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The Greater-Than-g
Acceleration of a
Bungee Jumper

By David Kagan and Alan Kott

As teachers we have all hoped that some of our students would jump off
a bridge. While discussing this possibility with one of my students
(Kott), we decided that not only would it be a good idea to be tied to the bridge
with an elastic cord, but that we might learn some very interesting physics by
videotaping the jump. Originally we thought that we would study the elastic
properties of the cord, but discovered that a recent article in The Physics Teacher'
describes these properties in great detail. In addition, it contains a brief history of
the intriguing sport of bungee jumping.

For lack of anything better to do with our video data, we decided to use it to
measure the acceleration due to gravity. After studying several jumps we were
deeply troubled. When a second-order polynomial fit was applied to the observed
position versus time data, the apparent acceleration was about 1.5 g! This is
contrary to our usual experience with freely falling objects and to the usual
assumptions made when modeling bungee jumping.

Of course our first thought was that there were problems with the data collection
process. After we satisfied ourselves
that this was not the case, we began to
address the possibility that the down-
ward acceleration could really be
greater than g. Because it is so hard to
believe that a bungee jumper falls with
an acceleration greater than 9.8 m/sz,
further experiments were needed to
support such a conjecture. Alas, bungee
jumping is expensive and the possibil-
ity of losing a student is always disturb-
ing (except perhaps during a lecture).
We decided to search for preliminary
evidence in the laboratory.

Using strobe photography we com-
pared the motion of a freely falling ball
with the motion of the free end of a rope
supported by its other end. The ball and
one end of the rope were released at the
same time. Figure 1 shows the ball
starting off with a very slight lead. It is,
however, the latter part of the fall that
tells the tale. Near the bottom of the
motion, the displacement of the tip of
the rope visibly exceeds that of the
freely falling ball!

Fig. 1. Flash photograph of a freely falling
ball and the free end of a rope released
simultaneously. The end of the rope accel-
erates much faster than the ball.
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We will explain this anomalous acceleration using energy considerations. Then
we will present experimental results using several different types of rope and a
chain. These experiments clearly establish the fact that the acceleration of a
bungee jumper can be greater than g.

Theory

The motion of the bungee cord and jumper is similar to that of a whip. When
a whip is cracked, energy from the entire whip is transferred via internal forces to
the tip in such a way that initial speeds of a few meters per second become
supersonic at the tip. Since our knowledge of the internal forces in the cord is
severely limited, we decided to approach the problem from the point of view of
energy.

Initially, one end of the bungee cord is attached to the bridge and the other end
is attached to the jumper. The remainder of the cord hangs freely as shown in Fig.
2. We will examine only the “free fall” portion of the motion, that is, the motion
before the jumper has fallen a distance equal to the unstretched length of the cord.
The total mass of the cord is often of the order of the mass of the jumper, so it is
not negligible. The mass of the bungee cord actually plays a key role in under-
standing the anomalous acceleration, so we will include not only the energy of the
jumper, but the energy of the bungee cord as well. In this model we will ignore
air resistance, all horizontal motion of the system, and any energy retained in the
cord in forms such as the elastic stretching or thermal energy. In doing so, we must
keep in mind that the results must now be considered as upward limits.

Referring to Fig. 2, the initial potential energy of the center of mass of the cord
referenced to the bridge is

L 9]
By = -mg

where m is the mass of the cord and L is its unstretched length. The initial potential
energy of the jumper is zero, as is the initial kinetic energy of the cord and jumper.
Therefore, the total initial energy is just the initial potential energy of the cord,

L 2
E; = -mg @)
After falling a distance y, the kinetic energy of the cord-jumper system is
- 3
E, = l/yn%v2+l/sz2 ®

where M is the mass of the jumper and v is the speed of the jumper, which must
also equal the speed of the falling portion of the cord. The fraction after the mass
of the cord represents the portion of the cord that is in motion. The potential energy
of the falling portion of the cord is

L-y L-y 4
Ep moving = —m oL 8()’+ 4

The quantity after g is the location of the center of mass of this part of the cord.
The potential energy of the still portion of the cord is

L+y L+y )]
Ep sin = —m=r=8 3=
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Fig. 2. Initially a jumper of mass M attached to a cord of length
L is at rest at the top of the bridge (left). Later the jumper has
fallen a distance y and Is traveling at a speed v (right).

The quantity after the mass of the cord represents the fraction
of the cord that is at rest; the fraction after g is the location
of the center of mass of this part of the cord.

