Scalar field constraints from homogeneous cosmology

Stéphane Fay

Laboratory Universe and Theories, UMR 8102 Observatoire de Paris-Meudon, F-92195 Meudon Cedex France

Laboratoire de l'Univers et de ses Théories

• Physical context: Lagrangian with scalar fields

- Physical context: Lagrangian with scalar fields
- Geometrical context: homogeneous cosmologies

- Physical context: Lagrangian with scalar fields
- Geometrical context: homogeneous cosmologies
- Constraining ϕ by requiring Universe isotropisation

Laboratoire de l'Univers et de ses Théories

- Physical context: Lagrangian with scalar fields
- Geometrical context: homogeneous cosmologies
- Constraining ϕ by requiring Universe isotropisation
 - 1. Flat model with minimally coupled scalar field
 - 2. Curved model with minimally coupled scalar field
 - 3. What occurs with several scalar fields

- Physical context: Lagrangian with scalar fields
- Geometrical context: homogeneous cosmologies
- Constraining ϕ by requiring Universe isotropisation
 - 1. Flat model with minimally coupled scalar field
 - 2. Curved model with minimally coupled scalar field
 - 3. What occurs with several scalar fields
- Supernovae constraints once isotropisation reached

- Physical context: Lagrangian with scalar fields
- Geometrical context: homogeneous cosmologies
- Constraining ϕ by requiring Universe isotropisation
 - 1. Flat model with minimally coupled scalar field
 - 2. Curved model with minimally coupled scalar field
 - 3. What occurs with several scalar fields
- Supernovae constraints once isotropisation reached
- Conclusion

LUTH

servatorre

Cosmological model

A cosmological model is specified by:

- A Lagrangian describing the Universe content
 ⇒ perfect fluid + scalar field
- A metric describing the Universe geometry
 ⇒ homogeneous but anisotropic metric

Laboratoire de l'Univers et de ses Théorie

Some reasons to consider a scalar field

Laboratoire de l'Univers et de ses Théories

Some reasons to consider a scalar field

• A spin zero boson

Laboratoire de l'Univers et de ses Théories

- A spin zero boson
- Higgs field

- A spin zero boson
- Higgs field
- Supersymmetrie

- A spin zero boson
- Higgs field
- Supersymmetrie
- Variation of the Nature constants

- A spin zero boson
- Higgs field
- Supersymmetrie
- Variation of the Nature constants
- dark energy

Lagrangian with a minimally coupled and massive ϕ :

 $L = R - \omega \phi^{\mu} \phi_{\mu} \phi^{-1} - U + L_m$

Laboratoire de l'Univers et de ses Théorie

Lagrangian with a minimally coupled and massive ϕ :

- $L = R \omega \phi^{\mu} \phi_{\mu} \phi^{-1} U + L_m$
 - scalar curvature R

Lagrangian with a minimally coupled and massive ϕ :

- $L = R \omega \phi^{\mu} \phi_{\mu} \phi^{-1} U + L_m$
 - scalar curvature R
 - scalar field ϕ

Laboratoire de l'Univers et de ses Théorie

Lagrangian with a minimally coupled and massive ϕ :

- $L = R \omega \phi^{\mu} \phi_{\mu} \phi^{-1} U + L_m$
 - scalar curvature R
 - scalar field ϕ
 - Brans-Dicke function ω

Laboratoire de l'Univers et de ses Théorie

Lagrangian with a minimally coupled and massive ϕ :

- $L = R \omega \phi^{\mu} \phi_{\mu} \phi^{-1} U + L_m$
 - scalar curvature R
 - scalar field ϕ
 - Brans-Dicke function ω
 - Potential U: effective Λ

Lagrangian with a minimally coupled and massive ϕ :

- $L = R \omega \phi^{\mu} \phi_{\mu} \phi^{-1} U + L_m$
 - scalar curvature R
 - scalar field ϕ
 - Brans-Dicke function ω
 - Potential U: effective Λ
 - L_m : perfect fluid Lagrangian with $p_m = (\gamma 1)\rho_m$ and $\gamma \in [1, 2]$

