Df(f(ζ))|
α

1− α
ρ(f(ζ))

ρ(ζ)
,

1

|Df2(ζ)|

}}
.

Therefore in this case,

θ(α, 1− α) = αmax

{
0, 1−max

{
1

|Df(ζ)|
1− α
α

ρ(ζ)

ρ(f(ζ))
,

1

|Df2(ζ)|

}}
+ (1− α) max

{
0, 1−max

{
1

|Df(f(ζ))|
α

1− α
ρ(f(ζ))

ρ(ζ)
,

1

|Df2(ζ)|

}}
.

In the doubling map case with Lebesgue measure (here ζ = 1/3), we compute

θ(α, 1− α) =


3
4(1− α) if α ≤ 1

3 ,
1
2 if α ∈ (1

3 ,
2
3 ],

3α
4 if α > 2

3 ,

G(τ1, τ2) =


e−

3
4
τ2 if τ1 ≤ τ2

2 ,

e−
1
2

(τ1+τ2) if τ1 ∈ ( τ22 , 2τ2],

e−
3τ1
4 if τ1 > 2τ2.

Where we obtainedG by using the Ĥ term from Section 3.1.2. Here we compute θ1 = θ2 = 3/4,
so Γ(�) = 4

3θ(�)Γ̂(�) (as usual D(α) = Γ(α, 1− α)), see Figure 3.1.
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Figure 3.1. Graphs of the Pickands dependence functions of the examples in
Section 3.2.1 on the left, and Section 3.2.2, on the right.

3.2.3. Another periodic case. In order to give an example where θ1 6= θ2, we assume now that
Z1 = {ζ}, Z2 = {f(ζ)} with f2(ζ) = f(ζ) (and f(ζ) 6= ζ). Here θζ is as in Section 3.2.1, but
we also need a θf(ζ) to derive θ(α, 1 − α) = αθζ(α) + (1 − α)θf(ζ). For an explicit formula,
in order to have f being locally diffeomorphic around each of ζ and f(ζ) we will use the
tripling map (so eg ζ = 1/6, f(ζ) = 1). We will not give the full details, but we see that
θζ(α) = max

{
1, 1− 1

3
1−α
α

}
and θf(ζ)(α) ≡ 2/3, so

θ(α, 1− α) =

{
2
3(1− α) if α ≤ 1

4 ,
1
3 + 2

3α if α > 1
4 ,

G(α, 1− α) =

{
e−

2
3
τ2 if τ1 ≤ τ2

3 ,

e−(τ1+ 1
3
τ2) if τ1 >

τ2
3 .

Since θ1 = 1 and θ2 = 2/3, we have Γ(τ1, τ2) = θ
(
τ1,

3
2τ2

)
Γ̂
(
τ1,

3
2τ2

)
, i.e.,

Γ(τ1, τ2) =

{
τ2 if τ2 ≥ 2τ1,

τ1 + 1
2τ2 if τ2 < 2τ1,

D(α) =

{
1− α if α ≤ 1/3,
1+α

2 if α > 1/3.

3.3. Overlapping points. Here we look at three points {ζ1, ζ2, ζ3}, then consider Z1 =
{ζ1, ζ3} and Z2 = {ζ2, ζ3}.

3.3.1. Spatial dependence. We first compute Γ̂. Let, for i = 1, 2,

ψi(x) = gi(d(x,Zi)), x ∈ X ,
where gi is as in (3.1). For � = (τ1, τ2) ∈ (0,∞)2, choose uni(τi) > 0 such that

µ(U
(n)
i (τi)) ∼

τi
n
,

where as before U (n)
i (τi) = {ψi > uni(τi)}.