Using Egs. (3), (4), and (5), the total final energy of the
cord and jumper is now

L-y » ©)
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The initial energy of Eq. (2) can be set equal to the final
energy of Eq. (6). Solving for speed,

2 (4ML+2mL —my) @)
= 8 L —my +2ML)
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Note that thlS result agrees with the proper solution for a
falling chain. 2 This solution has in fact been experimentally
verified by Calkin and March.?

We see that the final speed aty = L is

Vv -—2gL+2MgL ®)

The first term is the standard result for free fall. The second
term, which tends to increase the final speed, is a result of the
potential energy loss of the falling bungee cord. It is this
second term that yields an average acceleration greater than
g. As expected, this term goes to zero when the mass of the
cord is small compared with the mass of the jumper.

The acceleration can be found by differentiating Eq. (7)
with respect to time:

av 9
2vdt-—

dy| (mL — my + 2ML) (4ML + 2mL - 2my) + my (AML + 2mL — my)
dt (mL — my + 2ML)*

. L d . .
Using a for the acceleration instead of _v’ canceling v with

dt
%, and simplifying further,
2= [1 my (4ML + 2mL — my) (10)
d 2(mL-my+ 2ML)

Notice that as the mass of the bungee becomes negligible
(m tends to zero) the acceleration of the jumper becomes g
as expected. When the jumper leaves the bridge (y = 0) the
initial acceleration is g, as might also be expected. Perform-
ing the straightforward, but tedious differentiation of Eq. (10)
with respect to the mass of the bungee yields

da _ 4 mEL-p)+2M+mL (1)

dm 2ML+m (L - )]

Since this quantity is always positive, the acceleration must
get larger as the mass of the bungee cord increases.

To examine the change in acceleration as the fall pro-
gresses, we must look at the differentiation of Eq. (10) with
respect to the distance:

da 2M + m)2 r? (12)
dy - " oML+ m (LT
y [2ML +m (L - y)]

Since this is positive for all values of y < L, the acceleration
grows as the jumper falls. Any measurement of the average
acceleration will therefore give a value greater than g. The
maximum acceleration must occur when y = L:
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This result is more conveniently expressed in terms of the
ratio of the mass of the cord to the mass of the jumper:

(14
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Now we can write

aoL=g [1+u(48+u;J (15)

For a bungee cord that has the same mass as the jumper, the
maximum acceleration is approximately 1.6 g. This effect is
large enough for a jumper to notice, providing the jumper is
noticing such things at a time like this.

This result adds an interesting twist to the problem posed
by Peter Palffy-Muhoray in the American Journal of Phys-
ics.* In that problem, the bungee cord is assumed to be
massless. He goes on to show that the jumper’s maximum
acceleration is roughly 3g’s and it occurs when the cord is at
its maximum stretch. Yet, Eq. (15) suggests that an accelera-
tion of 3g’s will occur before the cord even stretches, if the
mass of the bungee is at least two and a half times the mass
of the jumper. It should be noted that in the solution to the
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Fig. 3. Six free-fall trials including the theoretical curve (solid
line). All data fall within a band +1/60 s from the theory curve, as
might be expected when using a video camera.
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problem, Palffy-Muhoray assumes that the jumper’s accel-
eration is g during the “free fall.” He should be forgiven
however, because as Calkin and March3 demonstrate, this
problem has been solved incorrectly for over 100 years!

While the energy model does clearly predict an accelera-
tion greater than g, it is just not as intuitively satisfying as a
force model. The forces responsible for the motion are grav-
ity, the contact force exerted by the bridge on the cord, and
the shear and compressional (tension) forces within the cord.
To fully understand the behavior of the system from a force
perspective would require a complete finite element analysis
of the cord. While this analysis would be interesting, it would
not lead to deep intuitive understanding. Some insight can be
gleaned from thinking about the fact that the portion of cord
at the bottom of the loop is coming to rest. Since it was
moving downward, an upward force is required on this part
of the system. Since this upward force is an internal force,
and Newton’s Third Law must be satisfied, there must be an
equal and opposite downward force somewhere within the
system. The surprise is that a portion of this reaction force
acts on the falling portion of the cord, causing it to accelerate.
A portion also acts on the stationary part of the cord.

If the falling portion of the cord were accelerating at g,
then the downward reaction force on it would not exist. All
the force required to stop the cord would come from the
stationary side. Therefore the tension in the cord on this side
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Experiment

To reproduce the effects of a massive
bungee cord in a more controllable envi-
ronment, we opted to reduce the scale of
the experiment. Using items common in
any instructional physics laboratory, we
set up the experiment in miniature. Using
three 2-m ropes of different thicknesses
and a 2-m linked chain, we constructed a
variety of bungee systems with massive
cords and “massless” jumpers. The
massless jumper maximizes the difference
between the energy model and free fall.
The purpose of using ropes of different
thicknesses was to compare any effects
that the stiffness of the ropes might intro-
duce. The chain was used because of its
minimal stiffness.

