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Abstract
In this tutorial review, we present some effective methodologies available for the simulation of

vibrational and vibrationally resolved electronic spectra of medium-to-large molecules. They have

been integrated into a unified platform and extended to support a wide range of spectroscopies.

The resulting tool is particularly useful in assisting the extensive characterization of molecules,

often achieved by combining multiple types of measurements. A correct assessment of the reliabil-

ity of theoretical calculations is a necessary prelude to the interpretation of their results. For this

reason, the key concepts of the underlying theories will be first presented and then illustrated

through the study of thiophene and its smallest oligomer, bithiophene. While doing so, a complete

computational protocol will be detailed, with emphasis on the strengths and potential shortcom-

ings of the models employed here. Guidelines are also provided for performing similar studies on

different molecular systems, with comments on the more common pitfalls and ways to overcome

them. Finally, extensions to other cases, like chiral spectroscopies or mixtures, are also discussed.
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1 | INTRODUCTION

Molecular properties are commonly probed with a wide panel of spec-

troscopies, which can be combined to offer a unique picture, reflection

of the property, its environment, and the experimental conditions.[1–8]

The wealth of information contained in the recorded spectrum or spec-

tra can become complex to analyze in a purely phenomenological way

and theoretical models can provide a valuable aid in understanding the

origin of the features observed in the band-shapes.[9–11] As a matter of

fact, the predictive and interpretative power of computational spec-

troscopy has been clearly demonstrated already for small molecular

systems in the gas phase, by comparison with the most sophisticated

experimental techniques.[1,12–14] However, depending on the target

system and the required accuracy, the theoretical spectroscopic models

can vary greatly in complexity. The situation is even more challenging

when considering their actual implementation, often done in ad hoc,

standalone programs, whose levels of completion, versatility and ease

of use may be very different. As a result, getting an extensive picture

of the experimental spectra can become a challenge as it may require

multiple packages with their own usage and peculiarities.

Hence, to facilitate the simulation and interpretation of multiple

spectra, several conditions need to be met. A first challenge is to
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provide a simple interface, lowering the barrier to the broad adoption

of state-of-the-art methods able to produce accurate data for the prob-

lems at hand.[11,15–17] This can be achieved by automatizing most

aspects of the calculations. Due to the inherent complexity of some

theoretical models, such a goal may not be attainable. In this case,

the necessary parametrization to the problem of interest should be

made as simple as possible. A second requirement is to be able to

choose the most appropriate methodology based on the size and topol-

ogy of the molecular system under study, the target accuracy, and the

complexity of the environment and its possible effects on the system.

In this article, we will focus on cost-effective methods, suitable for the

simulation of electronic or vibrational spectra of medium-to-large

molecular systems, ranging from half-a-dozen to more than a 100

atoms, and how they can be integrated within a unified platform, that

we will call the virtual spectrometer.[11,15–17] While those methods are

primarily intended for semirigid molecules, their extension to support

also more flexible systems will be discussed.

To understand the choice of the methods described here, a brief

review of the theoretical context is necessary. First of all, it should be

stressed out that the theoretical data used to support experimental

spectroscopic studies are still mainly related to the direct outcome of

standard computational approaches, such as geometry optimizations

and harmonic frequency computations. They provide a model for the

potential energy surface (PES) and can be complemented by additional

equilibrium properties, such as the vertical excitation (VE) energies and

transition moments, which are now available for a large number of

electronic structure quantum mechanical (ESQM) approaches and in

several computational packages.[18–25]

However, such data are based on an approximated description of

spectroscopic phenomena, for instance by neglecting anharmonic

effects in vibrational transition energies and intensities, or the vibra-

tional effects associated to electronic transitions. Indeed, the actual

PESs are never harmonic and the vibrational effects are present even

at the absolute zero. Thus, (i) molecular structures observed experimen-

tally do not correspond to the computed equilibrium geometries (req)

but include vibrational effects (r0), (ii) harmonic vibrational energies do

not match experimental fundamental transitions (they usually overesti-

mate), and intensities of overtones and combination bands are null, (iii)

all electronic spectra band-shapes are the result of a potentially large

number of vibronic transitions, which may not be clearly visible. Here,

we will discuss theoretical models which take into account all these

important effects related to the vibrations of the molecules and allow a

direct comparison between simulated and experimental spectra.[26–29]

To fulfill the accuracy (for structures and frequencies) and interpret-

ability (for intensities) requirements of vibrational spectra, it is mandatory

to go beyond the so-called double-harmonic approximation accounting

for both mechanical and electric (and more generally property-related)

anharmonic effects. For very small molecules, it is possible to compute

ro-vibrational energy levels using full variational approaches[14,30,31]

while simplified, less expensive methodologies are necessary for larger

molecular systems (see also reference 32 and references therein), either

based on variational[33–36] or perturbative[37–48] schemes. Here, we will

employ the framework of the generalized second-order vibrational per-

turbation theory (GVPT2), which permits the computation of thermody-

namic properties, vibrational energies, and transition intensities (for

infrared (IR), Raman, vibrational circular dichroism and Raman optical

activity) from the vibrational ground state to fundamentals, overtones

and combination bands up to the three quanta.[17,29,49–52]

Computations of vibrationally resolved electronic spectra are even

more challenging since at least two PESs corresponding to different (ini-

tial and final) electronic states need to be taken into account. For this

case as well, very accurate variational anharmonic calculations based on

a ro-vibronic Hamiltonian in internal coordinates[53] or by means of dis-

crete variable representation (DVR)-based approaches,[54] and consider-

ing several interacting electronic states beyond the Born–Oppenheimer

(BO) approximation, are only feasible for the smallest molecules.[54–58]
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For larger molecular systems, most theoretical models are based on the

harmonic description of PESs, using either the time-independent (TI)[59]

or time-dependent (TD)[60,61] formalisms, with the possible inclusion of

anharmonic corrections to the band positions,[62] or the anharmonic

description of some specific vibrational degrees of freedom.[63–65] The

TI approach is based on a sum-over-states formalism, where the spec-

trum is obtained as an ensemble of distinct transitions between the

vibrational initial and final states. This is the method of choice when

high-resolution spectra are available or band identification is required,

but can suffer from convergence issues related to the band-shape, espe-

cially when temperature effects are of interest. In such circumstances,

the TD route is better suited since it exploits the properties of the Fou-

rier transform to achieve fully converged spectra including also temper-

ature effects, without additional computational cost. In this work, we

will employ both strategies, through an approach supporting both TI

and TD formulations[61,66,67] and based on algorithms allowing to take

into account Franck–Condon (FC), Herzberg–Teller (HT), Duschinsky

and anharmonic effects, with the consequent availability of both high-

resolved and fully converged spectra at finite temperatures.

While the approaches described above to simulate vibronic spectra

are effective for semirigid systems, their reliability decreases as the struc-

tural changes involved in the electronic transition become important, for

instance with large amplitude motions (LAMs) present. In fact, those defor-

mations are poorly described in terms of the Cartesian-based normal

modes computed at the harmonic level. A full anharmonic treatment of

vibronic transitions is usually feasible only for small-size systems,[68,69] so

more affordable methods must be developed to tackle large-size systems

as well. A less expensive, but still effective solution is offered by the use of

internal coordinates, which are better-suited to represent LAMs. In fact,

even if in vibrational spectroscopies the difference between Cartesian and

internal coordinates emerges only at the anharmonic level,[70,71] this is not

true for vibronic spectroscopy. In this case, two different structures (the

equilibrium geometries of the electronic states involved in the transition)

must be taken into account and the definition of the Duschinsky transfor-

mation changes already at the harmonic level.[72] As shown by some of

us,[73,74] the definition of the Duschinsky transformation in internal coordi-

nates leads to more reliable results for flexible systems. An additional

advantage of using internal coordinates is the reduction of the couplings

between the large-amplitude mode(s) and the other vibrational degrees of

freedom. For simple deformations, the large-amplitude motion can be

associated to a well-defined single mode, which is uncoupled from the

other ones. It is then possible to develop hybrid schemes, where the

monodimensional LAM is treated using high-accuracy, anharmonic varia-

tional approaches, and the other modes at the harmonic level.[63] Based on

those considerations, we present here a new method to simulate vibronic

spectra of flexible systems undergoing monodimensional, large-amplitude

deformations. Within this approach, the reaction path Hamiltonian

(RPH)[75–77] is used to describe the motion along the LAM, and the vibra-

tional energies are determined through a variational method, which relies

on a DVR-based approach.[78,79] Within the so-called adiabatic approxima-

tion, the couplings between the LAM and the other degrees of freedom

can be neglected,[80,81] with the latter treated using the TI approach

described above. Such an hybrid model can be straightforwardly extended

to support multiple LAMs if the coupling between them is negligible. A

more complete treatment would require the use of the so-called reaction

surface hamiltonian (RSH) model,[82–84] and will not be discussed here.

The simulation of the vibrational and vibrationally resolved elec-

tronic spectra of thiophene (T) and 2,20-bithiophene (2T) will cover

cases ranging from semirigid systems and small PES changes on elec-

tronic transition up to floppy systems with a well-defined large-ampli-

tude degree of freedom. Those molecules have been extensively

studied experimentally[85–90] and used as benchmarks to test theoreti-

cal models.[91–96] The importance of a direct comparison between the-

oretical and experimental spectra have been recently demonstrated

from a joint study on the phosphorescence of 2,20-bithiophene.[95]

Indeed, previous works showed discrepancies between theory and

experiment,[97] which was found out to be caused by inaccurate meas-

urements. Once redone, a nearly quantitative agreement was reached

for the phosphorescence spectrum of 2T. In this respect, there are still

experimental spectra of T and 2T, which require further theoretical

investigations. For instance, the recently recorded high-resolution

photo-absorption Fourier transform spectrum of thiophene[89] calls for

a more detailed assignment of its vibrational structure. Thiophene and

its oligomers and derivatives are receiving also significant attention as

important “building blocks” molecules, being the simplest hetero-

aromatic cycles of interest in astrochemistry[98,99] or prototypes of

p-conjugated systems for technological applications.[90,100–102] From a

computational point of view, the smallest oligomer, which is 2T, is an

ideal test-case to check the reliability of the DVR-based approach

described above. In fact, the dihedral angle between the two thiophene

moieties can change significantly on electronic excitation,[103] and

therefore an internal coordinates-based treatment is required to repro-

duce the experimental vibronic spectra.[86]

The manuscript is organized as follows. The first section presents

key aspects of the theoretical background used for the simulation. This

will pave the way to a more practical discussion in the next section on

the actual simulation of vibrational and vibronic spectra, including

important features or possible shortcomings one should keep in mind

when analyzing the results. This will be illustrated with the examples of

thiophene and bithiophene, where application of the models described

here leads to a direct vis-�a-vis comparison with experimental results.

Some further discussion concerning chiroptical spectra and rotor-

like molecules as well as final remarks on the current capabilities of

such a virtual spectrometer and possible strategies for future improve-

ments will conclude this presentation.

2 | THEORETICAL BACKGROUND

An extensive presentation of the theoretical backgrounds underlying

both anharmonic vibrational and vibrationally resolved electronic spec-

troscopies bear the risk of obscuring important aspects, which need to

be known when assessing the reliability of simulations. For this reason,

emphasis will be put on specific parts of the methodologies imple-

mented in the virtual spectrometer. Interested readers can refer to the
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papers cited in the following for more in-depth and technical discus-

sions on each feature presented here.

Before starting, we should emphasize that, to support easily multi-

ple spectroscopies and facilitate future extensions, the tool described

and used here relies on general formulations and methodologies. How-

ever, since we will only need some spectroscopies, significant simplifi-

cations can be made. Their impact on the overall discussion will be

indicated where necessary.

Let us consider the most general integral of an arbitrary operator

Ĥ between two molecular states, jWI i and jWF i,

hH iI;F5
hWIjĤjWF iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hWIjWI ihWF jWF i

p (1)

Within the BO approximation, the molecular wavefunction can be

written as the product of a nuclear (w) and an electronic (/) compo-

nents, so the previous integral can be rewritten,

hH iI;F �
hwI jh/IjĤj/F ijwF iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hwIjwI ihwF jwF i

p (2)

where the orthonormality of the electronic wave function has been used

to simplify the denominator (h/Ij/F i5dIF ). Note that a shortcut has been

taken in the notation regarding the subscripts, which referred to the

molecular state. A more accurate representation would require the use of

different indexes for each state, at the cost of the overall readability. For

this reason, and until explicitly needed, this simplified notation will be kept.

The nuclear wavefunction can be further factorized if the Eckart–Say-

vetz conditions are assumed met, which can be considered a good

approximation for semirigid molecules.[104,105] In this case, it is possible

to factor out the translational and rotational components, and only

keep the vibrational wavefunction, which will be at the center of our

discussion here. Within this framework, Equation 1 becomes,

hH iI;F �
hwI

v jh/IjĤj/F ijwF
v iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hwI
v jwI

v ihwF
v jwF

v i
p (3)

Within the harmonic approximation, the vibrational wavefunctions

can be written as products of one-dimensional harmonic oscillators

corresponding to the normal modes of vibrations. While such a calcula-

tion is rather straightforward for vibrational spectroscopies, where only

one electronic state is involved (j/F i5j/I i), this is not the case for

electronic spectroscopies since the initial and final vibrational states

are generally not expressed in the same basis of normal coordinates.

In the following, except if stated otherwise, we will assume that

the property or quantity of interest and the associated electronic tran-

sition dipole moment (h/IjĤj/F i) are known, with the latter noted He

for simplicity.

2.1 | Vibrational spectroscopy

While calculation of vibrational spectra at the harmonic level has

become routine and is commonly used to interpret experimental spec-

tra, it suffers from important shortcomings, among which a systematic

overestimation of vibrational transitions, worsening at higher quanta,

and the fact that all nonfundamental bands have null intensities. A

cost-effective way to improve this is offered by the second-order

vibrational perturbation level of theory (VPT2).[37] As a reminder, the

starting point is the harmonic Hamiltonian,

Ĥ5V̂1T̂ 5
XN
i51

1
2
xiðqi21pi

2Þ

where xi is the harmonic wavenumber, qi and pi are, respectively, the

dimensionless normal coordinate and conjugate momentum associated

to mode i, and N the total number of normal modes. The potential

energy operator V̂ is expanded as a Taylor series up to the fourth order,

V̂51
2

XN
i51

@2V̂
@qi2

qi
21

1
6

XN
i;j;k51

@3V̂
@qi@qj@qk

qiqjqk1
1
24

XN
i;j;k;l51

@4V̂
@qi@qj@qk@ql

qiqjqkql (4)

By comparison with the definition of the harmonic oscillator, the per-

turbative orders of the Hamiltonian operator are,

Ĥð1Þ51
6

XN
i;j;k51

@3V̂
@qi@qj@qk

qiqjqk5
1
6

XN
i;j;k51

kijkqiqjqk (5)

Ĥð2Þ5 1
24

XN
i;j;k;l51

@4V̂
@qi@qj@qk@ql

qiqjqkql5
1
24

XN
i;j;k;l51

kijklqiqjqkql (6)

The coupling between the vibrational and rotational wavefunc-

tions, often neglected at the harmonic level, generally needs to be

taken into account at this level of theory, since it may have a magni-

tude comparable to the anharmonic correction. Development of the

vibro-rotational component of the full nuclear Hamiltonian in a Taylor

series leads to an additional term to be included in Ĥð2Þ, related to the

so-called Coriolis couplings,[106]

X
s5x;y;z

Beq
s

XN
i;j;k;l51

fij;sfkl;s
xjxl

xixk

� �1=2

qipjqkpl

Beq
s is the rotational constant at equilibrium geometry and fij;s the

Coriolis constant coupling modes i and j along the rotation axis Is. In

order for this formula to be valid, the molecule must be in Eckart ori-

entation, in which the vibro-rotational couplings are minimized and

the inertia tensor is diagonal.