We assume that for all � and all n large enough, U (n)
i (τi) can be written as a disjoint union

U
(n)
i (τi) = V

(n)
i (τi) ∪ V̂ (n)

i (τi),

where V (n)
i (τi) (resp. V̂ (n)

i (τi)) is a neighbourhood of ζi (resp. ζ3), and that

µ
(
V

(n)
i (τi)

)
∼ piµ

(
V

(n)
i (τi)

)
,
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for some pi ∈ (0, 1), so that

µ
(
V

(n)
i (τi)

)
∼ piτi

n
and µ

(
V̂

(n)
i (τi)

)
∼ (1− pi)τi

n
.

We define V̂ (n)(�) = ∩2
i=1V̂

(n)
i (τi) and we assume that for some q1(�) ∈ (0, 1),

µ
(
V̂ (n)(�)

)
∼ q1(�)µ

(
V̂

(n)
1 (τ1)

)
.

This implies that µ
(
V̂ (n)(�)

)
∼ q2(�)µ

(
V̂

(n)
2 (τ2)

)
where q2(�) = q1(�) (1−p1)τ1

(1−p2)τ2
and

µ
(
V̂ (n)(�)

)
∼ q1(�)(1− p1)τ1

n
=
q2(�)(1− p2)τ2

n
.

It follows that

Γ̂(�) = lim
n→∞

nµ(X0 6≤ un(�)) = lim
n→∞

nµ

(
2⋃
i=1

{X0i > uni(τi)}

)
= lim

n→∞
n

2∑
i=1

µ (X0i > uni(τi))

− lim
n→∞

nµ

(
2⋂
i=1

{X0i > uni(τi)}

)
= τ1 + τ2 − q1(�)(1− p1)τ1 = τ1 + τ2 − q2(�)(1− p2)τ2.

As an example, suppose that µ(Br(ζk)) ∼ ckr
d for k = 1, 2, 3 and that the functions gi are

given by gi(t) = − log t. Then we can choose

uni(τi) = −1

d

(
log τi + log

pi
ci
− log n

)
,

with pi = ci
ci+c3

. Independently of the types of gi we obtain

Γ̂(�) = τ1 + τ2 − c3 min
i=1,2

τi
ci + c3

.

When µ is the Lebesgue measure on X = [0, 1] and all the ζi belong to (0, 1), we get

Γ̂(�) = τ1 + τ2 −
1

2
min
i=1,2

τi.

3.3.2. Non-periodic case. Suppose that ζ3 = f(ζ1) = f(ζ2) and that {∪n≥1f
n(ζ3)}∩{ζ1, ζ2, ζ3} =

∅. The computations below show that it suffices to consider q = 1.

We require some notation for this. First let U (n)
1 (τ1) = V

(n)
1 (τ1) ∪ V̂ (n)

1 (τ1) where V (n)
1 (τ1) is

the corresponding neighbourhood of ζ1 and V̂ (n)
1 (τ1) is that of ζ3. Similarly write U (n)

2 (τ2) =

V
(n)

2 (τ2) ∪ V̂ (n)
2 (τ2).

Now we define, for α ∈ (0, 1),

p1(α) := lim
n→∞

µ
(
V

(n)
1 (α)

)
µ
(
U

(n)
1 (α) ∪ U (n)

2 (1− α)
) , p2(α) := lim

n→∞

µ
(
V

(n)
2 (α)

)
µ
(
U

(n)
1 (α) ∪ U (n)

2 (1− α)
) ,

p3(α) := lim
n→∞

µ
(
V̂

(n)
1 (α) ∪ V̂ (n)

2 (1− α)
)

µ
(
U

(n)
1 (α) ∪ U (n)

2 (1− α)
) .
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Note that p3(α) = 1− p1(α)− p2(α). Moreover, set

θ1(α) := lim
n→∞

µ
(
V

(n)
1 (α) \ f−1

(
V̂

(n)
1 (α) ∪ V̂ (n)

2 (1− α)
))

µ
(
V

(n)
1 (α)

) ,

θ2(α) := lim
n→∞

µ
(
V

(n)
2 (1− α) \ f−1

(
V̂

(n)
1 (α) ∪ V̂ (n)

2 (1− α)
))

µ
(
V

(n)
2 (1− α)

) .

