
Higher Order Gravity Tensors

In four dimensions, field equations for gravity are taken
to be

Gab + Λgab = 0

since this is the most general tensor which

1. is symmetric

2. depends only on the metric and its first two
derivatives

3. is divergence free

4. is linear in second derivatives of the metric )(

But in five dimensions, the second order Lovelock
tensor

Hab = RRab − 2RacR
c
b − 2RcdRacbd +Ra

cdeRbcde −
1

4
gabLGB

which can be obtained from variation of action
containing Gauss-Bonnet term

LGB = R2 − 4RabR
ab +RabcdRabcd

also satisfies required conditions.

Thus should take 5-d field equations to be

Gab + 2αHab + Λgab = 0

Should also consider extra term since LGB appears as
quantum gravity correction to string theory tree level
effective action.

Particularly relevant for brane world models, since they
are motivated by string theory.



If dilaton is included, general second order term is
instead

L2 = c1LGB − 16c2Gab∇aφ∇bφ+ 16c3(∇φ)2∇2φ− 16c4(∇φ)4

Not all coefficients fixed by string theory.

In fact low energy string theory action also suggests
other possibilities:

R2 , RabR
ab , R(∇φ)2 , R∇2φ

However these all give ghosts at high energy (but not
actually ruled out for string theory since dealing with
low energy effective action).

General bulk action

SBulk =
M3

2

∫
d5x

√
−ge−2φ

{
R− 4ω(∇φ)2 +M−2L2 − 2Λ

}
Coefficients can be determined from origin of φ.
For toroidal compactification of∫

d5+Nx
√
−g(5+N)

(
R(5+N) + c1M

−2L(5+N)
GB − 2Λ

)
with ds25+N = gab(x)dxadxb + e−4φ(x)/NηABdX

AdXB

Obtain ω = −1 +N−1 and

c2 = −ωc1 , c3 = (2ω+ 1)ωc1 , c4 = −(2ω+ 1)ω2c1

ω = −1 corresponds to dilaton (with extra symmetries).

Define α = c1/M2 for later convenience.
In string theory context α ∝ α′, hence small.



As with Einstein-Hilbert action, need boundary term to
get well defined action [Myers]

L(b)
GB = 4KKacK

ac −
8

3
KacK

cbKa
b −

4

3
K3 − 8G(4)

ab K
ab

With higher order scalar field terms as well, brane
contribution to action is

Sbrane = −M3

∫
d4x

√
−he−2φ

{
2K +M−2L(b)

2 + T
}

with

L(b)
2 = c1L(b)

GB − 16c2(Kab −Khab)D
aφDbφ

−16c3(n·∇φ)
(

1

3
(n·∇φ)2 + (Dφ)2

)
Variation of action gives generalised Israel junction
conditions (as before). These do not depend on brane
thickness (not true for other second order terms).

Can also derive by treating brane as δ-function
contribution to energy-momentum tensor.

E.g. for ds25 = e2Ads24 + dz2 have

A′′ ∝ 2δ(z) , A′ ∝ sign(z)

Field equations give

−3A′′ + 12αA′2A′′ + · · · = Tδ(z)

So for α = 0, T = −6A′.

If α 6= 0, not clear, since value of A′2A′′ is ambiguous.

Literature contains conflicting results.



Linearised Brane World Gravity

Consider brane world solutions with metric
ds2 = e2Adxνdxν + dz2 where A = −|z|/`, and

φ′

A′
= u = constant

(simplest extension of RS to include a scalar field)

Consider positive warp factor (` > 0) solutions
(needed for localised gravity).

Also take u` > 0 to avoid naked curvature singularities
in bulk.

Consider general perturbation of Randall-Sundrum-like
brane world with scalar field

ds2 = e2A(ηµν + γµν)dx
µdxν + 2vµdx

µdz + (1 + ψ)dz2

φ = −u|z|/`+ ϕ

where γµν, vµ, ψ and ϕ are small.

For effective 4-d gravity need to worry about
perturbations of brane position as well as bulk metric.

Can address this by using gauge in which brane stays
where it is: Solve Einstein equations perpendicular to
brane to obtain lapse function ψ and shift vector vµ.



Graviton modes

Useful to split γµν into tensor and scalar parts

γµν = γ̄µν +
1

4
γηµν +

4

3
cχ(u)

(
1

4
ηµν −

∂µ∂ν

�4

)
χ

where γ = ηµνγµν, and ∂µγ̄µν = 0.

γ̄µν corresponds to graviton modes.

χ ∝ 8ϕ−uγ is scalar perturbation (absent in RS model).

Bulk graviton equation

µγ(u)
(
∂2
z − 2(2− u)`−1∂z + f2

γ (u)e
−2A�4

)
γ̄µν = 0

Note no 3rd or 4th order derivatives.