The most common strategies to carry out the development and

obtain the vibrational energies are based on the Rayleigh–Schr€odinger

perturbation and Van-Vleck contact transformation[107] theories. The

result is an analytic formula, sufficient to compute the energy of any

vibrational state jm i (in cm21),

em5e01
XN
i51

vmi xi1
XN
i;j51

vij vmi v
m
j 1

1
2
ðvmi 1vmj Þ

� �
(7)

where vmi is the number of quanta associated to mode i in state m, and

e0 is the zero-point vibrational energy (ZPVE),

e05
XN
i51

xi

2
1
XN
i;j51

kiijj
32

2
XN
i;j;k51

kiikkjjk
32xk

1
kijk2

48ðxi1xj1xkÞ

� �

2
X

s5x;y;z

Beq
s

4

�
12

XN21

i51

XN
j5i11

ffij;sg2
ðxi2xjÞ2

xixj

� (8)
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v is the matrix containing the anharmonic contributions, whose ele-

ments are defined as,

16vii5kiiii2
5kiii2

3xi
2

XN
j51
j 6¼ i

ð8xi
223xj

2Þkiij2
xjð4xi

22xj
2Þ (9)

4vij5kiijj2
2xikiij2

ð4xi
22xj

2Þ2
2xjkijj2

ð4xj
22xi

2Þ2
kiiikijj
xi

2
kjjjkiij
xj

1
XN
k51

k 6¼ i; j

�
2xkðxi

21xj
22xk

2Þkijk2
Dijk

2
kiikkjjk
xk

�
1

4ðxi
21xj

2Þ
xixj

X
s5x;y;z

Beq
s ffij;sg2

(10)
with Dijk5xi

41xj
41xk

422ðxi
2xj

21xi
2xk

21xj
2xk

2Þ
Here, the problem of normal mode degeneracies has been ignored. A

recent, more general formulation, supporting doubly degenerate modes

(symmetric- and linear-top molecules) can be found in reference 51.

An alternative form of Equation 7, sometimes used in the literature,

relies on the v0 matrix, also noted G0.
[45,108] Its major drawback, how-

ever, is the presence of resonances in v0, which disappear when recast

into e0.
[108] The use of v0 is nevertheless interesting when dealing with

transition states.[49] The implementation of Equations 7–10 is straight-

forward and the VPT2 model has been available in multiple computa-

tional chemistry programs and standalone codes.[18,22,43,109] Practical

discussions on the calculations themselves will be deferred to the next

section.

An important aspect of VPT2 calculations is the problem of

resonances, which can be encountered in a large number of cases. The

most critical situation comes from the so-called Fermi resonances (FRs,

type I: xi � 2xj and type II: xi � xj1xk , used in the following as the

general form), in which case some denominators in Equations 9 and 10

can become very small or almost negligible, leading to an inaccurate

definition of the anharmonic correction. This represents a failure of the

standard VPT2 model, which must be treated accordingly. The most

common strategy is to identify the resonant states and remove the cor-

responding terms from the calculation of v, thus em. This procedure is

far from being straightforward since the definition of the resonance is

not unequivocal. For this reason, several approaches have been pro-

posed in the literature[45,46,49,110,111] and only the ones used in this

work will be described. The so-called deperturbed VPT2 (DVPT2) relies

on a two-step procedure in which the states close in energy are first

identified (low frequency difference) and the resonance magnitude is

then estimated from the deviation of the VPT2 term from a model var-

iational treatment. The latter step is commonly known as Martin’s

test.[110] The overall procedure can be summarized as,

Step 1 : jxi2ðxj1xkÞj1x122
x

Step 2 : jh v11ijĤ
0jv11j11k ij2

���� kijk2

2½xi2ðxj1xkÞ�

���� � K122

where Ĥ0 is the contact transformed hamiltonian, which is used here

for consistency during the variational correction.[47] Here and in the

following, harmonic vibrational states will be represented as vectors of

N quanta, noted v.

To avoid the definition of thresholds, an alternative strategy is to

replace all potentially resonant terms with nonresonant equivalents.

Such an approach was for instance proposed by Kuhler, Truhlar, and

Isaacson as the degeneracy-corrected PT2 (DCPT2).[112] One important

drawback of this approach is its inaccuracy with respect to the original

VPT2 formulation far from resonance. However, this can be signifi-

cantly reduced by introducing an ad hoc transition function to recover

the VPT2 term in this case. This hybrid approach is referred to as

HDCPT2 (hybrid DCPT2-VPT2).[49] An important difference between

DCPT2 and DVPT2 in presence of resonance is that the anharmonic

correction will become truncated in the latter case, since some terms

will have been discarded. A solution to this problem is to reintroduce

those terms through a successive variational step, where the variational

matrix is built by placing the DVPT2 energies (eDVPT2
m ) on the diagonal

and the variational terms corresponding to the resonances as off-

diagonal elements. It should be noted that, in order for the variational

correction to be consistent with the DVPT2 treatment, the contact

transformed Hamiltonian (Ĥ0) is more appropriate. The terms to be

included are thus,

Type I; h v11ijĤ
0jv12j i5

kijj
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvi11Þðvj11Þðvj12Þ

8

r
(11)

Type II; h v11ijĤ
0jv11j11k i5kijk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvi11Þðvj11Þðvk11Þ

8

r
(12)

The final vibrational energies are obtained after diagonalization of

the full variational matrix. The overall procedure (DVPT21 variational

correction) will be called generalized VPT2 (GVPT2). A remark should

be made regarding the vibrational states. An interesting feature of

VPT2 is to be directly related to the harmonic states, facilitating the

analysis, based on normal coordinates. When the variational correction

increases, the resulting states can become intricate combinations of

DVPT2 or harmonic states. GVPT2 states diverging strongly from the

original DVPT2 ones will be specified if necessary in the following.

Another type of resonances, not visible in Equations 9 and 10, can

occur between states of equal symmetry and close energy, a situation

improperly treated at the VPT2 level. Such resonances, collectively

known as Darling–Dennison resonances[113] (DDRs), need to be

treated variationally, which is done concurrently with the correction to

the FR. Similarly to the latter, a two-step procedure is employed to

identify the resonances. First, the states close in energy are selected.

Then, within this ensemble, those for which the associated variational

terms have a significant magnitude are defined as resonant. This can be

summarized as follows,

Step1 : jDxj1DA-B
x

Step2 : jh v0jĤ0jv00 ij � KA-B

where “A–B”, v0 , and v00 depend on the type of DDR, generally identi-

fied by the number of annihilated and created quanta (ex: 1–1, 2–2).

For the sake of completeness, another type of DDR, 1–3, needs to be

taken into account when 3-quanta transitions are included in the varia-

tional correction. In the fundamentals region (below 4000 cm21), those

transitions generally contribute marginally to the band-shapes,[114]

especially for spectroscopies like IR and Raman, and thus will be

ignored in this work. Extension to 3-quanta transitions is nevertheless

BLOINO ET AL. | 5



straightforward.[47,52] The variational terms have been recently

reviewed by Rosnik and Polik, who fixed some errors present in previ-

ous works.[47,115] They are reported in the Supporting Information

(Equations S1–S10), with the notation adapted to the present work. A

potential issue of those variational terms is that they are not immune

to FRs themselves. This problem has been already noted by several

authors.[47,115,116] The most common strategy is to discard the reso-

nant terms, either systematically by assuming all of them to be reso-

nant, or after a preliminary identification step. Here, an alternative

approach, derived from the HDCPT2 scheme is employed, to replace a

priori all potentially resonant terms, assuming the following transforma-

tion to be accurate,

S
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k21�2
p� 	

� S �1
k2

2�

� �

Considering for instance one of the potentially resonant term in the

correction associated to the 1-1 DDR (Equation S2 Supporting

Information),

forig5
kijlkiil
24

1
xl22xi

we apply the following equivalency,

S5sign½kijlkiilðxl22xiÞ�

k25
jkijlkiilj
24

�5
jxl22xij

2

leading to the corrected term,

fcorr5S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkijlkiilj
24

1
jxl22xij

2

2
s

2
jxl22xij

2

2
4

3
5

A transition function K is used to mix the two terms and recover the

correct one far from resonance,

fnew5Kforig1ð12KÞfcorr

with

K5
tanh a½

ffiffiffiffiffiffiffiffiffi
k2�2
p

2b�
� 	

11

2

where a controls the smoothness of the transition and b the condition

of transition between the two formulations. A detailed description of a

and b (respectively noted a and b there) can be found in reference 49.

To get accurate band-shapes, the transition moments for the prop-

erties of interest has to be computed at the anharmonic level as well.

Here, only IR and Raman will be used, so that only the electric dipole

(l) and the polarizable tensor (a) are needed. It is important to note

that the latter is generally computed in the far-from-resonance regime

in electronic structure calculations. For the resonant (or pre-resonant)

regime, a different formalism needs to be followed, which will not be

presented here. Discussions on the vibronic calculations of resonance

Raman spectra can be found in references 73, 117 and 118, and refer-

ences therein for instance. Both quantities considered here (l and a)

are functions of the normal coordinates, so there is no need for a gen-

eral formulation such as the one adopted in references 50 and 52. For

this reason, the more compact notation, used in references 32 and

119, will be followed. At variance with vibrational energies, two states

are involved in the definition of the transition moments (instead of

one) so that different analytical formulas are required depending on

the initial and final levels. Equations for transitions from the ground

state to states with up to 2 quanta are reported in the Supporting

Information (Equations S11–S12).

In addition to FRs, intensity calculations can also be directly

impacted by DDRs as well. Since they are connected to the mechanical

anharmonicity, the method adopted here is to use the identification

procedure from the energy calculations to generate the set of resonant

states. While such a scheme can be very effective, an issue specific to

intensities may be overlooked in this way. Indeed, DDRs are only con-

sidered if there is a significant interaction (variational term between

the resonant states). However, as can be directly inferred from Equa-

tion S11, a near-null energy difference at the denominator can be suffi-

cient to give incorrect anharmonic contributions to the intensity, even

if the states are weakly coupled. To overcome this situation, a possible

workaround is to perform a double test for the identification of the

DDR after the initial energy difference check. In addition to the one on

the magnitude of the variational term, a complementary test empha-

sizes the energy difference, which is used to weigh the integral. This

also gives a more correct account of the term corresponding to the

mechanical anharmonicity in the intensity calculation. In practice, the

second test introduced in reference 29 has the form,

���� h v0jĤ
0jv00 i

Dx2

���� � KA-B
I

The transition moments are thus computed with the DVPT2

approach by removing all resonant terms directly affecting the formulas

(FRs and the types of DDRs associated to the transition of interest).

Then, the eigenvectors matrix (Lvar) obtained from the diagonalization

of the variational matrix during the energy calculations are used to get

the proper GVPT2 transition moments,

hP iI;FGVPT25hP iI;FDVPT2Lvar (13)

Finally, the Raman and IR band-shapes will be computed as,

�ðx0Þ5
X
m;n

8p3N Ax0

3ln ð10Þhcqmjhwm
v jljwn

v ij2dðen2em2x0Þ (14)

dr
dX

5
p2

�02

� �
qmðx02en2emÞ4

45am;n
217gm;n

2

45
(15)

where �ðx0Þ is the molar absorption coefficient and “dr=dX ” the first

differential cross section, with x0 the wavenumber of the incident light.

am;n and gm;n are the tensor invariants associated to the transition

polarizability h a im;n,

am;n ¼
1
3
½h axx im;n þ h ayy im;n þ h azz im;n�

gm;n
25

1
2
½h axx im;n2h ayy im;n�

21
1
2
½h ayy im;n2h azz im;n�

2

1
1
2
½h azz im;n2h axx im;n�

21
3
2
½h axy im;n

21h ayz im;n
21h azx im;n

2�
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For convenience, Raman data are also reported as Raman activities,

which do not depend on the incident light and are more specific to the

molecule (they remain dependent on the incident and scattering geo-

metries). For the setup chosen in this work, the Raman activity (Sm;n) is,

Sm;n545am;n
217gm;n

2

2.2 | Vibrationally resolved electronic spectroscopy

Transitions between electronic states are more complex to handle for

several reasons. First, the selection rules are less straightforward and

the overlap conditions can be such that transitions to higher states are

more intense than to lower ones. This results in the necessity to take

into account a larger number of transitions between the vibrational

states, especially since the energy range considered in electronic spec-

tra is often larger than in vibrational spectroscopy. Another issue is the

calculation of the integrals themselves, since the initial and final vibra-

tional states are expressed in different coordinate sets. For this reason,

inclusion of anharmonic corrections can be really challenging and rep-

resent a significant increase of the computational cost, only affordable

for small molecules[68,69,120] or for some specific degrees of free-

dom.[64] Considering the size of the systems of interest here, the har-

monic approximation will be used to compute the transition energies

and intensities. We will see later how some of the anharmonicity can

be partially recovered in a cost-effective way.

The first issue to address is the definition of a common basis set to

compute the integral hH iI;F . Here, the affine transformation proposed

by Duschinsky to express one set of (mass-weighted) normal coordi-

nates with respect to the other will be adopted,[121]

QI5JQF1K (16)

where J is the Duschinsky matrix and K the shift vector, whose defini-

tions depend on the type of reference coordinates. For the sake of sim-

plicity, we will assume the latter to be the Cartesian coordinates so,

J5fLxI g
TLxF and K5fLxI g

TM1=2ðXeq
F 2Xeq

I Þ

where Lx is the transformation matrix from mass-weighted Cartesian to

normal coordinates, M is the diagonal matrix of atomic masses, and Xeq
I

and Xeq
F are the equilibrium Cartesian coordinates of the initial and final

states, respectively. Extension to internal coordinates is rather straight-

forward[74] and only requires modified definitions of J and K, as well as

the derivatives of the electronic transition moments for the property of

interest. For the sake of readability, the Cartesian coordinates will be

used as reference in following. To ensure the generality of the discus-

sion, J will be assumed nonorthogonal, which is the case in internal

coordinates.