Universe geometry: FLRW

• Homogeneous and isotropic FLRW models

$$ds^{2} = -dt^{2} + a(t)^{2} \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + sin^{2}\theta d\phi^{2})\right)$$

- expansion is the same everywhere in any direction
- CMB is isotropic

Laboratoire de l'Univers et de ses Théorie

Universe geometry: FLRW

• Homogeneous and isotropic FLRW models

$$ds^{2} = -dt^{2} + a(t)^{2} \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2} (d\theta^{2} + sin^{2}\theta d\phi^{2})\right)$$

- expansion is the same everywhere in any direction
- CMB is isotropic

However:

• Why the Universe would be so symmetric

Universe geometry: FLRW

• Homogeneous and isotropic FLRW models

$$ds^{2} = -dt^{2} + a(t)^{2} \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2} (d\theta^{2} + sin^{2}\theta d\phi^{2})\right)$$

- expansion is the same everywhere in any direction
- CMB is isotropic

However:

• Why the Universe would be so symmetric

 \Longrightarrow Let us remove the isotropy hypothesis

Universe geometry: Bianchi

- Spatially homogeneous models of Bianchi $ds^2 = -dt^2 + a(t)(\omega^1)^2 + b(t)(\omega^2)^2 + c(t)(\omega^3)^2$
 - anisotropic expansion: $a(t) \neq b(t) \neq c(t)$

Universe geometry: Bianchi

- Spatially homogeneous models of Bianchi $ds^2 = -dt^2 + a(t)(\omega^1)^2 + b(t)(\omega^2)^2 + c(t)(\omega^3)^2$
 - anisotropic expansion: $a(t) \neq b(t) \neq c(t)$
 - 9 Bianchi models defined by the 1-forms ω^i
 - Example: the flat Bianchi type I model $\omega^1 = dx, \, \omega^2 = dy, \, \omega^3 = dz$

How to constrain ϕ ?

• Looking for ϕ properties implying Universe isotropisation

How to constrain ϕ ?

- Looking for ϕ properties implying Universe isotropisation
- Mathematical tools:
 - The ADM Hamiltonian formalism: it allows getting a first order field equations system(Nariai72, Matzner73)
 - The dynamical system analysis: it allows studying the field equations (WaiEli97)

Defining isotropy

(ColHaw73):

- It occurs asymptotically, during a forever expansion
- The anisotropy parameters Σ_{\pm} vanish

In our models, Σ_{\pm} vanish before the CMB time

Laboratoire de l'Univers et de ses Théorie

Defining isotropy

(ColHaw73):

- It occurs asymptotically, during a forever expansion
- The anisotropy parameters Σ_{\pm} vanish

In our models, Σ_{\pm} vanish before the CMB time There are three ways to reach isotropy:

- class 1: Ω_m and Ω_ϕ reach eq with $\Omega_\phi \neq 0$
- class 2: Ω_m and Ω_ϕ reach eq with $\Omega_\phi \to 0$
- class 3: Ω_m and/or Ω_ϕ do not always reach eq

LUTH

servatorre

• class 1 ($\Omega_{\phi} \not\rightarrow 0$)

- class 1 ($\Omega_{\phi} \not\rightarrow 0$)
- U > 0: positive cosmological constant

Laboratoire de l'Univers et de ses Théories

- class 1 ($\Omega_{\phi} \not\rightarrow 0$)
- U > 0: positive cosmological constant
- $\omega > 0$: weak energy condition respected

- class 1 ($\Omega_{\phi} \not\rightarrow 0$)
- U > 0: positive cosmological constant
- $\omega > 0$: weak energy condition respected
- Bianchi class A models.

Laboratoire de l'Univers et de ses Théorie

- class 1 ($\Omega_{\phi} \not\rightarrow 0$)
- U > 0: positive cosmological constant
- $\omega > 0$: weak energy condition respected
- Bianchi class A models.