Then X0 � un(τ1, τ2) implies, for all large n and α as above,

(1) with asymptotic probability p1(α) we have x ∈ V (n)
1 (τ1), in which case X12 < un2(τ2)

with asymptotic probability θ1(α) (X11 < un1(τ1) with probability 1);
(2) with asymptotic probability p2(α) we have x ∈ V (n)

2 (τ2), in which case X11 < un1(τ1)
with asymptotic probability θ2(α) (X12 < un2(τ2) with probability 1);

(3) with asymptotic probability p3(α) we have x ∈ V̂
(n)

1 (τ1) ∪ V̂ (n)
2 (τ2), in which case

X11 < un1(τ1) and X12 < un2(τ2) with probability 1.

Summing these possibilities we obtain

θ(α, 1− α) = p1(α)θ1(α) + p2(α)θ2(α) + 1− p1(α)− p2(α)

= 1− p1(α) (1− θ1(α))− p2 (α)(1− θ2(α)) .

To obtain a concrete formula, again assume that we have an acip with density ρ, that f is
conformal and the observables are all of the same form. Define

r1 := lim
n→∞

µ
(
V̂

(n)
1 (1)

)
µ
(
V

(n)
1 (1)

) , r2 := lim
n→∞

µ
(
V̂

(n)
2 (1)

)
µ
(
V

(n)
2 (1)

)
and

R(α) = lim
n→∞

µ
(
V

(n)
1 (α)

)
µ
(
V

(n)
2 (1− α)

) .
Then

θ1(α) = max

{
0, 1− 1

|Df(ζ1)|
max

{
ρ(ζ1)

ρ(f(ζ1))
r1,

ρ(ζ1)

ρ(f(ζ1))

r2

R(α)

}}
and

θ2(α) = max

{
0, 1− 1

|Df(ζ2)|
max

{
ρ(ζ2)

ρ(f(ζ1))
r2,

ρ(ζ2)

ρ(f(ζ2))
r1R(α)

}}
.

To get a more concrete idea of what is happening here, we consider the case of the doubling
map with Lebesgue where we get

θ1(α) = max

{
0, 1− 1

2
max

{
1,

1− α
α

}}
, θ2(α) = max

{
0, 1− 1

2
max

{
1,

α

1− α

}}
.
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Figure 3.2. Graph of the Pickands dependence function of the example in
Section 3.3.3 on the left; Graphs of the extremal index function and of the
Pickands dependence function of the example in Section 3.3.4, in the middle
and on the right, respectively.

In this case, p1(α) = α
1+max{α,1−α} and p2(α, 1− α) = 1−α

1+max{α,1−α} , so

θ(α, 1− α) = 1− α

1 + max{α, 1− α}

(
1−max

{
0, 1− 1

2
max

{
1,

1− α
α

}})
− 1− α

1 + max{α, 1− α}

(
1−max

{
0, 1− 1

2
max

{
1,

α

1− α

}})
.

Hence we can compute

θ(α, 1− α) =


3−3α
4−2α if α ∈ [0, 1/3],

1
2−α if α ∈ (1/3, 1/2],

1
1+α if α ∈ (1/2, 2/3],

3α
2+2α if α ∈ (2/3, 1],

D(α) =


1− α if α ∈ [0, 1/3],
2
3 if α ∈ (1/3, 2/3],

α if α ∈ (2/3, 1].

Where we used G(�) = e−θ(�)(τ1+τ2− 1
2

min{τ1,τ2}) with Γ̂ from Section 3.3.1. In this case θ1 =

θ2 = 3/4, so Γ(�) = 4
3θ(�)Γ̂(�) = 4

3θ(�)
(
τ1 + τ2 − 1

2 min{τ1, τ2}
)
, see Figure 3.2.