The definition of K requires the knowledge of the initial and final

states’ equilibrium geometries. This leads to another issue related to

the harmonic approximation of the PESs. Indeed, the electronic transi-

tion can be characterized by a structural change, so that the two PESs

will differ and their minima will be shifted. The latter can put a strain

on the reliability of the harmonic representation, which worsens with

the “distance” from the minimum. For this reason, two strategies can

be adopted to compensate this problem. The first one, known as the

adiabatic model, maximizes the overall description of each PES, which

is computed about its actual minimum. This represents the best defini-

tion of the initial- and final-state equilibrium structures and frequencies

(within the harmonic description), so that the highest accuracy for the

band positions in the vibronic spectrum should be achieved. An alterna-

tive way is to emphasize the correctness of the preeminent bands in

the overall band-shapes, thus the most intense transitions. This

requires a better description of the PES about the vertical transition

(highest overlap), so that this approach is often referred to as the verti-

cal model. Within each strategy, two reasonings can be adopted. One

is to emphasize accuracy, so that the force constants (hessian matrix)

are computed in each electronic state. They will be referred to as Adia-

batic Hessian (AH) and Vertical Hessian (VH) depending on the model.

Another one is to prioritize computational cost and feasibility. In this

case, the two PESs are assumed to be equal, so that only one set of

force constants needs to be calculated, generally the less expensive

one, commonly in the ground state. They will be labeled based on the

main quantities, which need to be known from the other state, namely

Adiabatic Shift (AS), since the geometry optimization is still necessary,

and Vertical Gradient (VG), since only the forces at the reference

geometry are required (the latter is also known as the linear coupling

model in the literature[122]). The definitions of J and K differ based on

the model.[59,74] The most important aspects are that J is the identity

matrix in the approximated models (AS and VG), K is the same for the

adiabatic models (AS and AH), and K is obtained from an extrapolation

of an harmonic PES for vertical models (VH and VG). By comparing the

definitions of K in the adiabatic and vertical models, it is possible to

obtain an estimate of the unknown equilibrium geometry for the verti-

cal models, which can provide a visual aid in assessing the reliability of

those models.

The definition of a transformation between the two sets of initial-

and final-state normal coordinates is necessary but not sufficient to

compute the transition moment hH iI;F . Indeed, the electronic transi-

tion moment (He5h/IjĤj/F i) has a dependence on the nuclear coor-

dinates, which is not known analytically. As a consequence, an

approximate form is adopted. The most common way was proposed by

Franck and formalized by Condon.[123–126] In practice, it is assumed

that the electronic transition moment does not depend on the nuclear

configuration and thus is constant. This approximation was later refined

by Herzberg and Teller, who proposed to include a linear variation with

respect to the normal coordinates.[127] Those models can be general-

ized as a Taylor expansion of the electronic transition moment about

one equilibrium geometry,

HeðQÞ5HeðQeqÞ1
XN
i51

@He

@Qi
Qi1oðQÞ (17)

where the zeroth-order term corresponds to the FC approximation and

the first order to the HT one. The choice of the reference state for the

expansion depends on the model used to describe the transition. It is

generally the initial one for vertical models and the upper (excited) one

for adiabatic models, mainly for practical reasons. Note that in the fol-

lowing, the development up to the first order will be labeled FCHT,

BLOINO ET AL. | 7



which is sometimes simply defined as the HT approximation in the

literature.

Thus, the definition of the model for the description of the elec-

tronic transition (AH, AS, VH, and VG) and the approximation of the

transition property (FC, FCHT) will pave the way to the calculation of

the transition moments. The band-shape is then obtained by comput-

ing the intensity of each transition separately. This corresponds to the

sum-over-states or TI approach. An alternative way to get the band-

shape is through an implicit inclusion of all possible transitions, within

the so-called path integral or TD formalism. To understand better the

differences between those two methods, let us write the formula of

the total sum-over-states intensity of the one-photon absorption

(OPA) or emission (OPE) spectrum for a given absorption or emission

wavenumber (x0), respectively,

Iðx0Þ5ax0
b
X
I;F

qIh vIjlejvF ih vF jlejvI idðDE1jeF2eIj2x0Þ (18)

where a is a constant factor, which depends on the type of transition,

b51 for OPA and 4 for OPE, and q is the Boltzmann population. d is

the Dirac function, in practice commonly replaced by a Gaussian or

Lorentzian distribution function to simulate the broadening observed

experimentally, and DE is the difference of energy between the PESs

minima, in wavenumbers. The denominator in the transition moments

has disappeared since the harmonic wavefunctions are orthonormal. A

more general formulation, adapted to chiral one-photon spectroscopies

as well, can be found in references 61, 66, and 67.

To compute the transition integral h vIjlejvF i, the electronic transi-

tion dipole moment must be first expressed as a Taylor series as given

in Equation 17. The FC term is straightforward since leðQeqÞ is con-

stant, while the HT term, if included, requires some additional prelimi-

nary work, using the fact that the normal coordinate Qi can be

expressed as a combination of bosonic creation and annihilation oper-

ators to be applied to the state of reference. For instance, assuming

that the Taylor expansion was done with respect to the final-state

equilibrium geometry, then the development of the integral would

give,

@le

@Qi

h �v jQijv i5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

4pcxi

s
@le

@Qi

ffiffiffiffi
vi

q
h�v jv21i i1

ffiffiffiffiffiffiffiffiffiffiffi
vi11

q
h �v jv11i i

� �

where the single and double overbars were used to represent the ini-

tial and final states, respectively, to avoid confusion with other sub-

scripts. Hence, the original integral h vIjlejvF i can be written as a

combination of integrals between vibrational states of the initial and

final electronic states, also called FC integrals. Several approaches

have been proposed in the literature, based either on analytic[128–133]

or recursion[134–137] formulas. The latter have proven to be more effi-

cient, especially when dealing with medium-to-large systems since

they only require the implementation of a few equations, generally the

integral between the vibrational ground states (h0Ij0F i) and one or

more recursion relations. The approach used here is the one proposed

by Ruhoff based on the original work by Sharp and Rosenstock.[128,136]

The formulas needed to compute recursively any FC integrals are

listed in the Supporting Information (Equations S13–S15).

Let us remark that for the special case where the PESs are equal

(approximation used in AS and VG), significant simplifications can be

made to the recursion formulas. In particular, if temperature effects are

negligible, so that only the vibrational ground state of the initial state is

populated (j �v i5j �0 i), then only one recursion formula is needed,

h �0jv i5 1ffiffiffiffiffiffiffi
2v i

p ½Dih �0jv21i i1
XN
j51

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðv j2dijÞ

q
Cijh �0jv21i21j i�

Since C50 if C5C and J5I, then

h �0jv i5 1ffiffiffiffiffiffiffi
2v i

p Dih �0jv21i i

with D52�C1=2K. At the FC level, the total intensity is then,

Iðx0Þ5ax0
b
X
v

jlðQeqÞj2 jh �0jv ij2dðDE1jeF2eIj2x0Þ

5ax0
bjlðQeqÞj2

X
v

C iKi
2

2v i
jh0jv21i ij2dðDE1jeF2eIj2x0Þ

Thus, computing the elements “Si5C iKi
2=2” called Huang–Rhys (HR)

factors[138] gives an estimate of the intensity of any overtone when the

coupling between them is negligible.

Note that, in theory, the summations over the initial and final states

are infinite. At low temperature, the ground state can be assumed to be

the only one populated, so that the summation over I can be discarded.

However, some screening is still necessary to limit the number of transi-

tions to a practical level. To this end, various strategies have been pro-

posed in the literature (an overview of such methods can be found in

reference 59). Themost effective ones are based on an a priori evaluation

of the transition moments. The one used here is based on an initial com-

partmentalization of the transitions in so-called classes, depending on

the number of simultaneously excited modes in the final state. So, class 1

(C1) corresponds to fundamentals and overtones, C2 to 2-modes combi-

nations and so on. For C1 and C2, a maximum number of quanta, respec-

tively, Cmax
1 and Cmax

2 , is chosen and every transition in this class to states

with an equal or lower number of quanta are computed (note that Cmax
2

corresponds to the number of quanta for each excited oscillator). These

computations are inexpensive thanks to the availability of analytical for-

mulas, so the Cmax
n can be set to high valueswithout a significant increase

of the computational cost. Data related to the probability and intensity

of each transition are saved to build an internal database, which is used

to estimate the probability of transitions to states belonging to class 3

and above. The result of the prescreening is a vector ofN elements speci-

fying the maximum number of quanta which can be reached for each

mode, vmax
i . This value is modulated by a third parameter, Nmax

I , which

limits the number of integrals to be computed in each class. It should be

noted that the total intensity can be evaluated analytically using the clo-

sure relation, X
F

h vIjlejvF ih vF jlejvI i5h vIjfleg2jvI i

and used to estimate the reliability of the prescreening. More details on

the prescreening procedure can be found in references 59 66 67, and
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139–141. The prescreening is very efficient even for large systems.

However, the performance of the sum-over-states approach is generally

low when temperature effects become important and the number of ini-

tial states to take into account increases strongly.

This problem can be overcome with the TD approach. The principle

is to recast Equation 18 within the time domain by replacing the Dirac

function by its Fourier transform,

dðDE1jeF2eIj2x0Þ5
Z 1

21
eiðDE1jeF2eI j2x0Þtdt

and the Boltzmann population with

qI5
e2beI

Z

where Z is the canonical vibrational partition function. The total inten-

sity can then be rewritten as follows,

I x0ð Þ5ax0
b
Z 11

21
dtTr lee2sFHFlee2sIHI


 �
ei DE2x0ð Þt (19)

where Tr lee2sFHIlee2sIHI

 �

is referred to as the electronic transition

dipole moment autocorrelation function vðtÞ. sI and sF are complex

variables, which depend on the simulation time t and temperature,

and HI and HF are the vibrational Hamiltonian of the electronic

initial and final states. Using the same approximations as for the TI

case (FC/HT expansion terms and Duschinsky transformation), ana-

lytical expressions for vðtÞ can be derived.[61] However, since the

Fourier transform of vðtÞ has no analytical expression, the integral

in Equation 19 must be computed numerically (using, e.g., a fast

Fourier transform algorithm) to obtain the vibronic spectrum. An

important feature of the TD approach is the implicit inclusion of all

initial and final vibronic states. As a consequence, the band-shape

is systematically converged and there is no need for any type of

prescreening. Furthermore, the computational cost is independent

of the temperature. However, a direct consequence of this feature

is the loss of information on the contributions of each transition to

the overall band-shape. To conclude, the TI and TD approaches are

complementary for one-photon spectroscopies. The TD route pro-

vides converged band-shapes and offers an efficient way to evalu-

ate temperature effects, while TI shows the contributions from

single transitions to the band-shape and can give an insight on its

fine structure, which can be visible in high-precision experiments.

An important assumption done in the TI and TD formulations is the

fact that the PESs are harmonic. As discussed before, improvement of

the band-shape by mean of a full anharmonic treatment is not conceiv-

able due to the steep increase of the computational cost. However, an

alternative way is to focus only on the band positions, and more specif-

ically on the fundamental energies. Those energies can be computed at

the VPT2 level as shown before. While the harmonic approximation is

still assumed valid, this provides a systematic improvement to the tran-

sition energies, even for higher quanta, with the computational cost of

a standard VPT2 calculation. One prerequisite remains the availability

of analytic harmonic force constants, which may not be the case for all

methods, for instance most implementations of TD-density functional

theory (DFT). Another hurdle may be that the cost is too high to build

the anharmonic force constants for one of the PESs. In such cases,

where the VPT2 fundamental wavenumbers can only be known for

one state, it is possible to use a simple scheme based on the Duschin-

sky matrix to derive scaling factors to be applied to each harmonic

wavenumber of the other state.[62] More formally and assuming that

the final state’s anharmonic wavenumbers are unknown, then the

extrapolation formula is,

m i5
XN
k51

Jki
2 mk
xk

x i (20)

where mi is the anharmonic fundamental wavenumber (mi5e1i2e0), and

J is assumed orthogonal. Extension to the nonorthogonal case can be

found in reference 74.

2.3 | One-dimensional large amplitude motion

The vibronic models described above assume the molecule to be suffi-

ciently rigid and the vibrations not associated to any LAM. However,

this is not always the case and the flexibility of the system needs to be

properly taken into account. In some cases, the main structural change

can be associated to a single coordinate, and therefore a block-based

approach, where the LAM is treated at the anharmonic level, whereas

the harmonic approximation is used for the other modes, can be

devised. However, in order for this block-based approach to be effec-

tive, the coupling between the LAM and the other vibrational degrees

of freedom must be negligible, and this condition is met only rarely

using Cartesian-based normal modes as the reference coordinate set.

At variance, the coupling can be strongly reduced using curvilinear,

internal coordinates, which make them better suited to treat LAMs.

The extension of the theoretical framework described above to

support internal coordinates in vibronic spectroscopy has been pre-

sented recently[74] for both TI and TD-based algorithms. Without going

into details, this generalization requires the expression of the quantities

needed to simulate the vibronic band-shape in terms of a general set

of curvilinear, internal coordinates. The harmonic frequencies do not

depend on the coordinate system, and therefore, at the FC level, only

the Duschinsky transformation needs to be generalized. This can be

done following, for example, the approach proposed by Reimers.[72]

Inclusion of HT effects requires also the expression of the derivatives

of the transition dipole moment in terms of internal coordinates, as dis-

cussed, for example, in reference 74. To apply this framework to large-

size systems, a fully automatized procedure to select the nonredundant

set of internal coordinates is needed. In our discussion, delocalized

internal coordinates (DICs) will be used,[142] which are well-suited for

the study of large-size systems since they can be built using only the

molecular topology. Moreover, they are more reliable than the widely

used Z-matrix coordinates when dealing with nonsimple deformations

associated to the electronic transition.[73]

As already remarked above, the use of internal coordinates is cru-

cial to reduce the coupling between the LAM and the other vibrations.

