Phenomenological Classification of Inflationary Potentials

(or, Inflation: What's the Worst that Could Happen?)

Katie Mack Astronomy Department, Princeton

with George Efstathiou Institute of Astronomy, Cambridge

Inflationary Pragmatism

Inflation works...

 Offers solution to horizon problem and flatness problem
 General predictions upheld (flat universe, gaussian and adiabatic metric fluctuations, nearly scale-independent spectrum)

But....

It may not be the only thing that works
 There is no theoretical consensus on how it works

Back Door to Inflation

 Use phenomenology to seek description of dynamics without favoring a particular theoretical framework

 Create models that can uphold inflation's successes without imposing extra modeldependent constraints

Slow-Roll Parameterization

Use slow-roll parameters to reconstruct a potential through the flow equations

Requirements:

- Slow(ish) roll ($\epsilon < 1$)
- Sufficient e-foldings to solve horizon problem

Goal:

 Find a phenomenological classification that can constrain inflationary dynamics

Energy Scale of Inflation

One option: Classify in terms of energy scale (from V(φ))

...but a better constraint can be obtained by also including LSS information (found in tensor-scalar ratio)

Classification by r and $\Delta \phi$

- Tensor-scalar ratio has two components:
 - tensor amplitude gives energy scale
 - scalar amplitude linked to primordial density perturbations (and hence large scale structure)
- Link with inflationary dynamics by relating to $\Delta\phi$

$$\Delta \phi \equiv \phi_{end} - \phi_i$$

N = number of e - folds before end of inflation

 $\phi_{end} = \phi$ at end of inflation (N = 0)

 $\phi_i = \phi$ at 50 *e* - folds before end of inflation (*N* = 50)

K. Mack, Princeton

r vs. Δφ

- Lyth (1996) suggests rough relation:
 - $\Delta \phi/m_{pl} \sim 0.5 (r/0.07)^{1/2}$
 - Approximation based on flow equations
- General expectation: large r => large $\Delta \phi$
- Small r allows large Δφ this just the case of very low energy potential

Going with the Flow

- Can use flow equations to evolve inflationary potentials and to calculate observables
- Using Hamilton-Jacobi Formulation, following Monte Carlo Reconstruction method of Easther & Kinney (2003) and Peiris et al. (2003)

Inflationary Flow Equations

Equations of Motion:

$$\dot{\phi} = -2M_{\rm Pl}^2 H'(\phi)$$
$$[H'(\phi)]^2 - \frac{3}{2M_{\rm Pl}^2} H^2(\phi) = -\frac{1}{2M_{\rm Pl}^4} V(\phi)$$
$$H^2(\phi) \left(1 - \frac{1}{3}\epsilon_H\right) = \frac{1}{3M_{\rm Pl}^2} V(\phi)$$
$$\left(\frac{\ddot{a}}{a}\right) = \frac{1}{3M_{\rm Pl}^2} \left[V(\phi) - \dot{\phi}^2\right]$$
$$= H^2(\phi) [1 - \epsilon_{\rm Pl}(\phi)]$$

Slow Roll Parameters:

$$\epsilon_H \equiv 2M_{\rm Pl}^2 \left[\frac{H'(\phi)}{H(\phi)}\right]^2$$
$$\eta_H \equiv 2M_{\rm Pl}^2 \left[\frac{H''(\phi)}{H(\phi)}\right]$$
$$^{\ell}\lambda_H \equiv (2M_{\rm Pl}^2)^{\ell} \frac{(H')^{\ell-1}}{H^{\ell}} \frac{d^{(\ell+1)}H}{d\phi^{(\ell+1)}}$$

$$M_{
m Pl} \equiv (8\pi G)^{-1/2} = m_{
m Pl}/\sqrt{8\pi}$$

Condition for inflation: $(\ddot{a}/a) > 0$ Satisfied when: $\epsilon_H < 1$

K. Mack, Princeton

Inflationary Flow Equations

Evolution Equations:

$$N \equiv \int_{t}^{t_{e}} H \, dt = \int_{\phi}^{\phi_{e}} \frac{H}{\dot{\phi}} d\phi = \frac{1}{\sqrt{2}M_{\text{Pl}}} \int_{\phi_{e}}^{\phi} \frac{d\phi}{\sqrt{\epsilon_{H}(\phi)}}$$
$$\frac{d}{dN} = \sqrt{2}M_{\text{Pl}}\sqrt{\epsilon}\frac{d}{d\phi}$$
$$\frac{d\epsilon_{H}}{dN} = 2\epsilon_{H}(\eta_{H} - \epsilon_{H})$$
$$\frac{d(\ell\lambda_{H})}{dN} = [(\ell-1)\eta_{H} - \ell\epsilon_{H}](\ell\lambda_{H}) + \ell^{\ell+1}\lambda_{H} \qquad (\ell > 0)$$

Observables (to second order):

$$r = 16\epsilon_{H}[1 + 2C(\epsilon_{H} - \eta_{H})]$$

$$n_{s} - 1 = (2\eta_{H} - 4\epsilon_{H})[1 - \frac{1}{4}(5 - 3C)\epsilon_{H}] - (3 - 5C)\epsilon_{H}^{2} + \frac{1}{2}(3 - C)\xi_{H}$$

$$\frac{dn_{s}}{d\ln k} = -\left(\frac{1}{1 - \epsilon_{H}}\right)\frac{dn_{s}}{dN}$$

K. Mack, Princeton

Monte Carlo Reconstruction

- 1) Choose initial slow-roll parameters from uniform random distributions: ($\epsilon = [0, 0.8]$, $\eta = [-0.1, 0.1], \ ^{\ell}\lambda = [-2^{-\ell}/5, 2^{-\ell}/5]$)
- 2) Evolve forward in time (dN<0) until (A)
 evolution reaches a late-time fixed point (ε=0, ¹λ=constant) or (B) inflation ends (ε>1)
- 3) If (A), record observables. If (B), evolve back 50 e-foldings (dN>0)
- 4) Record observables at N=50

K. Mack, Princeton

K. Mack, Princeton

Observables at N=50

Observable plots show attractors consistent with previous simulations (e.g., Peiris (2003), Kinney (2003))

1,000,000 models simulated ~870,000 working models (Itfp models have r=0, n>1)

Comparison with Peiris (2003)

K. Mack, Princeton

r vs. Δφ Results

full range of data

K. Mack, Princeton

r vs. Δφ Results

data with Lyth's r, $\Delta \phi$ relationship

Preliminary Observational Cuts

Cuts from Lyman-alpha forest (presented at Plumian 300 by Martin Haehnelt) -- work in progress

K. Mack, Princeton

Preliminary Observational Cuts

cut data with Lyth's r, $\Delta \phi$ relationship

K. Mack, Princeton

Preliminary Observational Cuts

cut data with Lyth's r, $\Delta \phi$ relationship

K. Mack, Princeton

 Current observational cuts only first-glance, based on work in progress (but still promising method)

- Some limitations to this approach in general
 - Dependence on initial conditions not yet clear
 - Distribution
 - Ranges
 - Only single-field models
 - No statistical information

Future Work

- Investigate effects of changes to initial distributions and order of expansion
- Refine observable cuts (perhaps weight or categorize models in this way)

Conclusions

- Classification by delta-phi more constraining than classification by energy scale
- Significant improvements possible with observational cuts
- Main conclusion:

Further Reading by Topic

- Slow roll Monte Carlo reconstruction: Easther & Kinney,* astro-ph/0210345
- WMAP & inflation phenomenology: Kinney et al.,* hepph/0305130; Peiris et al.,* ApJ 148:213-231 (2003); Kinney,* New Astron. Rev. 47:967-975 (2003)
- The flow equations (and their proper use): Lyth, hepph/9606387; Liddle, astro-ph/0307286; Liddle & Lyth, <u>Cosmological Inflation</u>
- This project: Mack & Efstathiou, Phi in the Sky Conference Proceedings, (coming soon)

**Caution: Misprints – check equations carefully*