3.3.3. A trivariate version. Assume the same dynamical setup as that above, but with three
observables, at ζ1, ζ2 and f(ζ1) = f(ζ2) respectively. Now for α ∈ [0, 1], β ∈ [0, 1− α], define

θ1(α, β) := lim
n→∞

µ
(
U

(n)
1 (α) \ f−1U3(1− α− β)

)
µ
(
U

(n)
1 (α)

) ,

θ2(α, β) := lim
n→∞

µ
(
U

(n)
2 (α) \ f−1U3(1− α− β)

)
µ
(
U

(n)
2 (α)

) ,

and

p1(α, β) := lim
n→∞

µ
(
U

(n)
1 (α)

)
µ
(
U

(n)
1 (α) ∪ U (n)

2 (β) ∪ U (n)
3 (1− α− β)

)
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p2(α, β) := lim
n→∞

µ
(
U

(n)
2 (β)

)
µ
(
U

(n)
1 (α) ∪ U (n)

2 (β) ∪ U (n)
3 (1− α− β)

)

p3(α, β) := lim
n→∞

µ
(
U

(n)
3 (1− α− β)

)
µ
(
U

(n)
1 (α) ∪ U (n)

2 (β) ∪ U (n)
3 (1− α− β)

) .
Then X0 � un(τ1, τ2, τ3) implies, for all large n and α = τ1

τ1+τ2+τ3
, β = τ2

τ1+τ2+τ3
,

(1) with asymptotic probability p1(α, β) we have x ∈ U
(n)
1 (τ1), in which case X13 <

un3(τ3) with asymptotic probability θ1(α, β) (X11 < un1(τ1) and X12 < un2(τ2) with
probability 1);

(2) with asymptotic probability p2(α, β) we have x ∈ U
(n)
2 (τ1), in which case X13 <

un3(τ3) with asymptotic probability θ2(α, β) (X11 < un1(τ1) and X12 < un2(τ2) with
probability 1);

(3) with asymptotic probability p3(α, β) we have x ∈ U
(n)
3 (τ3), in which case X11 <

un1(τ1), X12 < un2(τ2) and X13 < un3(τ3) with probability 1.

So it is sufficient to consider q = 1 and write

θ(α, β) = 1− p1(α, β) (1− θ1(α, β))− p2 (α, 1− β)(1− θ2(α, β)) .

In the acip case where the observables all take the same form,

θ1(α, β) = max

{
0, 1− 1

|Df(ζ1)|
1− α− β

α

ρ(ζ1)

ρ(f(ζ1)

}
,

θ2(α, β) = max

{
0, 1− 1

|Df(ζ2)|
1− α− β

β

ρ(ζ2)

ρ(f(ζ2)

}
,

hence

θ(τ1, τ2, τ3) = 1− α
(

1−max

{
0, 1− 1

|Df(ζ1)|
1− α− β

α

ρ(ζ1)

ρ(f(ζ1)

})
− β

(
1−max

{
0, 1− 1

|Df(ζ2)|
1− α− β

β

ρ(ζ2)

ρ(f(ζ2)

})
.

So again in the doubling map case with Lebesgue where the observables are all of the same
form,

θ(τ1, τ2, τ3) = 1− α
(

1−max

{
0, 1− 1− α− β

2α

})
− β

(
1−max

{
0, 1− 1− α− β

2β

})
.

In this case θ1 = θ2 = θ3 = 1, Γ(�) = θ(�)Γ̂(�) and consequently D(α1, α2) shares the same
expression as θ, with α1 = α and α2 = β (it is easy to show that Γ̂(�) = τ1 + τ2 + τ2), see
Figure 3.2.
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3.3.4. A periodic case. Suppose that ζ3 = f(ζ1) = f(ζ2) and that f2(ζ1) = f(ζ1). We use the
notation for the neighbourhoods of sets, the p1, p2, p3 and θ1, θ2 from Section 3.3.2. However
we now also need

θ3(α) := lim
n→∞

µ
((
V̂

(n)
1 (α) ∪ V̂ (n)

2 (1− α)
)
\ f−1

(
V̂

(n)
1 (α) ∪ V̂ (n)

2 (1− α)
))

µ
(
V̂

(n)
1 (τ1) ∪ V̂ (n)

2 (τ2)
) .