A good way to check if the coupling is sufficiently low is to inspect the

Duschinsky matrix computed for the full system. This procedure can be

straightforwardly automatized and has been described in references 74
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and 143. The principle is to build a consistent set of normal modes

(same number in the initial and final states) based on their overlap

given by the squared elements of the Duschinsky matrix (note that the

rows and columns need to be normalized in internal coordinates). The

vibration corresponding to the deformation (largest element of the shift

vector) is first selected and its projection on each normal coordinate of

the other state is calculated. If the highest overlap is above a given

threshold, the mode is considered uncoupled from the rest of the sys-

tem (to be valid, the limit should be set high, for instance 0.9). Once

this condition is met, it is possible to factorize the FC integrals as

follows:

h v j v i5h vLAM j v LAM i3h vN21 j vN21 i (21)

The factorization given in Equation 21 can be used to develop the

hybrid scheme outlined above. Indeed, the one-dimensional FC inte-

grals associated to the LAM coordinate (h vLAM j v LAM i) can be com-

puted at the anharmonic level, while the other integrals are treated at

the harmonic level (h vN21 j vN21 i).
Let us present now the anharmonic model used to describe the

LAM. As a first step, the LAM must be expressed as a linear combi-

nation of internal coordinates. The appropriate linear combination

can be determined, for example, using a potential energy distribution

analysis.[144] Then, the PES along the LAM coordinate is computed

through a relaxed scan, with all the other vibrational degrees of free-

dom optimized at each point. The geometry change along the relaxed

scan can be represented with the intrinsic reaction path (IRC) param-

eter s, which is defined as the distance along the minimum energy

path (MEP) corresponding to the LAM. A more complete definition of

the parameter s can be found in the pioneering work by Handy and

Miller[145] in terms of the gradient of the PES along the MEP. Within

this framework, each Cartesian geometry is expressed in function of

s and the displacements of the other “N21” modes. If the deforma-

tion along those modes is negligible, the distance between two geo-

metries (x1 and x2, corresponding to two values of the IRC

parameter s1 and s2) can be approximated as the corresponding dis-

tance in mass-weighted Cartesian coordinates, as expressed in the

following:

js22s1j2 � jM21=2 x22x1ð Þj2 (22)

From Equation 22, it is easy to show that the vibrational hamilto-

nian for the LAM can be expressed as,

Ĥs52
1
2
d2

ds2
1V̂ ðsÞ (23)

Therefore, a major advantage of using the parameter s to describe

the LAM motion is the simple form of the kinetic energy operator. The

eigenvalues and the eigenfunctions of Ĥs can be then computed using

a full-variational method based on the DVR theory.[78,79,146] Let us

define NDVR as the number of points at which the PES has been com-

puted, and let si be the value of the IRC parameter for each point of

the scan. This grid defines NDVR DVR basis sets, where each function is

centered in a different point si. Following the derivation reported in ref-

erence 78, and assuming periodic boundary conditions for the potential

VðsÞ, the matrix elements of the vibrational hamiltonian Ĥs between

two DVR basis sets jwv
DVR;i i and jwv

DVR;j i are defined as,

hwv
DVR;ijĤsjwv

DVR;i i5
�h2

2
NDVRðNDVR11Þ

3
1VðsiÞ (24)

hwv
DVR;ijĤsjwv

DVR;j i5
�h2

2
ð21Þi2j

cos p i2jð Þ
2NDVR11

h i
sin p i2jð Þ

2NDVR11

h i2 ðj 6¼ iÞ (25)

The previous equations can be used to build the Hamiltonian matrix

Hs and to solve the corresponding secular equation Hsc5ceLAM . It should

be noted that the matrix elements of the kinetic energy operator T ðsÞ can
be computed using Equation 25 only for monodimensional systems. For

multiple degrees of freedom, the simple relation between the IRC parame-

ter s and the mass-weighted internal coordinates given in Equation 22

does not hold, and couplings between the LAMs appear in the definition

of the kinetic energy operator. As a consequence, the Wilson G matrix

must be computed along the IRC to derive the multidimensional counter-

part of Equation 25. For two LAMs, a definition of the kinetic energy has

been derived in references 82–84 in the framework of the so-called RSH.

Further extension to higher number of flexible degrees of freedom has

been proposed only for small systems.[147] In any case, the extension of

the model presented in this work to multidimensional problems is not

straightforward, and therefore will not be discussed here.

The c matrix obtained by diagonalization of Hs can be used to

express the vibrational eigenfunctions as linear combinations of the

DVR basis set as follows,

j vLAM i5
XNDVR

k51

cv;kjwv
DVR;k i (26)

where j vLAM i is the wavefunction for the LAM associated to the vibra-

tional quantum number v. In vibronic spectroscopy, the secular equation

must be solved for the hamiltonian of the initial (Hs) and final (H s) elec-

tronic states. To facilitate the computation of the FC integrals, this can be

done with the same DVR basis set. This condition is met only if the PESs

are sampled at the same geometries, and therefore if the optimized scan is

carried out on one of the two electronic states, and the energies of both

electronic states are computed at each point. Under this approximation,

the kinetic energy contribution is the same for both Hs and H s, whereas

the potential energy contribution is computed for each electronic state

using the values of their respective PESs. The FC integral between two

vibrational levels j vLAM i and j v LAM i of the initial and final electronic

states, respectively, are obtained from the diagonalization of their respec-

tive hamiltonians, Hs and H s (Hsc5c�LAM and Hsc5c�
LAM

),

h vLAMjv LAM i5
XNDVR

i51

cv ;ic v ;i
(27)

where the orthogonality of the DVR basis sets has been implicitly

employed.

2.4 | Combining One-dimensional large amplitude

motion and vibronic calculations

The procedure described above can be used to compute the FC factors

involving the large-amplitude motion. Indeed, within the harmonic

10 | BLOINO ET AL.



approximation and the sum-over-states formalism presented in Equations

18 and 21 can be used to combine the LAM and the FC factors involving

the other “N21”modes and thus obtain the overall vibronic spectrum.

Iðx0Þ5ax0
bjleðQeqÞj2

X
I;F

qIjh vLAMjv LAM ij23jh vN21jvN21 ij2

3dðDE1je vLAM1e vN212evLAM2evN21 j2x0Þ
(28)

where the I and F refer to combinations of the “LAM” and “N21” initial

and final states, respectively. The FC approximation has been assumed, so

that the transition dipole moment is a constant factor. It should be noted

that the inclusion of HT effects within this framework is not straightfor-

ward and will not be studied here. Indeed, the first-order terms of the Tay-

lor expansion given in Equation 17 may couple the LAM with the other

“N21”modes, and therefore the factorization given in Equation 21 cannot

hold anymore. To write Equation 28 in a more compact way, let us factor-

ize the terms in Equation 28 as products of two terms, one involving the

LAM and the other one involving the other “N21” modes. The factoriza-

tion of the Boltzmann factor qI is straightforward, since

qI5
e2beLAM

ZLAM
3 e2beN21

ZN21
5qLAM3qN21, where ZLAM and ZN21 are the canonical

partition functions for the LAM and for the other “N21” modes, respec-

tively. However, the factorization of the last delta function is less straight-

forward. For this purpose, it is useful to introduce the following property

of the convolution of two Dirac’s delta functions

dðDE1je vLAM1e vN212evLAM2evN21 j2x0Þ

5

Z 11

21
dxdðDE1je vN212evN21 j2xÞ

3dðx1je vLAM2evLAM j2x0Þ

(29)

Equation 29 can be used to factorize the Dirac’s delta function and sep-

arate the terms depending on the LAM from the ones depending on

the “N21” harmonic modes. This factorization can be used to express

Equation 28 as follows:

I x0ð Þ5ax0
bjleðQeqÞj2

Z 11

21
dx IN21 x02xð Þ3ILAM xð Þ (30)

where:

ILAMðx0Þ5
X
v ;v

qLAMjh vLAMjv LAM ij2dðje vLAM2evLAM j2x0Þ

IN21ðx0Þ5
X
v ;v

qN21jh vN21jvN21 ij2dðDE1je vN212evN21 j2x0Þ
(31)

The relation given in Equation 30 shows that the final vibronic

spectrum is not simply the sum of the two vibronic spectra, but is given

by the convolution of the spectra of the LAM motion (ILAM) with the

vibronic spectrum of the “N21”-dimensional system (IN21).

3 | METHODOLOGY

3.1 | Electronic structure calculations

All calculations were done with DFT[148] and its time-dependent exten-

sion (TD-DFT)[149–151] for the ground/ionic and excited electronic

states, respectively.

The development version of the suite of quantum chemical programs

Gaussian was used for the vibrational and vibronic simulations.[152]

To choose the most suitable combination of exchange-correlation

functional and basis set, a preliminary group of the currently most pop-

ular functionals were selected (B3LYP,[153] CAM-B3LYP,[154,155]

PBE1PBE (PBE0),[156] LC-xPBE,[157] M06-2X,[158,159] x-B97X,[160] and

B2PLYP[161–163]) and used to compute the vibrational and vibronic

spectra, with thiophene as the reference molecule. The double-f basis

set SNSD,[17,164] which has been extensively validated for several spec-

troscopic properties in the ground[17,165] and excited electronic

states[67,166] has been used, except for the double-hybrid B2PLYP

functional, since the latter has been shown to require a larger basis

set.[26,163,167,168] In this case, a modified version of maug-cc-pVTZ,[169]

where d functions on hydrogens have been removed, was employed.

Since the dispersion correction is expected to play an important role in

the conformational stability of bithiophene[170] Grimme’s type disper-

sion corrections,[171] mainly its D3 formulation[172] in conjunction with

the Becke–Johnson (BJ) damping[173] were used in all DFT calculations

(except for M06-2X-D3 and xB97XD). This preliminary assumption

has been confirmed by comparing the rotational profiles of bithiophene

computed employing dispersion-corrected DFT-D approaches with

standard DFT models.

Whenever suitable, bulk solvent effects have been taken into

account by means of the polarizable continuum model[174] within its

integral equation formalism (IEF-PCM),[175] with the default set of

parameters. The solute cavity has been built as the union of interlock-

ing spheres centered on the atoms with the following radii (in Å): 1.443

for hydrogen, 1.926 for carbon, 2.018 for sulphur, each scaled by a fac-

tor of 1.1. The values of the solvent static and dynamic dielectric con-

stants used are �51:88 and �151:89 for n-hexane. In all cases,

nonequilibrium solvent effects on the VE energies have been computed

with the linear response LR-PCM/TD-DFT approach,[151,176] suitable

to describe the absorption spectra in solution due to the different time

scales of the electronic and nuclear effects.

The setup for the electronic structure calculations was the same

for each functional and basis set combination. All equilibrium structures

have been obtained using tight convergence criteria (maximum forces

and displacements smaller than 1:531025 Hartree/Bohr and 631025

Å, respectively) for geometry optimization. To get accurate results, all

computations were carried out with an ultrafine grid (99 radial shells

and 590 angular points per shell) to integrate the exchange-correlation

kernel.

3.2 | VPT2 calculations

The anharmonic data needed for the VPT2 calculations were obtained

through numerical differentiation along the normal coordinates (step:

0.01
ffiffiffiffiffiffiffiffiffi
amu
p

Å) of analytic harmonic force constants (for the third and

semidiagonal fourth derivatives of the potential energy) and first deriv-

atives of the properties (second and semidiagonal third derivatives).

For a full simulation, where the displacements are done along each nor-

mal coordinate (2N11 geometries including the equilibrium one), some

constants will be computed multiple times (for instance kijk from
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displacements along Qi, Qj, and Qk). In those cases, an average is used

to limit the numerical inaccuracies. At the same time, an automatic pro-

cedure checks the stability of the differentiation process by evaluating

the discrepancies between redundant values.

The DVPT2 energies were then computed using the formulas

given in the theoretical section. To identify the resonances, the follow-

ing thresholds were used,

D122
x 5200 cm21; K12251 cm21;

D222
x 5100 cm21; K222510 cm21;

D121
x 5100 cm21; K121510 cm21; K121

I 51 cm

For hybrid schemes involving harmonic and anharmonic data com-

puted at different levels of theory, data consistency was checked auto-

matically by calculating the overlap between the two sets of normal

coordinates (QH and QA), using the Duschinsky transformation with the

shift vector assumed null:

QH5JQA

The overlap was then checked based on the squared matrix ele-

ments Jik2. A threshold of 90% for each coordinate was required to

consider the two sets consistent.

Raman intensities were computed from frequency-dependent

polarizabilities,[177] using an incident frequency matching experiment

(514.5 nm for the Raman spectrum[87]). The validity of the far-from-

resonance regime was confirmed by comparison of x0 with the energy

of the first excited electronic state.

3.3 | FC vibronic calculations

Vibronic calculations were done with the TD and TI formulations, using

the AH, VH, AS, and VG descriptions of the electronic transitions and

the FC and FCHT expansions of the electronic transition dipole

moment. The method used to compute the spectra will be specified

when discussing the results by indicating the 3 main parameters (ex.:

TD AHjFC).
TI spectra were computed with the class-based prescreening

method discussed in the theoretical section using the following param-

eters: Cmax
1 520; Cmax

2 513; Nmax
I 5108, except for the 1A1  X1A1 tran-

sition of thiophene (Cmax
1 530; Cmax

2 520). TD calculations were done

over a total time of 10211 s with a sampling of 216 points. For the

vibronic spectra of 2,20-bithiophene in Cartesian coordinates, a total

time of 10210 s and a sampling of 220 points have been used to provide

a complete convergence of the integration.

Except where specified otherwise, the band broadening was simu-

lated by mean of Gaussian distribution functions with half-widths at

half-maximum (HWHM) of 100 cm21.

Temperature effects were only included within the TD framework,

at 298 K.

3.4 | One-dimensional scan

The one-dimensional potential energy profiles along the SACAC0 AS0

dihedral angle h of 2,20-bithiophene (see Figure 1) have been obtained

by fully relaxing all other intramolecular coordinates. The profile of the

PES displays a mirror symmetry with respect to h5 180
�
, and this sym-

metry has been used to compute the PES only for values of h between

0 and 180
�
. The rest of the PES, from 180

�
to 360

�
, was then deter-

mined from those data. In all cases, the scan along the torsional angle

has been performed using a step of 10
�
, and the PES has been fitted

with a cubic spline.[178] The DVR-based approach was then applied on

this analytic PES, with 501 DVR basis functions employed in the

expansion of the vibrational wavefunctions. Then, the 50 lowest-

energy eigenvalues have been computed using a Jacobi diagonalization

algorithm.[178]

4 | RESULTS

4.1 | Definition of a suitable model for the electronic

structure calculations

Simulation of vibrational and vibrationally resolved electronic spectra

requires a prior knowledge of the relevant PES and property surfaces

(PS), which can be obtained from different ESQM models. In this work,

the equilibrium and vibrationally averaged structural para-

meters, harmonic and anharmonic vibrational frequencies, photoelec-

tron 2A2  X1A1 spectra of thiophene, together with the S1  S0

OPA spectrum of 2,20-bithiophene and the potential energy scan

FIGURE 1 Selected structural parameters of thiophene (a) and trans-2,20-bithiophene (b) in the ground (green), excited (red), and ionic
(blue) states computed at the CAM-B3LYP-D3BJ/SNSD and TD-CAM-B3LYP-D3BJ/SNSD levels.
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describing the rotation between the two thiophene rings of 2T have

been selected to assess the reliability of the different DFT approaches.

The equilibrium structures have been compared with the so-called

semiexperimental (SE) equilibrium geometry (reqSE),
[179–182] accurate

within 0.001 Å and 0.1 degrees for bond lengths and angles, respec-

tively, taken from a database providing geometries for a large number

of small and medium-size molecules.[181,182] Moreover, the accuracy of

the theoretical vibrationally averaged structures have been evaluated

by comparing the theoretical and experimentally measured rotational

constants (B0).
[183] The computed values have been obtained by cor-

recting the equilibrium rotational constants (Beq) with the vibrational

contributions DBvib obtained from VPT2 computations.[37,39] The mean

absolute errors (MAEs) and maximum absolute deviations (jMAXj)
between each DFT functional and the reference data are reported in

Figure 2.

The most accurate structures, both at equilibrium and with the

vibrational corection, are obtained at the B2PLYP(-D3BJ)/maug-cc-

pVTZ level, with MAE and jMAXj of 0.001 and 0.007 Å, 0.3 and 0.8

deg, and 0.35 and 0.37% for bond lengths, angles, and B0, respectively.