Let us start with the flat Bianchi type I model and one minimally coupled ϕ

Results for Bianchi I 1/3

(Fay01, Fay01A)

	Constraints on ϕ
	(Isotropisation time)
$\Omega_m = 0$	$\ell^2 \rightarrow \ell_0^2 < 3$: spatial dimension
$\Omega_m \to 0$	$\ell^2 \to \ell_0^2 < \frac{3\gamma}{2} < 3$
$\Omega_m \not\to 0$	$\ell^2 \to \ell_0^2 > \frac{3\gamma}{2}$

with $\ell = \frac{U_{\phi}}{U} \sqrt{\frac{\phi}{2\omega}}$ Constraint on the scalar field mass

Results for Bianchi I 2/3

	Asymptotical behaviours
	(Late times behaviours)
$\Omega_m = 0$	si $\ell_0^2 \not\rightarrow 0$, $a \rightarrow t^{\ell_0^{-2}}$ and $U \rightarrow t^{-2}$
	si $\ell_0^2 \rightarrow 0$, De Sitter
$\Omega_m \to 0$	idem
$\Omega_m \not\to 0$	$a \to t^{\frac{2}{3\gamma}} \text{ and } U \to t^{-2}$

Laboratoire de l'Univers et de ses Théories
Results for Bianchi I 3/3

	ϕ state equation	Quintessence
$\Omega_m = 0$	$p_{\phi} = (\frac{2}{3}\ell_0^2 - 1)\rho_{\phi}$	Yes if $\ell_0^2 < 3/2$
$\Omega_m \to 0$	idem	idem
$\Omega_m \not\to 0$	$p_{\phi} = (\gamma - 1)\rho_{\phi}$	No

 $\Omega_m \not\rightarrow 0$: no scalar field effect and thus $a \rightarrow t^{\frac{2}{3\gamma}}$

For the other Bianchi class A models:

• $\Omega_m = 0 \text{ or } \Omega_m \to 0$:

For the other Bianchi class A models:

•
$$\ell^2 \rightarrow \ell_0^2 < 1 < 3$$

For the other Bianchi class A models:

• $\Omega_m = 0 \text{ or } \Omega_m \to 0$:

•
$$\ell^2 \rightarrow \ell_0^2 < 1 < 3$$

• expansion is always accelerated

For the other Bianchi class A models:

•
$$\ell^2 \rightarrow \ell_0^2 < 1 < 3$$

- expansion is always accelerated
- ϕ is always quintessent

For the other Bianchi class A models:

•
$$\ell^2 \to \ell_0^2 < 1 < 3$$

- expansion is always accelerated
- ϕ is always quintessent
- Univers flattens

For the other Bianchi class A models:

•
$$\ell^2 \to \ell_0^2 < 1 < 3$$

- expansion is always accelerated
- ϕ is always quintessent
- Univers flattens
- $\Omega_m \not\rightarrow 0$:
 - Isotropisation is impossible

For the other Bianchi class A models:

•
$$\ell^2 \to \ell_0^2 < 1 < 3$$

- expansion is always accelerated
- ϕ is always quintessent
- Univers flattens
- $\Omega_m \not\rightarrow 0$:
 - Isotropisation is impossible
- \forall the model: coincidence problem ($\Omega_m \propto \Omega_{\phi}$)

(FayLuminet04)

$$L = R - \omega \phi^{,\mu} \phi_{,\mu} \phi^{-1} - \mu \psi^{,\mu} \psi_{,\mu} \psi^{-1} - U + L_m$$

(FayLuminet04)

$$L = R - \omega \phi^{,\mu} \phi_{,\mu} \phi^{-1} - \mu \psi^{,\mu} \psi_{,\mu} \psi^{-1} - U + L_m$$

Assumptions:

- Flat Bianchi type I model
- 2 types of theories
 - 1. $\omega(\phi)$, $\mu(\psi)$ and $U(\phi, \psi)$
 - 2. $\omega(\phi, \psi)$, $\mu(\psi)$ and $U(\psi)$

 $\omega(\phi), \mu(\psi) \text{ and } U(\phi, \psi)$

Scalar field constraints from homogeneous cosmology – p.16/26

 $\omega(\phi), \mu(\psi) \text{ and } U(\phi, \psi)$

• Hybride inflation (Copeland and al 94)

 $\omega(\phi), \mu(\psi) \text{ and } U(\phi, \psi)$

- Hybride inflation (Copeland and al 94)
- Compactification and higher order scalar curvature (Ellis and al 99)

 $\omega(\phi), \mu(\psi) \text{ and } U(\phi, \psi)$

- Hybride inflation (Copeland and al 94)
- Compactification and higher order scalar curvature (Ellis and al 99)
- Example:

 $L = R_5 + R_5^4$

 $\omega(\phi), \mu(\psi) \text{ and } U(\phi, \psi)$

- Hybride inflation (Copeland and al 94)
- Compactification and higher order scalar curvature (Ellis and al 99)
- Example:

 $L = R_5 + R_5^4$

Conformal transformation \Rightarrow

 $\omega(\phi), \mu(\psi) \text{ and } U(\phi, \psi)$

- Hybride inflation (Copeland and al 94)
- Compactification and higher order scalar curvature (Ellis and al 99)
- Example:

 $L = R_5 + R_5^4$

Conformal transformation \Rightarrow

 $L = R - \phi^{,\mu}\phi_{,\mu} - \psi^{,\mu}\psi_{,\mu}$ $-U_0 e^{-\sqrt{2/3}k\phi} e^{-5\sqrt{3}/6k\psi} (e^{\sqrt{3}/2\psi} - 1)^m + L_m$

Laboratoire de l'Univers et de ses Théorie

Scalar field constraints from homogeneous cosmology – p.16/26

Results

Scalar field constraints from homogeneous cosmology – p.17/26

With 2 scalar fields 3/6 Results

• Results got with one scalar field are generalised: $\ell^2 \rightarrow \ell^2_{\phi_1} + \ell^2_{\psi_1}$ avec

$$\ell_{\phi_1} = \frac{U_{\phi}}{U} \sqrt{\frac{\phi}{2\omega}}$$
$$\ell_{\psi_1} = \frac{U_{\psi}}{U} \sqrt{\frac{\psi}{2\mu}}$$

With 2 scalar fields 3/6 Results

• Results got with one scalar field are generalised: $\ell^2 \rightarrow \ell^2_{\phi_1} + \ell^2_{\psi_1}$ avec $\ell_{\phi_1} = \frac{U_{\phi}}{U} \sqrt{\frac{\phi}{2\omega}}$

$$\ell_{\psi_1} = \frac{U_{\psi}}{U} \sqrt{\frac{\psi}{2\mu}}$$

• can not be detected observationally

 $\omega(\phi,\psi),\,\mu(\psi)$ and $U(\psi)$

• complexe scalar field

 $\omega(\phi,\psi),\,\mu(\psi)$ and $U(\psi)$

• complexe scalar field $L = R + g^{\mu\nu}\zeta^*_{,\mu}\zeta_{,\nu} - V(|\zeta|^2) + L_m$

 $\omega(\phi,\psi),\,\mu(\psi)$ and $U(\psi)$

• complexe scalar field $L = R + g^{\mu\nu}\zeta^*_{,\mu}\zeta_{,\nu} - V(|\zeta|^2) + L_m$ Transformation: $\zeta = \psi(\sqrt{2}m)e^{-im\phi}$