Then X0 � un(τ1, τ2) implies, for all large n and α as above,

(1) with asymptotic probability p1(α) we have x ∈ V (n)
1 (τ1), in which case X12 < un2(τ2)

with asymptotic probability θ1(α) (X11 < un1(τ1) with probability 1);
(2) with asymptotic probability p2(α) we have x ∈ V (n)

2 (τ2), in which case X11 < un1(τ1)
with asymptotic probability θ2(α) (X12 < un2(τ2) with probability 1);

(3) with asymptotic probability p3(α) we have x ∈ V̂
(n)

1 (τ1) ∪ V̂ (n)
2 (τ2), in which case

X11 < un1(τ1) and X12 < un2(τ2) with probability θ3(α).

Summing these possibilities we note that we may consider q = 1 and obtain

θ(α, 1− α) = p1(α)θ1(α) + p2(α)θ2(α) + (1− p1(α)− p2(α))θ3(α).

For our concrete case, note that since ζ3 has three preimages (including itself), we need a map
of degree three or more, so suppose f is the tripling map with Lebesgue as invariant measure.
The p1(α) and p2(α) are obtained analogously to in Section 3.3.2, and note that in contrast to
there, we also need to add p3(α)θ3(α) = max{α,1−α}

(1+max{α,1−α})
2
3 instead of just p3(α) ·1. We compute

θ(α, 1− α) =


4
3

(
1−α
2−α

)
if α ∈ [0, 1/4],

1
2−α if α ∈ (1/4, 1/2],

1
1+α if α ∈ (1/2, 3/4],
4
3

(
α

1+α

)
if α ∈ (3/4, 1],

D(α) =


1− α if α ∈ [0, 1/4],
3
4 if α ∈ (1/4, 3/4],

α if α ∈ (3/4, 1].

Here θ1 = θ2 = 2/3 so Γ(�) = 3
2θ(�)Γ̂(�) = 3

2θ(�)
(
τ1 + τ2 − 1

2 min{τ1, τ2}
)
, see Figure 3.2.

3.4. Note on Gibbs measures. We can do calculations similar to the above when we have
a Gibbs measure µ, absolutely continuous with respect to a conformal measure m and such
that dµ

dm(ζi) ∈ (0,∞), see [FFT12, Lemma 3.1] for the implications of this fact and [FFT15,
Section 7.3] to see that the condition can be commonly satisfied.

3.5. A 2d example. Here we consider the toral automorphism f : T2 → T2 induced by ( 2 1
1 1 ),

i.e. Arnold’s cat map. This has a fixed point at 0 and eigenvalues λ, 1/λ where λ = 3+
√

5
2 . Let

µ be Lebesgue measure. We take two small pieces of local unstable manifold Z1 = (−ε, ε)×{0},
Z2 = (λε, λ2ε) × {0}, written in the local coordinate axes Eu, Es, with origin at x0, which
correspond to its respective local unstable and stable manifolds. Let ψ1(x) = g1(d(x,Z1))

and ψ2(x) = g2(d(x,Z2)) for gi as in (3.1). For n large enough, U (n)
1 (τ1) and U

(n)
2 (τ2) are
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two disjoint rectangles1 of widths 2ε and λ(λ− 1)ε, with heights h1 ∼ τ1
2εn and h2 ∼ τ2

(λ2−λ)εn
,

respectively.