The good performance of double-hybrid functionals have been already

shown for other semirigid systems.[114,181,182,184,185] We note that for

thiophene, the dispersion correction does not introduce structural

changes; however, its inclusion shall be more important for flexible sys-

tems,[170,186,187] as will be shown for bithiophene. Very accurate struc-

tures have been obtained with LC-xPBE/SNSD too, and all other DFT

functionals deliver CAC and CAH bond lengths accurate within 0.01

Å, while larger discrepancies are observed for the SAC bonds, which

are overestimated by 0.013 up to 0.028 Å. The trends observed for the

SAC bond lengths are consistent with the results for B0, with a better

accuracy for CAM-B3LYP(-D3BJ) compared to B3LYP(-D3BJ).

Comparison between theoretical anharmonic and experimental[87]

gas phase fundamental wavenumbers, reported in Figure 3, shows

clearly that the best results, with MAE and jMAXj as low as 5.5 cm21

and 12 cm21, respectively, are obtained with the double-hybrid

B2PLYP/maug-cc-pVTZ model. This very good accuracy is even slightly

improved (MAE55.2 cm21 and jMAXj511 cm21) when the D3BJ dis-

persion correction is included. For the other functionals, B3LYP per-

forms best, with MAE and jMAXj of 8.3 cm21 and 25 cm21,

FIGURE 2 Accuracy of thiophene’s structural parameters com-
puted with different DFT functionals, equilibrium structures (bond
lengths in Å and angles in degrees) compared with the best esti-
mated semiexperimental data (reqSE) from references 181 and 182
and the theoretical rotational constants (B0, in %) compared with
experimental data.[183]

FIGURE 3 Accuracy of anharmonic (m) and harmonic (x) wave-
numbers and anharmonic contributions (Danh) computed with differ-
ent DFT functionals (B2D3 stands for B2PLYP-D3BJ).
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respectively, which are further reduced by about 0.5 cm21 and 4 cm21

with D3BJ. Based on those results and taking into consideration our

own experience, we can conclude that the D3 and D3BJ dispersion

corrections can be recommended for the anharmonic vibrational com-

putations, leading to systematic improvements even for semirigid mole-

cules, which becomes more significant for instance in case of

hydrogen-bonded[188,189] or stacked systems.[190] Interestingly, the

worst performance, with mean and maximum errors of 28 cm21 and

80 cm21, is observed with LC-xPBE-D3BJ/SNSD, which, however,

gave very good geometry structures. This demonstrates that the good

accuracy achieved at the bottom of the well does not guarantee a reli-

able prediction of the PES curvature, so that both aspects need to be

taken into account in spectroscopic studies. Another important aspect

to consider is the relative performance of harmonic frequencies and

anharmonic corrections taken separately, in particular with reference

to hybrid models where the harmonic part can be computed at a higher

level of theory, for instance coupled cluster (CC) or B2PLYP in conjunc-

tion with basis sets of at least triple-f quality.[163,184] In this regard, we

will use the harmonic wavenumbers (x) and anharmonic corrections

(Danh) computed at the B2PLYP-D3BJ/maug-cc-pVTZ (B2D3) level as

the reference (Figure 3). For CAM-B3LYP-(D3BJ) and PBE0-D3BJ, the

lower accuracy for the fundamental transitions can be fully related to

the harmonic part, which is also the case for LC-xPBE-D3BJ. At var-

iance, for M06-2X-D3 and xB97XD, the large discrepancies with

experiment are due to large errors in both harmonic frequencies and

anharmonic corrections, further highlighting that these functionals are

less suitable for vibrational computations.[17,163] The good accuracy of

hybrid schemes combining B2PLYP-D3BJ/maug-cc-pVTZ harmonic

contributions with B3LYP-D3BJ/SNSD or CAM-B3LYP-D3BJ/SNSD

anharmonic corrections is confirmed by comparison with experimental

data in Figure 3, with both models performing on par with the full

B2PLYP-D3BJ/maug-cc-pVTZ anharmonic results, but at a significantly

lower computational cost.

For the computation of vibrationally resolved electronic spectra

we can distinguish two important factors whose combination governs

the overall accuracy of the results: (i) the excitation energy and elec-

tronic transition moments and (ii) the shape of the initial and final PESs.

The first group determines the position of the absolute energy range

and the intensity of the electronic transition, while the second group

influences the magnitude of the overlap integrals and spectral band-

shape. It can be noted that the two sets of data can be computed with

different methods if needed, leading to hybrid ESQM/ESQM’ models

where the vertical properties, computed at one, usually higher level of

theory[26] are combined with PESs obtained from less expensive com-

putations. In the framework of DFT/TD-DFT, it can be also convenient

to combine two different functionals which perform best for each of

the two aspects. The accuracy of DFT models for the prediction of

excitation energies is often performed by comparing the VE energies

with experimentally observed kmax, even though the latter depends on

the band-shape, made of vibronic transitions. For this reason, a more

reliable validation can only be achieved by simulating the band-shape

from the convolution of vibronic transitions, including, where neces-

sary, solvent and temperature effects.[191] Figure 4 compares the TD

AHjFC spectra computed using different DFT functionals, at 298K,

with the experimental photoionization spectra of thiophene.[89] The

good match between the theoretical envelope and experimental band

at about 9 eV suggests that indeed the latter is related to the 2A2

 X1A1 transition as postulated in earlier works.[88,89] Moreover, in

the current case, all functionals predict very similar band positions

(within60.1 eV), all only slightly (0.1–0.3 eV) red-shifted with respect

to the experimental band. It can be also noted that the theoretical

absorption maximum and VE computed at the CAM-B3LYP-D3BJ/

FIGURE 4 Experimental[89] and theoretical photoelectron spectra
of thiophene. TD AHjFC calculations were done for the 2A2  X1

A1 transition at T5298 K with different DFT functionals, using
Lorentzian distribution functions with HWHMs of 1000 cm21 for

the broadening. The vertical bar corresponds to the vertical transi-
tion energy at the CAM-B3LYP-D3BJ level.

FIGURE 5 Theoretical 2A2  X1A1 photoelectron spectra of thio-
phene, at the TD AHjFC level with T5298 K computed with dif-
ferent DFT functionals. The spectral line-shapes have been
convoluted by means of Lorentzian distribution functions with
HWHMs of 75 cm21 and reported on a relative energy scale with
the 0–0 transition as the origin. All spectra have been shifted verti-
cally for better visual comparison.
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SNSD level are displaced by about 0.07 eV, showing that the intrinsic

error related to the simplified comparison, which depends on the sys-

tem and cannot be easily predicted, is of the same order of magnitude

as the differences between the DFT functionals. Nevertheless, it can

be concluded that all DFT functionals lead to the reliable prediction of

the 2A2  X1A1 transition for thiophene. However, this is not always

the case and, for instance, the correct description of Rydberg and

charge transfer states with TD-DFT is more challenging.[192] In this

respect, CAM-B3LYP[193,194] presents a significant improvement over

the standard B3LYP.

Figure 5 reports the same spectra as in Figure 4, but with all

vibronic transitions convoluted with smaller HWHMs to emphasize the

features masked in experimental data. The spectra have been also

reported with energies relative to the 0–0 transition, and shifted on

the vertical scale, to facilitate the qualitative comparison of the band-

shapes obtained with different DFT functionals. It is clear that all spec-

tra are very similar, with the dominant 0–0 transition, followed by an

intense band at about 600 cm21, a group of bands at 1100–

1500 cm21, a doublet at about 1950–2150 cm21, and only lower

intensity transitions at higher energies. All spectra show also a low-

intensity band at about 2600 cm21, which is due to “hot” transitions.

It can be conluded that all DFT models predict reliably the band-shape

of the medium-resolution spectra, while for the high-resolution spectra,

where the accuracy of the band position becomes more critical, the

same observations as for the vibrational energies would apply.

The spectral properties of 2,20-bithiophene are strongly connected

of the potential energy profile of the rotation between the two thio-

phene rings. The potential energy scan along the SACAC0 AS0 dihedral

angle is shown in Figure 6, with particular emphasis on the region close

to the two global minima of trans-2T. Following the results obtained

for thiophene and previous studies,[114,170] B2PLYP-D3BJ will be used

as reference. All methods predict trans-2T to be more stable than

cis22T by about 2 kJ�mol21, with the largest value of 2.34 kJ�mol21

for B2PLYP-D3BJ/maug-cc-pVTZ. From those values, the trans con-

former is expected to be predominant, in particular at low tempera-

tures. Hence, calculations will be done for this conformer. Larger

discrepancies are observed for the barrier along the trans–cis transition

path, which varies from about 7 to 11 kJ�mol21, with the best esti-

mated value at 9.1 kJ�mol21. Large differences are also observed for

the scan close to the trans-2T global minimum. While all methods pre-

dict a double-well type potential, the barrier between the two equiva-

lent, nonplanar equilibrium structures varies significantly. B3LYP and its

dispersion corrected counterpart, as well as PBE0-D3BJ, yield very low

barriers (0.15–0.25 kJ�mol21), possibly below the zero-point vibrational

level, which is, for example, 0.18 kJ�mol21 at the B3LYP/SNSD level.

The best estimated value is three times higher (0.79 kJ�mol21), and

these discrepancies are expected to have significant consequences

with respect to the spectroscopic properties related to the LAM coor-

dinate (vide infra). Among all DFT models, LC-xPBE-D3BJ predicts the

barrier height most similar to B2PLYP-D3BJ, but its minimum structure

is more distorted, a problem encountered also with xB97XD, which

also overestimates the barrier by about 0.15 kJ�mol21. At variance,

CAM-B3LYP(-D3BJ) agrees well with our reference for the SACAC0

AS0 dihedral angle. While CAM-B3LYP underestimates the barrier

between the two minima by about 0.3 kJ�mol21, CAM-B3LYP-D3BJ

performs better, with an agreement within 0.2 kJ�mol21. The torsional

FIGURE 6 One-dimensional scan along the S1AC2AC02 AS01
dihedral angle (h) of 2,20-bithiophene in the ground electronic state
computed with different DFT functionals.

FIGURE 7 Experimental[195] and theoretical S1  S0 OPA spec-
trum computed at the TD AHjFC level using DICs with electronic
structure calculations performed at the B3LYP/SNSD (red line),
B3LYP-D3BJ/SNSD (green line), CAM-B3LYP/SNSD (blue line), and
CAM-B3LYP-D3BJ/SNSD (orange line) level. In each case, Gaussian
functions with an HWHM of 100 cm21 have been used for the
broadening. Solvent effects (n-hexane) have been included by
means of IEF-PCM.
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profiles in n-hexane, described with PCM, show slightly (0.1–0.2

kJ�mol21) lower barriers than in the gas phase, but with analogous

trends for all DFT models.

To conclude this validation procedure, and following this prelimi-

nary study on the potential energy along the SACAC0AS0 dihedral

angle, the S1  S0 OPA spectrum of bithiophene was computed and

compared to experiment.[195] Due to the system size, full vibronic cal-

culations at the B2PLYP level are unfeasible and only the most suc-

cessful functionals up to now, that is B3LYP, CAM-B3LYP, and their

dispersion corrected D3BJ versions were considered. The TD AHjFC
model has been applied to all vibronic simulations to obtain a fully con-

verged band-shape, and DICs[74] have been used to provide a correct

description of the large-amplitude distortion along the SACAC0AS0

dihedral angle. Furthermore, on the base of the previous analysis, all

computations have been performed for the minima associated to the

trans conformer, which is the most stable. To reproduce the experi-

mental conditions,[195] solvent effects (n-hexane) have been included

by mean of PCM and the broadening was simulated with Gaussian dis-

tribution functions with HWHMs of 100 cm21. As shown in Figure 7,

the impact of the choice of the functional is here more relevant in the

reproduction of the VE energy than in the simulation of the band-

shape. The VE energy is underestimated both at the B3LYP and

B3LYP-D3BJ levels, whereas the error is significantly lower for CAM-

B3LYP and CAM-B3LYP-D3BJ, with the absorption maximum kmax

shifted by less than 50 cm21 compared to experiment. Regarding the

band-shape itself, CAM-B3LYP gives the best agreement while B3LYP

produces a narrower band, in particular about the maximum. The

impact of the inclusion of D3BJ seems limited on the low-resolution

spectrum, which is in line with our previous observations on thiophene

regarding the harmonic wavenumbers computed with and without dis-

persion corrections.

In conclusion, considering every aspect influencing the spectra cal-

culations, it is rather clear that, as could be expected, the double-

hybrid B2PLYP-D3BJ with maug-cc-pVTZ outperforms the other con-

sidered models. However, that is also the most expensive approach

and, due to the MP2 contributions, it has larger basis set requirements

too, so its applicability might be limited to the equilibrium structure

and harmonic calculation of the PES for larger molecular systems.

More importantly, several properties, which are widely available for

hybrid-DFT functionals, have not been implemented for double-

hybrids yet, including B2PLYP. Of relevance to the present study are

for instance analytical first derivatives of the polarizability, which are

then differentiated numerically to obtain the anharmonic correction to

the Raman intensities. For those reasons, the CAM-B3LYP functional,

in conjunction with the D3BJ dispersion correction and the SNSD basis

set, has been chosen for the further analysis of the vibrational and

vibronic spectra, taking into account possible improvements via hybrid

models where some elements of the PES and/or PS can be obtained

from double-hybrid B2PLYP-D3BJ/maug-cc-pVTZ computations.

4.2 | Vibrational spectra

The IR and Raman spectra computed with different types of approxi-

mations are compared to their experimental counterparts recorded in

gas phase[85,87,196] in Figures 8 and 9, respectively. The most common

approach, which is also the starting point for more accurate techniques,

is the harmonic approximation (“Harm” in the figures). At this level, all

bands are shifted, with MAE of 43 cm21, the differences being more

pronounced at higher energies resulting in jMAXj over 140 cm21. A

common refinement to improve the overall agreement is to apply a

FIGURE 8 Experimental[196] and theoretical IR spectra of thio-
phene. Spectra from top to bottom correspond to the raw har-
monic spectrum (Harm), the harmonic spectrum with scaled
wavenumbers (Scaled), the anharmonic spectrum with harmonic
intensity (GVPT2 freq.), the full anharmonic band-shape (GVPT2),
and the experimental spectrum (Exp). The theoretical spectral line-
shapes have been convoluted by means of Lorentzian distribution
functions with HWHMs of 2 cm21. All spectra have been shifted
vertically for better visual comparison.