 $\omega(\phi,\psi),\,\mu(\psi)$ and $U(\psi)$

• complexe scalar field $L = R + g^{\mu\nu}\zeta^*_{,\mu}\zeta_{,\nu} - V(|\zeta|^2) + L_m$ Transformation: $\zeta = \psi(\sqrt{2m})e^{-im\phi}$ $L = R + 1/2g^{\mu\nu}(\psi^2\phi_{,\mu}\phi_{,\nu} + m^{-2}\psi_{,\mu}\psi_{,\nu}) - U(\psi^2) + L_m$

 $\omega(\phi,\psi),\,\mu(\psi)$ and $U(\psi)$

- complexe scalar field $L = R + g^{\mu\nu}\zeta^*_{,\mu}\zeta_{,\nu} - V(|\zeta|^2) + L_m$ Transformation: $\zeta = \psi(\sqrt{2}m)e^{-im\phi}$ $L = R + 1/2g^{\mu\nu}(\psi^2\phi_{,\mu}\phi_{,\nu} + m^{-2}\psi_{,\mu}\psi_{,\nu}) - U(\psi^2) + L_m$
- Some potential examples
 - $U = \zeta \zeta^* = \psi^2$ (Iorio and al 01,Gu and al01)
 - $U = \lambda/2(\psi^2 \eta^2)^2$ (Kasuya and al 98)(topological defects)

Results

Scalar field constraints from homogeneous cosmology – p.19/26

Results

• 2 isotropic equilibrium points E_1 and E_2

Scalar field constraints from homogeneous cosmology – p.19/26

Results

- 2 isotropic equilibrium points E_1 and E_2
- New isotropisation conditions

Results

- 2 isotropic equilibrium points E_1 and E_2
- New isotropisation conditions
- But same asymptotical behaviours as with 1 SF $\ell^2 \rightarrow \ell^2_{\psi_1}$ for E_1 $\ell^2 \rightarrow (\ell_{\psi_1} + 2\ell_{\psi_2})(3\ell_{\psi_1})^{-1}$ for E_2 and $\ell_{\psi_2} = 1/2\omega_{\psi}\omega^{-1}\sqrt{\psi/(2\mu)}$

Results

- 2 isotropic equilibrium points E_1 and E_2
- New isotropisation conditions
- But same asymptotical behaviours as with 1 SF $\ell^2 \rightarrow \ell^2_{\psi_1}$ for E_1 $\ell^2 \rightarrow (\ell_{\psi_1} + 2\ell_{\psi_2})(3\ell_{\psi_1})^{-1}$ for E_2 and $\ell_{\psi_2} = 1/2\omega_{\psi}\omega^{-1}\sqrt{\psi/(2\mu)}$
- can not be detected observationally

If $\Omega_m \to const \Rightarrow a \to t^{\frac{2}{3\gamma}}$: no acceleration

Scalar field constraints from homogeneous cosmology -p.20/26

If $\Omega_m \to const \Rightarrow a \to t^{\frac{2}{3\gamma}}$: no acceleration

 \Rightarrow always the coincidence problem

Let us summarize our results about isotropisation

1. Constraint on ϕ depending on $\ell(\phi)$ function: must tend to a bounded constant ℓ_0

Let us summarize our results about isotropisation

- 1. Constraint on ϕ depending on $\ell(\phi)$ function: must tend to a bounded constant ℓ_0
- 2. Universe asymptotical behaviour completely express depending on ℓ_0
 - In particular $p_{\phi}/\rho_{\phi} \rightarrow \text{const}$

Let us summarize our results about isotropisation

- 1. Constraint on ϕ depending on $\ell(\phi)$ function: must tend to a bounded constant ℓ_0
- 2. Universe asymptotical behaviour completely express depending on ℓ_0
 - In particular $p_{\phi}/\rho_{\phi} \rightarrow \text{const}$
- 3. Coincidence problem is not solved

Let us summarize our results about isotropisation

- 1. Constraint on ϕ depending on $\ell(\phi)$ function: must tend to a bounded constant ℓ_0
- 2. Universe asymptotical behaviour completely express depending on ℓ_0
 - In particular $p_{\phi}/\rho_{\phi} \rightarrow \text{const}$
- 3. Coincidence problem is not solved

Now, we assume that Universe has reached isotropy. What are then the physical constraints on ℓ_0 with such a constant scalar field equation of state

Contraints on ℓ_0

2 types of constraints when the Universe has reached isotropy

• WMAP: $l_0^2 < 0.33$

• What about supernovae constraints?