Fig. 4a. Fig. 4b.

A video camera recorded the entire fall

MEDIUM ROPE THIN ROPE

g

distance (cm)
distance (cm)

b

freefall -
energy ——
typical data

typical data

of our laboratory bungees. The camera
rested on a tripod 2 m from the cords,
which were set up to fall in front of a dark
backboard. The backboard was marked
with increments of distance as can be seen
in Fig. 1. First we established a control by
recording data for a freely falling ball. We
carried out six trials and plotted the data
on a graph (Fig. 3) against a theoretical
curve for true free fall. The data fit well
within £1/60 of a second to the free-fall
curve. This spread represents the frame
speed of the video camera and the result-
ing uncertainty of the time measurements.

The next step was to construct the up-
per-limit curve of position of the free end
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Fig. 4c. Fig. 4d.

Fig. 4. Typical data sets from one of six trials using a) chain, b) thick rope, c) medium
rope, and d) thin rope. The solid line is the energy model; the dashed line is free fail.

would be larger than in the energy conservation model where
some of the force comes from the moving side. It is this
tension exerted on the bridge that was measured by Calkin
and March. They found that for the case of chains the tension
was in fact smaller and very consistent with the energy model
described here. In addition, Calkin and March state that their
flash photographs also reveal accelerations greater than g at
the tip of the chain. Unfortunately, these photographs do not
appear in their paper.

In a way, the falling portion of the cord can be thought of
as a rocket moving downward. It is “ejecting” cord as its
“fuel” in such a way that the ejected cord is always at rest.
So this ejected cord is “fired” upward, producing a downward
“thrust” on the remaining portion of moving cord.
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time (s)

of the bungee versus time for the energy
model. Since Eq. (10) cannot be solved
directly for the position as a function of
time, a numerical method, such as a
spreadsheet, is requircd.5 This model pro-
vides an excellent example of a “real-life”
physics problem that can’t be solved ana-
lytically but is tractable with a spreadsheet.

Six sets of data were recorded for each type of bungee.
These data show the same types of variations that the free-fall
data exhibit. The resulting plots are shown in Figs. 4a—4d.
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Results

As expected, data for all four laboratory bungees fell
between the true free-fall curve and the upper limit set by the
energy model. We suspect that this is due to the energy we
didn’t account for in the horizontal motion of the system,
thermal and elastic energy in the rope, and perhaps air resis-
tance. The shape of the curves of the actual data more closely
resembles the energy model than the true free-fall parabola.
The chain’s motion most closely approaches the curve for the
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energy model. The thick and medium
ropes seem to experience additional en-
ergy loss and fall somewhere between
the two curves. Of the three ropes, the
thin one most closely exhibits free-fall
characteristics, although the shape is
similar in form to the energy curve.

Conclusions

The uncertainties in the chain and
rope data are comparable in size to those
illustrated in the free-fall data of Fig. 3.
Since these uncertainties are too small to
explain the deviations of the rope and
chain data from the free-fall curves, we
believe that our experiments clearly
show an acceleration that exceeds g.
Also, the data may indicate some differ-
ences between the behavior of the vari-
ous ropes and the chain, but these differ-
ences are much less certain. Perhaps
these differences can be explained by the
different “stiffness” of each rope. By
stiffness, we mean the ability to support
compression as opposed to extension.
The lighter rope seemed to be stiffer than
the heavier ropes. This notion is sup-
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ported by the steeper velocity curve for
the chain which, because of its construc-
tion, is not stiff at all.

If indeed the energy model we have constructed is a good
approximation to the real world, and the data supports this
view, then there are some additional concerns for bungee
jumpers. As shown earlier, when the jumper has fallen the
length of the cord, the acceleration is purely a function of the
ratio of the mass of the bungee cord to the mass of the jumper.
If the mass of the bungee is five times that of the jumper,
according to Eq. (15), the final acceleration would be about
6.6 g! Accelerations on this order can cause physiological
problems for humans.

There is some very interesting physics illustrated by the
fact that the laboratory bungees do not strictly obey either the
energy curve or the free-fall curve. Real ropes are much more
complex than usually assumed in basic physics classes. Per-
haps that finite element analysis might be worth doing after
all. Besides, work at a computer keyboard is much safer than
jumping from a bridge tied to a very massive bungee cord.
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Perhaps the moral of this tale is that we should be more
willing to tell our students to jump off a bridge. After all, look
at the wonderfully interesting physics to be learned!
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