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Cosmological model
A cosmological model is specified by:

• A Lagrangian describing the Universe content
⇒ perfect fluid + scalar field

• A metric describing the Universe geometry
⇒ homogeneous but anisotropic metric
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Universe content 1/2
Some reasons to consider a scalar field

• A spin zero boson
• Higgs field
• Supersymmetrie
• Variation of the Nature constants
• dark energy
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Universe content 2/2
Lagrangian with a minimally coupled and massive φ:

L = R− ωφ,µφ,µφ
−1 − U + Lm

• scalar curvature R
• scalar field φ
• Brans-Dicke function ω
• Potential U : effective Λ

• Lm: perfect fluid Lagrangian with
pm = (γ − 1)ρm and γ ∈ [1, 2]
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Universe geometry: FLRW
• Homogeneous and isotropic FLRW models

ds2 = −dt2 + a(t)2( dr2

1−kr2 + r2(dθ2 + sin2θdφ2))

• expansion is the same everywhere in any
direction

• CMB is isotropic

However:

• Why the Universe would be so symmetric

=⇒Let us remove the isotropy hypothesis
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Universe geometry: Bianchi
• Spatially homogeneous models of Bianchi

ds2 = −dt2 + a(t)(ω1)2 + b(t)(ω2)2 + c(t)(ω3)2

• anisotropic expansion: a(t) 6= b(t) 6= c(t)

• 9 Bianchi models defined by the 1-forms ωi

• Example: the flat Bianchi type I model
ω1 = dx, ω2 = dy, ω3 = dz
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How to constrain φ?
• Looking for φ properties implying Universe

isotropisation

• Mathematical tools:

• The ADM Hamiltonian formalism: it allows

getting a first order field equations

system(Nariai72, Matzner73)
• The dynamical system analysis: it allows

studying the field equations (WaiEli97)
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Defining isotropy
(ColHaw73):

• It occurs asymptotically, during a forever

expansion

• The anisotropy parameters Σ± vanish

In our models, Σ± vanish before the CMB time

There are three ways to reach isotropy:

• class 1: Ωm and Ωφ reach eq with Ωφ 6→ 0

• class 2: Ωm and Ωφ reach eq with Ωφ → 0

• class 3: Ωm and/or Ωφ do not always reach eq
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Assumptions
• class 1 (Ωφ 6→ 0)

• U > 0: positive cosmological constant

• ω > 0: weak energy condition respected

• Bianchi class A models.

Let us start with the flat Bianchi type I model and one

minimally coupled φ
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Results for Bianchi I 1/3
(Fay01, Fay01A)

Constraints on φ

(Isotropisation time)

Ωm = 0 `2 → `20 < 3: spatial dimension

Ωm → 0 `2 → `20 <
3γ
2
< 3

Ωm 6→ 0 `2 → `20 >
3γ
2

with ` =
Uφ
U

√

φ
2ω

Constraint on the scalar field mass
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Results for Bianchi I 2/3
Asymptotical behaviours
(Late times behaviours)

Ωm = 0 si `20 6→ 0, a→ t`
−2

0 and U → t−2

si `20 → 0, De Sitter
Ωm → 0 idem

Ωm 6→ 0 a→ t
2

3γ and U → t−2
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Results for Bianchi I 3/3
φ state equation Quintessence

Ωm = 0 pφ = (2

3
`20 − 1)ρφ Yes if `20 < 3/2

Ωm → 0 idem idem
Ωm 6→ 0 pφ = (γ − 1)ρφ No

Ωm 6→ 0: no scalar field effect and thus a→ t
2

3γ
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Results (Fay03, Fay04A)
For the other Bianchi class A models:

• Ωm = 0 or Ωm → 0:

• `2 → `20 < 1 < 3
• expansion is always accelerated
• φ is always quintessent
• Univers flattens

• Ωm 6→ 0:
• Isotropisation is impossible

• ∀ the model: coincidence problem (Ωm ∝ Ωφ)

is not solved
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With 2 scalar fields 1/6
(FayLuminet04)

L = R− ωφ,µφ,µφ
−1 − µψ,µψ,µψ

−1 − U + Lm

Assumptions:

• Flat Bianchi type I model

• 2 types of theories

1. ω(φ), µ(ψ) and U(φ, ψ)

2. ω(φ, ψ), µ(ψ) and U(ψ)
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With 2 scalar fields 2/6
ω(φ), µ(ψ) and U(φ, ψ)

• Hybride inflation (Copeland and al 94)
• Compactification and higher order scalar

curvature (Ellis and al 99)
• Example:
L = R5 +R4

5

Conformal transformation⇒
L = R− φ,µφ,µ − ψ,µψ,µ

−U0e
−
√

2/3kφe−5
√

3/6kψ(e
√

3/2ψ − 1)m + Lm
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With 2 scalar fields 3/6
Results

• Results got with one scalar field are generalised:
`2 → `2φ1

+ `2ψ1

avec

`φ1
=

Uφ
U

√

φ
2ω

`ψ1
=

Uψ
U

√

ψ
2µ

• can not be detected observationally
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With 2 scalar fields 4/6
ω(φ, ψ), µ(ψ) and U(ψ)

• complexe scalar field

L = R + gµνζ∗,µζ,ν − V (|ζ|2) + Lm

Transformation: ζ = ψ(
√

2m)e−imφ

L =
R+1/2gµν(ψ2φ,µφ,ν+m−2ψ,µψ,ν)−U(ψ2)+Lm

• Some potential examples

• U = ζζ∗ = ψ2 (Iorio and al 01,Gu and al01)
• U = λ/2(ψ2 − η2)2(Kasuya and al 98)(topological

defects)
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With 2 scalar fields 5/6
Results

• 2 isotropic equilibrium points E1 and E2

• New isotropisation conditions
• But same asymptotical behaviours as with 1 SF
`2 → `2ψ1

for E1

`2 → (`ψ1
+ 2`ψ2

)(3`ψ1
)−1 for E2 and

`ψ2
= 1/2ωψω

−1
√

ψ/(2µ)

• can not be detected observationally
• Degeneracy must be raised to constrain φ
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With 2 scalar fields 6/6
If Ωm → const⇒ a→ t

2

3γ : no acceleration

⇒always the coincidence problem
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In brief
Let us summarize our results about isotropisation

1. Constraint on φ depending on `(φ) function:
must tend to a bounded constant `0

2. Universe asymptotical behaviour completely
express depending on `0
• In particular pφ/ρφ →const

3. Coincidence problem is not solved

Now, we assume that Universe has reached isotropy.

What are then the physical constraints on `0 with such

a constant scalar field equation of state
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Contraints on `0
2 types of constraints when the Universe has reached
isotropy

• WMAP: l20 < 0.33

• What about supernovae constraints?
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Some data
Daly and al (A.P.J., 597, 2003)
92 supernovae and 20 radiogalaxies

0 0.25 0.5 0.75 1 1.25 1.5 1.75
z

0

0.25

0.5

0.75

1

1.25

1.5

1.75

H
0
�
c
d
l
�
H
1

+z
L

Figure 1: H0

c
dl

1+z depending on redhift.
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Supernovae constraints
No assumption on curvature or Ωm

• ⇒ χ2 ' 117.208 and `20 = 0.03 with `20 < 0.75

• (Ωm,Ωk) = (0.34,−0.04): closed model

• za = 0.6, acceleration redhsift is too hight: Riess
01
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Conclusion 1/2

• Requiring isotropisation allows constraining φ

• Constraints on φ: `(φ)2 → `20
• `20 bounding by a constant depending on space

dimension, curvature, PF

• In the isotropy vicinity, Universe state is
completly described by `0

• In particular, the dark energy equation of state is
a constant
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Conclusion 2/2
• Adding another SF:

Observational viewpoint: not detectable
Theoretical viewpoint: change the isotropisation
necessary conditions

• Constraints on `0
• WMAP: `20 < 0.33

• Supernovae: `20 < 0.75, `20 ' 0.03,
Ωk ' −0.04

• Two problems: Coincidence and za
• One solution: φ non minimally coupled to the

perfect fluid - coincidence problem may be solved
(Chimento 03) - Compatible with isotropisation!
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