Compare with(
∂2
z − 4`−1∂z + e−2A�4

)
γ̄µν = (5)∇2γ̄µν = 0

for RS model.

If higher order gravity terms absent, µγ = f2
γ = 1.

Otherwise, if µγ(u) < 0 or f2
γ (u) < 0, kinetic term for

γ̄µν will have wrong sign in effective action, so bulk will
have ghosts.

See that fγ rescales momentum dependence, which
changes effective 4d gravity too.



4d gravity

Brane junction conditions imply

µγ`∂zγ̄µν+4c1[1− 2u]�4γ̄µν ∝ −
{
Sµν −

1

3

(
ηµν −

∂µ∂ν

�4

)
S

}
(Sµν is brane energy momentum tensor, M = 1)

Compare with `∂zγ̄µν ∝ −{Sµν − · · ·} for RS.

If 4c1[1 − 2u] < 0, then either M2
Pl < 0 or vacuum has

non-trivial solution with spacelike momenta,
i.e. tachyons, so solution will be unstable.

Bulk solution (Fourier space, spacelike p):

γ̄µν ∝ e−ip·xe−(2−u)AK2−u
(
fγ`pe

−A)
For 1/p� `fγ (larger distances)

∂zγ̄µν ≈
`f2
γ

2(1− u)
�4γ̄µν if u = φ′/A′ < 1

So at large distances have �4γ̄µν ∝ −{Sµν − · · ·}
as in 4d linearised gravity.
(similar to Randall Sundrum scenario).

Extra �4γ̄µν term in junction conditions gives
4d gravity at short distances too
– hence higher order gravity leads to weaker constraints.

Analysis of scalar modes is qualitatively similar.



Example: ω = −1 and ci = α (dilaton)

For Einstein gravity (α = 0), one solution, with u = ∞:

Similar to ` < 0 solution, so does not give localised
gravity.

When higher order terms are included, develops tachyon.

Two extra solutions appear when α 6= 0

φ′

A′
= u =

3

2
±

√
3

4
+

`2

8α

(+): always unstable. (−): stable if u < 1/2.

Scalar (χ) perturbations are qualitatively similar to
graviton equations (ghosts and tachyons possible,
effective 4d gravity possible at all scales).

However corresponding coefficients are different, so
degeneracy between scalar and tensor modes is broken
by higher order gravity.

In particular can have

f2
γ =

1− 2u

1− u
� f2

χ =
3

3− 2u

if u ≈ 1/2 for above solution.



Brane junction conditions give effective 4d gravity.
Obtain (to leading order) Brans-Dicke gravity at all
scales.
(4d graviton and scalar mass scales are MPl and Mφ)

For 1/p� `fχ (large distances), find

M2
Pl = 8M3α`−1(2− u)f2

γ

M2
φ = 8M3α`−1(3− 2u)

so Mφ �MPl if solution fine-tuned to have fγ � 1.

Hence can potentially avoid conflict with constraints
from solar system. This is despite the fact that for
underlying 5d theory M (5)

Pl ∼M (5)
φ .

At medium (`fγ � 1/p � `fχ) and short (1/p � `fγ)
distance scales, find M2

φ ≤ 3M2
Pl. But not a problem,

since short distance constraints are weak.

(Above fine-tuning of parameters is in addition to usual
brane world fine-tuning of cosmological constants Λ
and T )



Modified large distance gravity

At large distance scales (1/p� `fγ) have

∂zγ̄µν ≈ −γ̄µν ×


` f2

γ p
2

2(1− u)
if u < 1

2Γ(u− 1)

`Γ(2− u)

(
p`

2

)4−2u

if 1 < u < 2

with similar behaviour for scalar modes.

Recall that [µγ`∂z + 4c1(1− 2u)�4] γ̄µν ∝ −{Sµν − · · ·}

Corresponding Newton potentials behave as

−
1

r
(u < 1) and −

1

r2u−1
(1 < u < 2)

Hence if effects of scalar field are greater than warping
of space time (φ′/A′ = u > 1), large distance gravity is
modified.

No longer have graviton (and scalar) zero mode
confined to brane, but still get 4d gravity at short
distances from �4 terms in junction conditions.

Existence of solutions with 1 < u < 2 seems to require
“wrong” choice of sign for coefficients (ci) of higher or-
der terms. Suggests theory has ghosts (for Minkowski
space), but this is not relevant for our warped space
solutions.



Summary

• In 5-d gravity (e.g. brane world) natural to include
second order Gauss-Bonnet curvature term.

• Israel junction conditions generalise to higher order
without problems.

• Linearised gravity with scalar and higher order terms
qualitatively similar to Einstein case.

• Several new types of instabilities can occur.

• Field equations have more solutions.

• Higher order terms can effect graviton and scalar
perturbations differently – can produce hierarchy
between scalar and graviton couplings.

• Weaker constraints from gravity experiments.

• Modified large distance gravity possible.