Note that Vn(�) = ∩2
i=1U

(n)
i (τi) = ∅ and therefore:

Γ̂(�) = lim
n→∞

nµ(X0 6≤ un(�)) = lim
n→∞

nµ

(
2⋃
i=1

{X0i > uni(τi)}

)

= lim
n→∞

n
2∑
i=1

µ (X0i > uni(τi))− lim
n→∞

nµ

(
2⋂
i=1

{X0i > uni(τi)}

)
= τ1 + τ2.

We observe that in this invertible case, conditions Д(un) and Д′(un) can be checked with a
simple adaptation of the argument used in [CFF+15] for the respective univariate versions.

In order to compute the set A(q)
n (with the right choice of q), we start by noting that the

dynamics pushes the set U (n)
2 (τ2) along the unstable manifold away from both U (n)

1 (τ1) and
U

(n)
2 (τ2), which means that if the orbit enters U (n)

2 (τ2), then no short returns to {X0 ≤ un(�)}
are expected. The set U (n)

1 (τ1) is shrunk in the stable (vertical) direction and stretched in the
unstable (horizontal) and overlaps with U (n)

1 (τ1) immediately in the first iteration. This means
that the middle vertical strip of width 2λ−1 (depicted in blue in Figures 3.3 and 3.4) must be
removed from U

(n)
1 (τ1). Observe that the right vertical strip (depicted in red in Figures 3.3

and 3.4) falls exactly into the empty space between U (n)
1 (τ1) and U (n)

2 (τ2), however after two
iterates it stretches completely horizontally across U (n)

2 (τ2). Now, one of two possible scenarios
can occur, either h1 < λ2h2 and then the red strip is completely contained in U

(n)
2 (τ2) and

must be removed from A
(q)
n (Figure 3.3); or not and then only the central part of the red strip

that meets U (n)
2 (τ2) must be removed (Figure 3.4). Note that the dynamics will push the

possibly surviving points further and further way from the sets U (n)
1 (τ1) and U (n)

2 (τ2). This
means that we should take q = 2 in this case.
Before we compute the extremal index function we express the turning point h1 = λ2h2 as
τ1 = 2λτ2

λ−1 or α = 2λ
3λ−1 , for α = τ1

τ1+τ2
.

We compute θ(�), when τ1 ≤ 2λτ2
λ−1 as follows:

θ(τ1, τ2) = lim
n→∞

µ
(
U

(n)
1 (τ1) \

(
f−1

(
U

(n)
1 (τ1)

)
∪ f−2

(
U

(n)
2 (τ2)

)))
+ µ

(
U

(n)
2 (τ2)

)
µ
(
U

(n)
1 (τ1)

)
+ µ

(
U

(n)
2 (τ2)

)
= lim

n→∞

(1− λ−1)εh1 + ε(λ2 − λ)h2

2εh1 + ε(λ2 − λ)h2
= lim

n→∞

(1−λ−1)τ1
2n + τ2

n
τ1
n + τ2

n

= 1− (1 + λ−1)α

2
.

1In fact, for the usual Euclidean metric in the definition of 	 these sets have rounded tips. However, since

these semidisks have an asymptotically negligible measure of the order
(
µ
(
U

(n)
i

))2

, then to simplify both
the computations and the diagrams, we will simply disregard these half discs as if the metric would measure
distances only in the stable direction. Therefore, we will assume that the sets U (n)

i are actual rectangles, which
asymptotically makes no difference.
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Figure 3.3. U (n)
1 (τ1) is the box outlined with a black line, U (n)

2 (τ2) is the box
outlined in green, the first iterate of U (n)

1 (τ1) corresponds to the black, dashed
box, while the second iterate corresponds to the black, dotted box. A

(q)
n is

the union of the white parts from U
(n)
1 (τ1) and the whole U (n)

2 (τ2). In this
case, h1 < λ2h2. Note that for large n the sets U (n)

i are very thin rectangles
with rounded tips, but for pictorial simplicity we disregard the semidisks as
mentioned in footnote 1.