FIGURE 9 Experimental[87] and theoretical Raman spectra of thio-
phene. Spectra from top to bottom correspond to the raw har-
monic spectrum (Harm), the harmonic spectrum with scaled
wavenumbers (Scaled), the anharmonic spectrum with harmonic
intensity (GVPT2 freq.), the full anharmonic band-shape (GVPT2),
and the experimental spectrum (Exp). The theoretical spectral line-
shapes have been convoluted by means of Lorentzian distribution
functions with HWHM of 2 cm21. All spectra have been shifted
vertically for better visual comparison.
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constant, semiempirical factor (here 0.96) to the harmonic wavenum-

bers, leading in the present case to MAE of 15.8 cm21 and jMAXj of
32 cm21 (“Scaled”). Since the higher-energy vibrations, such as X–H

stretchings, are often strongly overestimated, the scaling factors tend

to correct significantly the discrepancies in this zone. As a result, the

improvement is mainly on the CAH stretchings, while in the mid-IR

range, the scaled frequencies become sometimes too low due to an

excessive correction, as for instance clearly visible for the intense IR

band at 840 cm21, and the intense Raman band at 1410 cm21. Fur-

thermore, the scaling factors are generally derived for fundamental

bands, and are likely to perform poorly for higher-quanta transitions,

due to the harmonic approximation used in calculations. Another issue

is that, depending on the complexity of the system, the correction can

be inconsistent, and thus, the reliability of a band assignment based on

the scaled energies may be questionable. A final hurdle to their applica-

tion is that scaling factors need to be derived for each computational

model (DFT functional1 basis set),[197] which means an “ad hoc” para-

metrization whenever a new ESQM approach is to be chosen.[198–200]

A more consistent approach requires a proper inclusion of anharmonic

effects, here by mean of GVPT2 computations (“GVPT2 freq”). As

shown in the benchmark used for the definition of the ESQM model,

the most accurate results are achieved with the hybrid scheme in

which the harmonic part of the PES is computed at the B2PLYP-D3BJ/

maug-cc-pVTZ level and the anharmonic part at the CAM-B3LYP-

D3BJ/SNSD level. A very good agreement with experiment is then

obtained for all fundamental transitions (MAE55.6 cm21,

jMAXj513 cm21), without any semiempirical parameter. Regarding the

problem of resonances, only 2–2 DDRs were identified from the auto-

matic analysis. However, they involved mostly overtones of CAH

stretching modes, beyond 6000 cm21, except for 2 modes correspond-

ing to the in-plane ring deformation at 2800 cm21. As a consequence,

the range of interest for our analysis (mainly between 1000 and

2200 cm21) was not impacted by the problem of resonances in VPT2

calculations. Concerning the accuracy found for thiophene, it should be

noted that those results are in line with previous observations done on

other medium-sized molecules and in particular the fact that the best

agreement is reached with hybrid models where the harmonic part is

computed at the B2PLYP or CC levels with basis sets of at least triple-

f quality, and the anharmonic corrections with (CAM-)B3LYP/

SNSD.[26,114,184,201]

Up to now, focus has been given on improving the vibrational

states’ energies, hence the band positions. To get band-shapes compa-

rable to experiment, it is necessary to treat correctly the transition

intensities as well. As a matter of fact, all nonfundamental transitions

have null intensity at the harmonic level, so several bands are missing

FIGURE 10 Experimental[196] and theoretical GVPT2 IR spectra of
thiophene in the 1000–2000 cm21 range, along with the assign-
ment of the most intense fundamental (green) and nonfundamental
(blue) transitions. “nm” represents the final vibrational state with n
quanta associated to mode m. The theoretical line-shape has been
convoluted by means of Lorentzian distribution functions with
HWHM of 2 cm21.

FIGURE 11 Experimental[87] and theoretical GVPT2 Raman spec-
tra of thiophene in the 1000–2000 cm21 range, along with the
assignment of the most intense fundamental (green) and nonfunda-
mental (blue) transitions. “nm” represents the final vibrational state
with n quanta associated to mode m. The theoretical spectra line-
shapes have been convoluted by means of Lorentzian distribution
functions with HWHMs of 2 cm21.

FIGURE 12 Structural changes between the initial (dark red) and
final (clear blue) electronic states for the (a) 2A2  X1A1; (b) 1A1

 X1A1 transitions of thiophene; and (c) the S1  S0 transition of
2,20-bithiophene. Note that the overlap was chosen to emphasize
the deformation on electronic excitation and does not correspond
to the maximized superposition as done during actual vibronic
calculations.
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in the final spectra. For this reason, scaling factors would be ineffective

and correcting the energies as done before has only a marginal impact

on the intensities. The only way to proceed is through a full anhar-

monic simulation (“GVPT2”). To be consistent with the energies, the

hybrid scheme has been applied to the properties as well. However,

due to the lack of frequency-dependent polarizabilities for B2PLYP,

Raman intensities were computed entirely at the CAM-B3LYP-D3BJ/

SNSD level. The GVPT2 spectra show several new transitions related

to overtones and combination bands, and significant intensity changes

for some fundamental ones. Those effects are best highlighted by a

detailed comparison of IR and Raman spectra in the 1000–2000 cm21

range, presented in Figures 10 and 11, respectively. In fact, for both

spectra, multiple bands are related primarily to some nonfundamental

transitions. Moreover, in some cases, nonfundamental transitions show

higher intensities than the close fundamentals. This is the case of the

14 fundamental with the 110120 combination band in the IR spectrum

at about 1370–1390 cm21 and 117 with 19111 at about 1480–

1500 cm21 in the Raman one. In such situations, the analysis may be

incorrect if only fundamental transitions are considered or if they are

favored for the assignment. In fact, it has been already shown that

some corrections to previous assignments might be necessary based

on the fully anharmonic computations.[202] The detailed list of all exper-

imentally observed IR and Raman transition of thiophene compared to

theoretical results is reported in Table 1, in most cases confirming pre-

vious experimental assignments. Some corrections can be proposed in

the spectral ranges where several overtones or combination bands

match closely the observed experimental energy. Indeed, in such situa-

tions it is very difficult to perform the assignment based solely on the

TABLE 1 GVPT2 fully anharmonic wavenumbers (m, in cm21), IR
intensities (IR, in km�mol21), and Raman activity (RA, in Å6) com-
pared to gas phase experimental data[87]

Final state m IR RA3102 Exp. IR Exp. Raman

121 457 0.93 2.47 452 452

111 573 0.00 0.87 564

18 613 0.03 18.98 609 609

110 680 0.00 2.83 683

120 718 136.69 0.40 712

118 753 0.61 10.02 754

17 840 21.92 42.88 840 840

119 865 0.01 3.66 867

117 874 1.17 0.10 873 873

19 905 0.00 1.10 900

221 914 0.09 0.05 904

16 1045 3.06 27.77 1036 1037

15 1090 3.40 23.63 1082 1082

112 1091 4.36 12.19 1085

211 1145 0.06 1.15 1129

120121 1174 0.01 0.51 1163

28 1225 0.01 0.07 1216

110111 1254 0.04 0.07 1248

115 1257 10.01 0.22 1256

111120 1290 0.22 0.00 1274

119121 1322 0.03 0.15 1317

210
a 1359 0.83 13.41 1359 1359

14
a 1366 0.84 9.70 1372 1372

110121
b 1395 3.62 0.01 1394

13 1407 6.57 101.91 1410 1410

220 1435 0.20 4.61 1423

1718 1452 0.04 0.62 1448

19111 1478 0.14 0.70 1464

114 1503 0.05 0.06 1510

110119 1542 2.23 0.00 1546

110117 1553 0.08 0.02 1554

119120 1580 2.65 0.02 1575

19110 1585 2.13 0.04 1583 1583

117118 1625 0.15 0.04 1625

27 1678 0.06 0.05 1677

1518
b 1702 0.08 0.01 1690

219 1728 0.59 0.53 1729 1729

217 1747 0.02 0.32 1744

19119 1766 2.21 0.04 1762

19117 1778 0.11 0.01 1773

29 1808 1.94 1.42 1798 1798

16117
b 1918 0.14 0.03 1921

1418
b 1978 0.09 0.01 1980

111114
b 2075 0.01 0.01 2069

26
b 2088 0.08 0.17 2083

131
b
20 2116 0.07 0.00 2118

TABLE 1 (Continued)

Final state m IR RA3102 Exp. IR Exp. Raman

14118
b 2124 0.16 0.01 2121

115117 2130 0.01 0.14 2127

13118
b 2160 0.04 0.07 2167

15119
b 2182 0.96 0.00 2190

115119
b 2345 0.24 0.03 2337

114117 2374 0.16 0.16 2381

19114 2405 0.09 0.22 2408

1315 2493 0.06 0.02 2488

15114
b 2588 0.19 0.00 2588

24 2727 0.02 0.15 2726 2726

1314 2766 0.06 0.59 2769

23 2803 0.24 1.50 2810 2809

13114 2889 0.02 1.32 2903 2903

214 2993 0.22 2.01 3009 3009

113 3093 2.16 55.86 3087 3086

12 3105 2.93 74.01 3097 3097

115 3137 0.27 2.35 3125

11 3139 1.38 147.27 3126 3126

a Fundamentals and overtones involved in FR observed experimentally.
b Reassigned in this work based on the anharmonic intensities.
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match between the estimated and observed band positions (even with

selection rules based on symmetry when possible). For instance (see

Table 2), there are 7 transitions within 2116–2130 cm21 matching

three close-lying bands at 2118 cm21, 2121 cm21, and 2127 cm21 or

four transitions within 2178–2182 cm21 to match a band at

2190 cm21. In all those cases, once the intensity of the nonfundamen-

tal transitions is known, the assignment is straightforward. As an exam-

ple, the band at 2190 cm21 observed in the IR spectra can be assigned

to 15119 with significant IR intensity, and the band at 2127 cm21

observed in Raman spectra to 115117, which shows a strong Raman

intensity. Such a procedure has been already applied for the detailed

assignment of spectra, also in the near IR region, where only nonfunda-

mental transitions are present.[52,114,203]

On the whole, we can conclude that for thiophene, GVPT2 com-

putations lead to an excellent agreement with the IR and Raman exper-

imental data, for both the band positions and relative intensities of all

transitions including, in addition to fundamentals, also overtones and

combinations, leading to total MAE and jMAXj for the 66 analyzed

transitions of 6.0 cm21 and 16.8 cm21, respectively. The results

described above demonstrates how several spectroscopic techniques

can be combined within the same computational framework, increasing

the reliability of the analysis of experimental data. It should be empha-

sized that in case of chiral molecules, integrated studies combining sev-

eral spectroscopic techniques can be further extended to VCD and

ROA measurements, along with the anharmonic analysis of the corre-

sponding simulated spectra, allowing a more complete and accurate

picture of the vibrational properties.[29]

4.3 | Electronic spectra

To illustrate some of the difficulties, which can be faced when simulat-

ing electronic spectra, three types of transitions have been considered,

each one accompanied by structural changes of increasing magnitude,

depicted in Figure 12, namely the photoionization 2A2  X1A1 and

valence electronic 1A1  X1A1 transitions of thiophene and the S1

 S0 transition of 2,20-bithiophene.

4.3.1 | Small structural changes: 2A2  X1A1

transition of thiophene

The 2A2  X1A1 photoelectron spectrum of thiophene corresponds to

the smallest structural changes on electronic excitation (ionization),

mainly related to the 60.55 Å elongation of the C2AC3/C4AC5 bonds

and shortening of the C3AC4 one (see Figure 1), resulting in an inver-

sion of the bond order, in agreement with previous theoretical investi-

gations.[88] Nevertheless, both ground- and ionic-state equilibrium

structures are planar and overlap strongly as shown in Figure 12, repre-

senting a suitable example to discuss the performance of the different

theoretical approaches available within the FC principle. The spectral

FIGURE 13 Low (a) and medium (b) resolution spectra of the 2A2

 X1A1 transition of thiophene, simulated within the TI framework
based on Cartesian coordinates with the FC approximation and the
vertical gradient (VG), Vertical Hessian (VH), Adiabatic Shift (AS),
and adiabatic Hessian (AH) models at the CAM-B3LYP-D3BJ/
SNSD level, at 0 K. Internal coordinates (AH Int) and the special
case “AH J5 I” are also considered. The theoretical spectral line-
shapes have been convoluted by means of Lorentzian distribution
functions with HWHM of 500 cm21 and 75 cm21, respectively.

TABLE 2 GVPT2 fully anharmonic wavenumbers (m, in cm21), IR
intensities (IR, in km�mol21), and Raman activity (RA, in Å6) for all
transitions up to the 2 quanta in the 2100–2200 cm21 range, com-
pared to gas phase experimental data[87]

Final state m IR RA3102 Exp. IR Exp. Raman

18114 2115 0.02 0.01

14118 2116 0.16 0.01 2118

115119 2122 0.00 0.05

13120 2124 0.07 0.00 2121

115117 2130 0.01 0.14 2127

16119 2135 0.01 0.06

15119 2135 0.19 0.07

13118 2160 0.04 0.07 2167

19115 2162 0.01 0.01

110114 2179 0.05 0.00

25 2181 0.08 0.03

15119 2182 0.96 0.00 2190

219 2182 0.06 0.04

1417 2204 0.06 0.06
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band-shapes obtained with different models for the description of the

initial and final PESs (computed at the CAM-B3LYP-D3BJ/SNSD level)

are presented in Figure 13. The vibronic transitions were all computed

within the FC approximation using the TI formulation, with a total con-

vergence of the spectrum of nearly 100%. Lorentzian broadening func-

tions were used for the convolution with larger (500 cm21) and smaller

(75 cm21) HWHMs, to simulate the low and medium-resolution spec-

tra. The low-resolution spectra are presented in an absolute energy

scale, highlighting the shifts between the bands. The differences are

related to the position of the 0–0 transition, which also include a con-

tribution from the ZPVE of the initial and final states. AH represents

the most accurate description in this case. Two factors can influence

the value of the 0–0 transition energy. In vertical models (VH and VG),

the PES minimum is extrapolated by assuming a parabolic form. More-

over, for VH, the frequencies are computed outside the minimum,

which may induce some further approximations. A second aspect is

that the vibrational contribution is null when the PESs are assumed

equal (AS and VG). In the present case, these differences are rather

small, and all models predict the bands to be blue-shifted (by 0.03–

0.06 eV; 230–500 cm21) with respect to the reference AH model. The

most shifted band-shape is obtained for VH, which can be related to

the extrapolation of the PES minimum. VG performs better, most likely

because of some error compensation between the extrapolation and

the approximation on the excited-state PES, and has a shift similar to

AS, which differ from AH only by the lack of contribution from the

ZPVEs to the 0–0 transition energy. It is interesting to note that it is

not possible to assess a priori if the neglect of the difference between

the ZPVEs, as well as the PES extrapolation, will lead to a red- or blue-

shift of the 0–0 transition as it depends on the system and changes in

the structure or the vibrational frequencies on excitation. However, in

the present case, all models lead to very similar low-resolution spectra.

In particular, all predict the same band position and envelope, in good

agreement with the experimental band at about 9 eV, as already

pointed out.

The medium-resolution spectra are reported with energies relative

to the 0–0 transition, and shifted on the vertical scale, to facilitate the

qualitative comparison between band-shapes obtained with the differ-

ent models used before. To provide further insight to the PES changes

between the two electronic states, the HR factors,[138] which are

closely related to the shift vector as shown in the theoretical section,

and the Duschinsky matrices (J) are reported in Figures 14 and 15,

respectively. The largest HR factors are associated to the same normal

modes, indicating that all approaches reproduce the same trends for

the geometrical changes on ionization. The main difference between

the vertical and adiabatic models is related to mode 11 (t6 in Table 3),

which corresponds to an in-plane ring deformation. However, more

important effects, related to the changes in the normal modes, should

FIGURE 14 Huang–Rhys factors for the 2A2  X1A1 transition of
thiophene, simulated within the TI framework based on Cartesian
coordinates with the FC approximation and the VG, VH, AS, and
AH models at the CAM-B3LYP-D3BJ/SNSD level. Internal coordi-
nates (AH Int) and the special case “AH J5 I” are also considered.