Some data

Daly and al (A.P.J., 597, 2003) 92 supernovae and 20 radiogalaxies

Laboratoire de l'Univers et de ses Théorie

No assumption on curvature or Ω_m

Scalar field constraints from homogeneous cosmology -p.24/26

No assumption on curvature or Ω_m

• $\Rightarrow \chi^2 \simeq 117.208$ and $\ell_0^2 = 0.03$ with $\ell_0^2 < 0.75$

Laboratoire de l'Univers et de ses Théories

No assumption on curvature or Ω_m

•
$$\Rightarrow \chi^2 \simeq 117.208$$
 and $\ell_0^2 = 0.03$ with $\ell_0^2 < 0.75$

• $(\Omega_m, \Omega_k) = (0.34, -0.04)$: closed model

Laboratoire de l'Univers et de ses Théories

No assumption on curvature or Ω_m

• $\Rightarrow \chi^2 \simeq 117.208$ and $\ell_0^2 = 0.03$ with $\ell_0^2 < 0.75$

• $(\Omega_m, \Omega_k) = (0.34, -0.04)$: closed model

• $z_a = 0.6$, acceleration redhsift is too hight: Riess 01

Laboratoire de l'Univers et de ses Théories

- Requiring isotropisation allows constraining ϕ

- Requiring isotropisation allows constraining ϕ
- Constraints on $\phi: \ell(\phi)^2 \to \ell_0^2$
- ℓ_0^2 bounding by a constant depending on space dimension, curvature, PF

- Requiring isotropisation allows constraining ϕ
- Constraints on $\phi: \ell(\phi)^2 \to \ell_0^2$
- ℓ_0^2 bounding by a constant depending on space dimension, curvature, PF
- In the isotropy vicinity, Universe state is completly described by ℓ_0

Laboratoire de l'Univers et de ses Théorie

- Requiring isotropisation allows constraining ϕ
- Constraints on $\phi: \ell(\phi)^2 \to \ell_0^2$
- ℓ_0^2 bounding by a constant depending on space dimension, curvature, PF
- In the isotropy vicinity, Universe state is completly described by ℓ_0
- In particular, the dark energy equation of state is a constant

 Adding another SF: Observational viewpoint: not detectable Theoretical viewpoint: change the isotropisation necessary conditions

- Adding another SF: Observational viewpoint: not detectable Theoretical viewpoint: change the isotropisation necessary conditions
- Constraints on ℓ_0
 - WMAP: $\ell_0^2 < 0.33$
 - Supernovae: $\ell_0^2 < 0.75$, $\ell_0^2 \simeq 0.03$, $\Omega_k \simeq -0.04$

- Adding another SF: Observational viewpoint: not detectable Theoretical viewpoint: change the isotropisation necessary conditions
- Constraints on ℓ_0
 - WMAP: $\ell_0^2 < 0.33$
 - Supernovae: $\ell_0^2 < 0.75$, $\ell_0^2 \simeq 0.03$, $\Omega_k \simeq -0.04$
- Two problems: Coincidence and z_a

- Adding another SF: Observational viewpoint: not detectable Theoretical viewpoint: change the isotropisation necessary conditions
- Constraints on ℓ_0
 - WMAP: $\ell_0^2 < 0.33$
 - Supernovae: $\ell_0^2 < 0.75$, $\ell_0^2 \simeq 0.03$, $\Omega_k \simeq -0.04$
- Two problems: Coincidence and z_a
- One solution: \u03c6 non minimally coupled to the perfect fluid coincidence problem may be solved (Chimento 03) Compatible with isotropisation!