Figure 3.4. U (n)
1 (τ1) is the box outlined with a black line, U (n)

2 (τ2) is the
box green box, the first iterate of U (n)

1 (τ1) corresponds to the black, dashed
box, while the second iterate corresponds to the black, dotted box. A(q)

n is the
union of the white parts from U

(n)
1 (τ1) and the whole U (n)

2 (τ2). In this case,
h1 > λ2h2. The same comment regarding the shape of U (n)

i as in the caption
of Figure 3.3 applies.

Using the same formula, when τ1 >
2λτ2
λ−1 , we have

θ(τ1, τ2) = lim
n→∞

(1− λ−1) ε2h1 + (1− λ−1) ε2(h1 − λ2h2) + ε(λ2 − λ)h2

2εh1 + ε(λ2 − λ)h2

= lim
n→∞

(1−λ−1)τ1
2n + (1− λ−1)

(
τ1
2n −

λτ2
(λ−1)n

)
+ τ2

n

τ1
n + τ2

n

=
(λ− 1)α

λ
.
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Figure 3.5. On the left is the graph of the extremal index function and on
the right is the graph of the Pickands D function, both associated to Γ for the
cat map example.

Observe that � = (θ1, θ2) = (1− λ−1, 1), so

θ(α, 1− α) =

1− (1+λ−1)α
2 if α ∈

[
0, 2λ

3λ−1

]
,

(λ−1)α
λ if α ∈

(
2λ

3λ−1 , 1
]
,

D(α) =

{
1− α

2 if α ∈ [0, 2/3],

α if α ∈ (2/3, 1].

Appendix A. Dependence functions and copulas

In the first classical works of multivariate Extreme Value Theory, the dependence between
the components was described by copulas, whose relation with the stable dependence function
we clarify here. We start by introducing the copula of a multivariate d.f. F, following [Hsi89]
closely.

Definition A.1. Let Y = (Y1, . . . Yd) be a random vector defined on a probability space
(Ω,B,P) with d.f. F. We define the copula CF as a multivariate d.f. supported on [0, 1]d and
such that

CF(t) = P(F1(Y1) ≤ t1, . . . , Fd(Yd) ≤ td),
where (Fj)j denote the marginals of F.

The copula describes how the dependence between the components affects the joint distribu-
tion in the sense that we can recover F from its marginals: F(t) = CF(F1(t1), . . . , Fd(td)).

Definition A.2. A copula C is said to be an extreme value copula if it is the copula associated
to a d.f. arising as a weak limit for the distribution of Mn.

Remark A.3. Observe that both CH and CĤ are extreme value copulas and since Ĥ has
uniform marginals then CĤ = Ĥ (see [Nan94, Section 1]).

In the i.i.d. setting, letting F denote the d.f. of X̂0, then Fn(t) := (F(t))n is the d.f. of M̂n
and one can also show that for every n ∈ N, we have CFn(t) =

(
CF(t1/n)

)n (see [Hsi89,
Lemma 2.2]), which eventually leads to the homogeneity property:

CĤ(tc) =
(
CĤ(t)

)c for all t ∈ [0, 1]d and c > 0. (A.1)
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This homogeneity property is often referred to as max-stability and it is easy to see that in
the i.i.d. setting the class of extreme value copulas coincides with that of max-stable copulas.
Moreover, weak convergence of a sequence of multivariate distributions can be decomposed
into two parts, one corresponding to the convergence of the marginals (which is a univariate
problem) and the convergence of the copulas (see [Hsi89, Section 3] and references therein).
Since the weak convergence of the marginals is a univariate problem, the main interest of
multivariate analysis lies in understanding the copulas.
From the above the following lemma follows easily, giving an alternative definition of Γ.

Lemma A.4. The stable dependence function associated to an extreme value copula C for
� ∈ [0,∞)d can be written as

Γ(�) = − logC
(
e−�
)
.
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