FIGURE 15 The Duschinsky matrix J for the 2A2  X1A1 transition of thiophene, simulated with the VH and AH (both based on cartesian
and internal coordinates) models at the CAM-B3LYP/SNSD level. The matrix is displayed as follows: a gray scale is used to represent the
magnitude of each element of the matrix (Jki2), with a white square for a near-null value and a black square for 1. Hence, a mode mixing
will be displayed as a block of gray elements.
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be expected. The correct Duschinsky matrix, obtained at the AH level,

is clearly nondiagonal, reflecting important mode-mixings. At variance,

J obtained at the VH level is nearly diagonal, while all other models

directly assume that J is the identity matrix. In fact, neglecting the

normal-mode mixing (as done in “AH J5 I”) leads to changes in the

spectral band-shape, in particular in the 1000–2000 cm21 range, where

the AH model predicts a doublet of bands of medium intensity and all

other models a single, more intense band. These differences indicate

clearly that the mode mixing can play an important role even for sys-

tems not undergoing significant structural changes on excitation,[204]

and should not be readily discarded if accurate band-shape or high

resolution spectra are required. Conversely, for low-resolution spectra,

the VG model represents a cost-effective way to account realistically

for the band envelopes. It should be noted that, for spectra encom-

passing several electronic states, the band envelopes can vary strongly

between transitions, with the overall band-shape made of their sum,

which can lead to destructive effects in chiroptical spectroscopies, so

the relative band-widths and intensities need to be correctly taken into

account for a comparison with experiment.[28,205–207] As a concluding

remark, the AH spectra computed in Cartesian and internal coordinates

are identical, validating the use of the simpler, Cartesian-based model

for the electronic transitions of systems, which do not undergo large

structural changes.

4.3.2 | Marked structural changes: 1A1  X1A1 transition

of thiophene

The structural changes on electronic excitation in thiophene are signifi-

cantly more pronounced for the 1A1  X1A1 transition as shown in

Figures 1 and 12. This lowest valence excitation leads to a nonplanar

structure of thiophene, accompanied by an elongation of the SAC and

C2AC3/C4AC5 bonds and a shortening of the C3AC4 one, by 10.03,

10.08, and 20.06 Å, respectively, while the CASAC angle decreases

by 5 degrees. In view of the high resolution of the photoelectron meas-

urements,[89] the theoretical spectra were computed with the AH

approach, including also the correction for the anharmonicity. The lat-

ter was done using Equation 20, with the anharmonic frequencies of

the ground state computed at the hybrid B2PLYP-D3BJ/maug-cc-

pVTZ//CAM-B3LYP-D3BJ/SNSD, like for the vibrational spectra. The

results are reported in Table 3. Before analyzing the theoretical and

experimental spectra presented in Figure 16, it should be noted that,

TABLE 3 Harmonic and anharmonic fundamental wavenumbers (in cm21) in the ground (X1A1) and excited (1A1) electronic states of
thiophene

Mode number X1A1 state 1A1 state

harma anhb assignment harmc anhd assignmente

1 463 457 t21 198 176 0.44t1010.38t11

2 584 573 t11 326 322 t21

3 624 613 t8 425 378 0.47t1810.23t10

4 711 680 t10 506 415 0.47t810.25t20

5 735 718 t20 521 512 0.55t2010.36t8

6 766 753 t18 682 656 0.37t2010.33t1110.21t10

7 856 840 t7 714 672 0.79t1710.14t20

8 892 865 t19 792 782 0.81t7

9 910 874 t17 793 719 0.64t1910.10t710.10t18

10 944 905 t9 878 864 0.82t910.10t10

11 1064 1045 t6 985 960 0.73t1910.10t17

12 1111 1090 t5 1052 1025 0.79t510.11t6

13 1114 1091 t12 1111 1098 0.74t610.17t5

14 1291 1257 t15 1200 1147 0.68t1510:13t1410:12t12

15 1417 1366 t4 1260 1181 0.62t410.30t3

16 1481 1407 t3 1360 1319 0.70t1410.22t15

17 1593 1503 t14 1535 1441 0.54t310.32t4

18 3225 3093 t13 3167 3039 0.60t110.30t15

19 3238 3105 t2 3168 3042 0.60t1510.30t1

20 3272 3137 t15 3220 3089 0.90t13

21 3275 3139 t1 3236 3105 0.90t2

aFrom CAM-B3LYP-D3BJ/SNSD computations.
bFrom GVPT2 hybrid B2PLYP-D3BJ/maug-cc-pVTZ//CAM-B3LYP-D3BJ/SNSD computations.
cFrom TD-CAM-B3LYP-D3BJ/SNSD computations.
dObtained with the mode-specific scaling scheme (see text for details).
eExcited state normal modes expressed as combinations of those from the ground state using the Duschinsky transformation. Terms with Jki2 larger
than 0.1 are listed.
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although one broad band is observed in the absorption spectrum

between �5 and 6.4 eV, magnetic circular dichroism (MCD) measure-

ments[208] have revealed two bands (of different polarizations), with

absorption maxima at 5.33 and 5.70 eV. The second valence transition,

not considered in our example, contribute to the spectra intensities at

higher energies.

The fully converged (at 98%) theoretical spectrum computed at

the TI AHjFC level using Cartesian coordinates has a very low intensity

compared to experiment in the energy window beyond 5.2 eV, so even

below the maximum of the first valence band based on MCD experi-

ments. This effect cannot be attributed to the HT correction since both

AHjFC and AHjFCHT spectra computed in Cartesian coordinates show

very similar band-shape. At variance, the TI AHjFC computations using

DICs, fully converged as well (beyond 99%), show very good agree-

ment with the experimental band profile up to about 5.5 eV, so where

the contributions from the second valence state are expected to arise.

It is interesting to note that spectra computed with Cartesian and DICs

are essentially identical at lower energies, which also correspond to

smaller displacements from the equilibrium structures, and diverge at

higher energies, so associated to regions more distant from the PESs

minima.

The good agreement with experimental findings, which, to the

best of our knowledge, also represents the first direct comparison

between simulated vibrationally resolved spectra and high-resolution

measurements on this molecule,[89] allows us to suggest some alterna-

tive interpretations. First of all, the absorption band at 5.156 eV was

attributed until now to the origin of the 1A1  X1A1 transition,[209]

with the weak bands below this energy tentatively associated to the

transition to the 1B2 state. Our simulation predicts that the intensity of

the 0–0 transition is very low, and corresponds to a band at the limits

of the experimental measurements (at about 4.9 eV). Thus, no other,

lower-lying excited electronic state is needed to describe the weak

bands below 5.1 eV, which are in fact related to the 1A1  X1A1 tran-

sition. These results are in agreement with the most accurate theoreti-

cal predictions showing that 1A1 is the lowest excited electronic

state,[89] as well as with suggestions that the vibronic structure of the

transition to the 1B2 state might not be observable due to its unbound

character.[210] In a similar way, a previous study based on a full-

dimensional AHjFC model allowed us to correct an assignment of the

low-intensity 0–0 transition for the phenyl radical.[204] Finally, we note

that our simulation does not confirm the assignment of the vibronic

structure in the 5.1–5.6 eV range from reference 89, where the most

intense bands, displaced by about 0.119 eV (960 cm21) have been

attributed to the progressions of t6, starting from j16 i. Instead, the
most intense bands in the theoretical spectra are due to the progres-

sions of modes 5 and 7 of the excited electronic state, which in turn

can be described as the combination of the ground state modes

t20; t17, and t8 (see Table 3). These results confirm further that the

direct simulation of vibrationally resolved electronic spectra is a valua-

ble help for the proper analysis of experimental results.

4.3.3 | Large amplitude changes: S1  S0 transition

of 2,20-bithiophene

The preliminary study on 2T for the definition of the most suitable

ESQM models can now be used to analyze more in detail the vibronic

properties of this system. To this end, we will focus on the OPA and

OPE spectra for transitions involving the S0 and S1 states. As shown in

Figure 12, trans-2T is planar in the S1 state, and nonplanar in S0, which

corresponds to values of the dihedral angle S1AC2AC02 AS01 of 180

and �155� , respectively. Therefore, the electronic excitation is accom-

panied by a large-amplitude distortion and, similarly to the 1A1  X1A1

spectrum of thiophene, the choice of the coordinate system used in

FIGURE 16 Theoretical 1A1  X1A1 spectra of thiophene, com-
pared to the experimental electronic spectrum in the 4.8–5.8 eV
range from reference 89. (a) The theoretical spectra have been
simulated using Cartesian and delocalized internal (DIC) coordi-
nates within the TI AHjFC and AHjFCHT models. Anharmonic cor-
rection to the (TD-)CAM-B3LYP-D3BJ/SNSD harmonic frequencies
were done on with a hybrid scheme, using the ground-state funda-

mental energies computed at the B2PLYP-D3BJ/maug-cc-pVTZ//
CAM-B3LYP-D3BJ/SNSD level (see text for details). The line-
shapes have been convoluted by means of Lorentzian distribution
functions with HWHMs of 75 cm21. (b) Assignment has been done
for a selected set of vibronic transitions (stick spectrum), where
“nm” represents the final vibrational state with n quanta associated
to mode m. The normal mode numbering correspond to the excited
electronic state (see Table 3).
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the simulation is expected to be relevant to reproduce correctly the

vibronic spectrum.[74,211]

The theoretical OPA spectra, computed at the TD AHjFC level

using Cartesian and DICs, are reported in Figure 17, together with the

experimental spectrum, taken from reference 195. The TD approach

has been used in all cases since, for flexible systems such as bithio-

phene, the convergence of the prescreening scheme used in TI compu-

tations can be slow, especially when mode-mixing effects are relevant,

such as when cartesian coordinates are employed. Conversely, the TD

approach ensures a full convergence of the band-shape also in those

cases. As expected, the spectra obtained with the two kinds of coordi-

nate systems are very different, the shape being significantly broader

FIGURE 18 Graphical representation of the Sharp and Rosenstock C matrix computed for the CAM-B3LYP-D3BJ level for the S1  S0
transition in n-hexane (simulated with PCM) of trans-2,20-bithiophene computed using cartesian (left panel) and DICs (right panel).

FIGURE 17 Theoretical S1  S0 OPA spectrum of 2,20-bithiophene computed at the CAM-B3LYP-D3BJ/SNSD level using cartesian (red
line) and delocalized internal (DIC, green line) coordinates at the TD AHjFC (solid lines) and ASjFC (dashed lines) level, together with the
experimental spectrum, taken from reference 195. Gaussian functions with an HWHM of 100 cm21 have been used to reproduce broaden-
ing effects. PCM (n-hexane) has been used to reproduce solvent effects.
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with Cartesian coordinates than with DICs. Another important aspect

is that, while the spectra have been normalized to facilitate the com-

parison of the band-shape, the intensity is also halved with Cartesian

coordinates. The spectrum is computed at the FC level, therefore the

difference between Cartesian and internal coordinates is directly con-

nected to the definition of the Duschinsky transformation. In general,

the poor representation of a LAM as a linear combination of Cartesian-

based modes results in a significant number of elements of the shift

vector K with large magnitude, including modes different from the tor-

sional one. For the same reason, unphysical, large off-diagonal cou-

plings in the Duschinsky matrix between the torsion and other modes

are present. Even if, in principle, the larger vibronic broadening in Car-

tesian coordinates is caused by both effects (large shift and mode mix-

ing),[74] for 2T, the main source of inaccuracy is the definition of J. The

impact of mode mixing is highlighted in Figure 17, where the spectra

computed at the ASjFC level, therefore neglecting the mode-mixing

effects, and at the AHjFC level are compared. The AS spectra are sig-

nificantly less broadened than the AH ones, even though the same

Gaussian broadening functions with HWHMs of 100 cm21 have been

used. Therefore, mode-mixing effects are relevant, since they enhance

the intensity of a large number of vibronic transitions, at the expense

of the intensity maximum, which is lowered. Anyway, even at the AS

level, the agreement between the theoretical spectrum based on Carte-

sian coordinates and the experimental one[195] is still unsatisfactory

since, for example, the intensities of the lower energy transitions are

overestimated. Conversely, the agreement is better both at the AH and

AS levels if DICs are used. Following our previous works, the couplings

effects between the final-states modes, which contribute to the inten-

sity of the combination bands, has been evaluated for each kind of

coordinate system from the magnitude of the elements of the Sharp

and Rosenstock C matrix.[74] The graphical representation of C for 2T

in Cartesian and DICs, reported in Figure 18, confirms that, if the latter

are used, the torsional mode (corresponding to mode 1 in the plot of

FIGURE 19 PES of the S0 state of trans-2,20-bithiophene obtained after a relaxed scan along the dihedral angle between the thiophene

rings (black line), computed at the B3LYP/SNSD and CAM-B3LYP-D3BJ/SNSD levels of theory. The vibrational energies of the first five lev-
els, obtained from the DVR approach, are reported as horizontal, dotted lines, together with their respective wavefunctions (solid lines).

FIGURE 20 PES of the S1 state of trans-2,20-bithiophene obtained
after a relaxed scan along the dihedral angle between the thio-
phene rings (black line), computed at the CAM-B3LYP-D3BJ/SNSD
level of theory. The vibrational energies of the first five levels,
computed using the DVR approach are reported as horizontal, dot-
ted lines, together with their respective vibrational wavefunctions
(solid lines).
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the matrices) is nearly uncoupled from the others, whereas significant

couplings are present with the high-frequency modes when Cartesian

coordinates are employed.

To improve further the accuracy of the theoretical results, the

DVR-based anharmonic approach presented in the theoretical section

has been used to describe the torsional motion along the dihedral angle

h between the two rings. Among the various high-resolution spectra

available in the literature,[86,195] the laser-induced fluorescence (LIF)

spectrum of 2T[86] will be used as a reference. In addition to our refer-

ence ESQM model, CAM-B3LYP-D3BJ, which is expected to provide

the most accurate results, the low-barrier PES obtained from the

B3LYP computations (see Figure 6) has been selected to show some

effects of the barrier height on the vibrational energies and the overall

spectroscopic properties. The PES of the S0 electronic state obtained

through a relaxed scan along the angle h, is reported at both levels in

Figure 19, as a function of the IRC parameter s. The vibrational ener-

gies and wavefunctions for the first five states obtained with the DVR-

based approach are also plotted about the two minima of the trans

conformers (s between 2.4 and 3.8 amu1=2�Bohr). In practice, the DVR

computations have been performed considering h between 0 and 360
�

(s between 0 and 6.28), but the remaining part of the PES is much

higher in energy and not critical to our discussion since the lowest-

energy vibrational wavefunctions associated to the LAM are nearly

vanishing in that part. The two PES shown in Figure 19 differ strongly

for the height of the energy barrier, which has a strong impact on the

vibrational energies, with two possible limit cases. If the vibrational

energy is small with respect to the barrier, two nearly degenerate vibra-

tional levels are present, corresponding to functions localized in each

well. Due to the symmetry of the PES, the final vibrational wavefunc-

tions are the symmetric and antisymmetric linear combinations of the

wavefunctions localized around the two minima, and the splitting

between those two levels is small. This condition is met for the vibra-

tional ground state computed at the CAM-B3LYP-D3BJ level, where

the barrier (42.57 cm21) is larger than the vibrational energies of the

first two vibrational states (15.20 and 15.50 cm21), so the splitting

between them is negligible (0.30 cm21). For the second and third vibra-

tional levels, the splitting increases and the degeneracy of the states is

lifted, since the vibrational energies (39.00 and 44.82 cm21) are in this

case comparable to the height of the barrier. Regarding the other PES,

due to the low barrier height, the energy splitting for the vibrational

ground state (3.11 cm21) is overestimated with respect to experimental

data (�1 cm21).[86]

To compute the FC factors for the LAM, the PES along the tor-

sional angle h was also computed at the TD-CAM-B3LYP-D3BJ/SNSD

level for the S1 state, with the results reported in Figure 20. The shape

of the S1 PES is significantly different from S0 due to the presence of a

single planar equilibrium structure. Therefore, the vibrational levels are

nearly equally spaced (the computed spacing between the first two

vibrational levels is 98 cm21), with a spacing larger than for S0, since

the PES of S1 is significantly steeper.

The OPE spectra along the torsional motion are compared to the

experimental LIF measurements[86] in Figure 21. Computations were

done by both ground and first vibrational excited levels of S1 as origins

of the transitions, since the experimental vibronic progressions were

recorded separately for those two cases. Considering the vibronic

spectrum from the vibrational ground state (upper panel of Figure 21),

the agreement in the band positions is very good for the first transi-

tions, but the computed ones tend to be too low at higher quanta.

Except for the lowest energy transition, the relative intensities are also

qualitatively comparable to experiment, reproducing the trend in the

FIGURE 21 Theoretical S1 ! S0 OPE spectra trans-2,20-bithio-
phene computed at the CAM-B3LYP-D3BJ (green line) level from
the ground (upper panel) and the first excited (lower panel) vibra-
tional levels of the S1 electronic state. The experimental LIF spec-
trum, taken from reference 86, is also reported.

FIGURE 22 Theoretical S1 ! S0 OPE spectra trans-2,20-bithio-
phene computed at the TI AHjFC level of theory using delocalized
internal (green lines) and Cartesian coordinates (red lines) for the
reduced-dimensionality system, where the torsional mode is
neglected (dashed lines), and for the hybrid DVR-harmonic scheme
(solid line). The experimental spectrum has been taken from refer-
ence 90.
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band pattern. The discrepancies between the theoretical and experi-

mental results can be ascribed to the limitations of our DVR approach.

First of all, the description of the S1 PES is less accurate, since it is

sampled at the nuclear configurations obtained for the scan of the

relaxed S0 state. The use of more refined coordinates, such as the ones

obtained through a relaxed scan on the S1 state, would require the

extension of our DVR-based model to a multidimensional problem.

Anyway, the description of the S1 PES only determines the intensities

of the vibronic bands, whereas the main inaccuracy concerns the posi-

tion of the bands. A second major assumption is the use of the adia-

batic approximation to uncouple the LAM from the other normal

modes. For 2T, this coupling may be large especially for the higher

energy levels of S0, for which the reproduction of the vibrational ener-

gies is less accurate. The situation is more complex for the transitions

from the first excited vibrational state, where the band energies seem

systematically underestimated and their relative intensities overesti-

mated. However, the improvement is significant especially if compared

with the results obtained using the harmonic approximation, which pre-

dicts a constant spacing of 40 cm21 between the levels. The quality of

the results is significantly worse also if a PES with an underestimated

energy barrier between the two minima is employed, such as the one

computed at the B3LYP level (reported in Figure 19). In fact, as shown in

the lower panel of Figure 21, the reproduction of the band position is in

this case poor, and does not allow to assign univocally all the bands. Those

results show that the DVR-based approach, when coupled with an accu-

rate description of the PES, provides a significantly better characterization

of large-amplitude motions. However, this model may need to be refined

on several aspects, such as the support of multidimensional problems or

the inclusion of coupling terms between the LAM and the other modes,[81]

to further increase its accuracy.

The results shown above have been used to simulate the full OPE

spectrum of 2T using the hybrid DVR-harmonic approach presented in

the theoretical section, and the results are reported in Figure 22. The

vibronic spectra have been computed at the TI AHjFC level for the

“N21” harmonic modes, explicitly excluding the mode associated to

the LAM, which has been treated at the DVR level. The vibronic spec-

trum for the “N21” modes has been convoluted with the progressions

due to the LAM to obtain the full spectrum. As remarked in the previ-

ous section, the TD approach would be better suited to treat flexible

systems such as 2T. However, to convolute the “N21” spectrum with

the LAM-specific one, the intensity of the individual vibronic transitions

needs to be known, and therefore the TI approach must be employed.

In this case, the convergence is high both in cartesian coordinates

(85%) and in DICs (99%), and this ensures the reliability of the TI

results. As shown in Figure 22, the agreement is satisfactory for the

spectrum computed using DICs, whereas it is poor with Cartesian coor-

dinates. Those results show that, if the LAM is strongly coupled to the

other “N21” modes, such as when Cartesian coordinates are used, the

accuracy is unsatisfactory independently of the method used to

describe the LAM. A more accurate reproduction of the experimental

spectrum is obtained using DICs, since in this case the coupling

between the LAM and the other modes is negligible, increasing the

accuracy of the hybrid DVR-harmonic approach. The spectrum

obtained using DICs has been compared also to the one obtained

including only the “N21” harmonic block, and neglecting the vibronic

transitions involving the LAM. As shown in Figure 22, the two spectra

are nearly superimposable. As a matter of fact, to reproduce the experi-

mental broadening, Gaussian functions with HWHMs of 200 cm21

have been used. This value is much larger than the separation between

the vibrational levels of the LAMs, and therefore the convolution of

the vibronic transitions involving the LAM is equivalent to an overall

broadening of the vibronic spectrum obtained for the “N21” harmonic

block. Such a conclusion is however only true for low-resolution spec-

tra, since, when high-resolution spectra are simulated (such as for the

LIF spectrum described above), an explicit inclusion of the vibronic

transitions of the LAM becomes mandatory.

4.4 | Extension to new cases studies:

Some illustrative examples

The protocol presented above can be applied to a wide range of molec-

ular systems and spectroscopies. Here, we will illustrate some addi-

tional kinds of studies, regarding chiral spectroscopies and rotor-like

molecules, which have one or more low-energy torsional modes.

The computational protocol to follow for electronic or vibrational

chiral spectroscopies is very similar to what has been described above.

An important difference, however, is that they depend on multiple

properties. In addition to requiring some specific theoretical and algo-

rithmic developments, mentioned before (see references 16 29 50 and

67 for details), a critical aspect of the simulation of chiral spectra is that

band intensities and transition probabilities, related to the overlap inte-

grals between the vibrational states, are often disconnected. For this

reason, the reliability of the methods, used to detect resonances in

FIGURE 23 Theoretical p�  n ECD spectrum of 1A conformer of
(Z)-8-Methoxy-4-Cyclooctenone in the 340–240 nm range, com-
pared to experiment in hexane solution taken from reference 212.
The theoretical spectra have been simulated with the TI AHjFC
and AHjFCHT models at the TD-CAM-B3LYP/aug-N07D/C-PCM
level.[67] The line-shapes have been convoluted by means of Lor-
entzian distribution functions with HWHMs of 250 cm21.
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anharmonic calculations or select the most intense vibronic transitions

for instance, become critical as a validation done a posteriori on the

results is generally not obvious. To illustrate another interesting peculi-

arity, we will focus on vibronic spectroscopy, and in particular elec-

tronic circular dichroism (ECD). When defining the computational

model, a common way to choose between FC and FCHT is to look at

the oscillator strength from the electronic calculations. For fully

allowed transitions, FC can be sufficient, while for weakly allowed or

dipole-forbidden ones, FCHT is necessary. However, such considera-

tion does not hold for chiral spectra. The ECD intensity is related to

the rotatory strength RI;F5=fh vIjlejvF ih vF jmejvI ig, with m the mag-

netic dipole. At the FC level, the transition moments are constant and

the ECD spectrum is a scaled OPA spectrum. This is not anymore true

at the FCHT level since the products between the properties and their

derivatives, which can be positive or negative, will scale differently the

contributions of the HT (dle=dQi � dme=dQj) terms and mixed FC-HT

terms (le � dme=dQi and dle=dQi �me). An important aspect is that,

even for fully allowed transitions, the FC contributions can be negligi-

ble if the transition moments of the electric and magnetic dipoles

moments are near orthogonal (leðQeqÞ � =fmeðQeqÞg � 0). As an exam-

ple, let us consider the case of (Z)28-Methoxy-4-Cyclooctenone

(MCO)[67] where one broad band is observed in the 340–250 nm range

of the experimental OPA spectrum in hexane solution, but a more com-

plex pattern is present in the ECD one.[212] The OPA spectrum is satis-

factorily described as the p�  n transition of the 1A conformer

computed at the TI AHjFC level (full convergence), but this is not the

case for ECD, as shown in Figure 23. At this level, a single, broad nega-

tive band is present, compared to the two, positive and negative, nar-

rower bands from experiment. By including HT contribution

(AHjFCHT), a correct pattern is obtained, with the right sign change in

the band-shape. Those results indicate that, for MCO, inclusion of the

HT contributions was necessary to reach at least a qualitative agree-

ment with experimental data. Because of the sensitivity of chiral spec-

troscopies, vibrational contributions are often more critical that for the

nonchiral ones. While HT effects can be less important than in the case

presented here, with the experimental band having a single sign, they

can still modulate the shape and improve the overall agreement.[16,67]

The situation can become even more complex when multiple electronic

states are involved since vibronic band-shapes are very likely to over-

lap, canceling or enhancing each other, so that a proper representation

of their envelope asymmetry is still necessary.[16,206,207] Other studies

based on chiral spectroscopies, including vibrational ones, can be found

in references 29, 213, and 214.

Switching to problems related to flexible molecules, an interesting

case is the presence of torsional modes with quite low vibrational ener-

gies, which behave as an hindered rotor. The problem is very similar to

the LAM seen for bithiophene, but the conformers connected by the

torsional coordinate are separated by a low energy barrier. Because of

the nature of the vibration, it must be separated from the rest of the

vibrational treatment. This is done by mean of a hindered rotor identifi-

cation algorithm.[215] The modes identified as coupled to the torsion

are then ignored from the rest of the system and considered inactive in

the VPT2 computations. Combination of these two approaches leads

to the final hindered-rotor anharmonic-oscillator model (HRAO), neces-

sary to compute correctly the thermodynamic quantities of flexible sys-

tems.[49,216] Another important aspect is that, due to the low-energy

barrier, multiple conformers generally need to be included in the simu-

lation of the spectra. A good illustration is the case of glycine, for which

the three lowest energy conformers (Ip/ttt, IIn/ccc, and IIIp/tct, see

Figure 24) have been concomitantly identified through their IR vibra-

tional features in the low-temperature matrix environment.[201,217,218]

In this condition, the identification of each conformer is based on the

analysis of the intense vibrational transitions that remarkably differ in

frequency from one conformer to another, for instance the C@O

stretch, which are highlighted in Figure 24. The simulation of the over-

all spectra, which can be directly compared with experiment, is then

performed by applying weighted contributions of each conformer

according to their abundance obtained from the theoretical Boltzmann

population at experimental conditions, such as the temperature. In this

respect glycine represents an interesting case, since the harmonic

approximation provides semiquantitative results for enthalpies and free

energies at low temperatures, but at higher temperatures, relevant for

the comparison with experiment, the entropy of the IIIp/tct conformer

is strongly overestimated at the harmonic level, predicting this con-

former to be the most stable one in contrast to experimental evidence.

However, the full HRAO approach is able to provide relative free ener-

gies and theoretical Boltzmann population at 410 K for all conformers

in excellent agreement with experimental estimates (i.e., Ip577%,

IIn518%, IIIp56%, see reference 201 for the details). The overall

simulated spectrum obtained by weighting the contribution of each

conformer according to its abundance, is also depicted in Figure 24 and

FIGURE 24 Theoretical IR spectra of the most stable conformers
of glycine computed at the CC/DFT level[201]: single contributions
from Ip/ttt, IIn/ccc, and IIIp/tct, and their sum weighted with rela-
tive abundances at 410 K (Ip-IIn-IIIp) compared to the experimental
IR spectrum recorded in low-temperature Ar matrix.[217] Red, blue,
and green arrows mark the bands assigned to the Ip/ttt, IIn/ccc,
and IIIp/tct conformers, respectively. IR spectra line-shapes have
been convoluted with Lorentzian functions with HWHMs of
1 cm21.
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compared to its experimental counterpart.[217] It is demonstrated that

the most intense transitions are indeed related to the most stable con-

former, Ip/ttt, but finger-marks for IIn and IIIp are also clearly present.

As pointed out before, at variance with simple methodologies based on

the double-harmonic approximation, fully anharmonic spectra have

non-null intensities for overtones and combination bands. It is thus

possible to recognize low-intensity features related to nonfundamental

transitions of the most abundant conformer from the fundamental

transitions of the less abundant ones.[219] The same computational pro-

cedure can be easily applied also to sets of isotopologues to facilitate

an unequivocal identification of several conformers present in a given

sample.[219] This strategy can be even extended to combine comple-

mentary vibrational spectroscopies, for example, IR and Raman, and

can be useful for the identification and recognition of molecular spe-

cies, like free radicals, present in experimental mixtures.[17]

5 | CONCLUSIONS

This study, focusing on thiophene and bithiophene, has shown that

computational methods still commonly used for medium-to-large mole-

cules, such as purely electronic vertical models for UV-vis spectra or

the harmonic approximation in vibrational spectra, can fall short in pro-

viding a reliable description of experimental results. Thanks to the

availability of cost-effective models targeted for systems of dozen of

atoms or larger, a systematic and significant improvement of the overall

simulations can be achieved. While implementations had been scarce

in the past, limiting their adoption, this is not anymore the case as

general-purpose programs have started to propose more advanced

methodologies for the quantum treatment of nuclear motion. As a

result, it is now possible to define more reliable computational proto-

cols for the simulation of spectra. While their use can be facilitated

with a careful automatization of the whole process, most models, due

to their intrinsic limitations, are not without their own caveats and one

should be cautions of the assumptions on which they are built, thus,

their applicability. As shown in the case of bithiophene, those limita-

tions, once correctly identified, can be overcome, by transforming the

system in well-defined subsystems through the use of hybrid schemes.

An important aspect of such strategies is to maintain the computational

cost affordable for medium-to-large molecules. In practice, this means

that the largest part of the N-dimensional problem to solve must

remain describable with the cost-effective methods presented here,

the rest being represented by more refined, albeit expensive, models.

Such an approach can be very interesting as it provides a way to

include progressively new, more accurate methodologies to tackle

more complex molecular systems in a cost effective way. An important

hurdle remains the subdivision of the system and the subsequent com-

bination of the results, which is not necessarily straightforward for all

cases, and the extensions of such hybrid computational models to

other cases, like FCHT vibronic calculations or anharmonic vibrational

spectroscopies for instance, will be the focus of future works.
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