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Some thoughts on Broken Symmetry and Spin- Waves (in progress)

1 Section
The rotation by finite angle of ferromagnet ground state (>, S7 = N.5)
MONETENRE) (1)

for a finite angle the exponent is of order /N and this is not an infinitesimal rotation. But
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with

a = —i0/NS/2 (5)
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But this a displacement operator generating a coherent state where
(W(0)|ao [¥(0)) = o (6)
and

2
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The rotated state is a condensation of spin wave of momentum 0. Of course this costs
no energy, because it is a linear combination of states of energy equal to the GS energy.
If we compute the overlap

(W(6)|(0)) = (T(0)] %57 [W(0)) = (T(0)] X0~ |T(0)) (8)
we can use the relation
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In the thermodynamic limit the overlap is zero for any finite . Local operators like have
vanishing matrix elements
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In the thermodynamic limit we again get zero. In the N — oo limit states of different
0 are essentially in different Hilbert spaces unconnected by local operators. Similar
argument can be made for other local operators, not necessarily scalar, and the prefactor
exp(—NS602/2) kills all such matrix elements.

2 The Anti ferromagnet

The infinite range anti ferromagnet is exactly solvable

J
H=1 > Si-s;
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In this form it is clear the minimum energy is obtained for a singlet S4 + Sp = 0 with
maximum possible spin for each of the sub-lattices Sy gy = NS/2.

B(St.54,55) = 53¢ [Sr(St +1) ~ Sa(Sa+ 1) = Sa(Sp + 1] (13)

and the GS energy is (Sp = 0)
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In the thermodynamic limit
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which is exactly the Néel state energy. The Néel state, in the N — oo, limit is a linear
combination of multiplet states of different Sp, all essentially degenerate with the true
singlet ground state (as long as Sp ~ O(1) rather than Sp ~ O(N)). For N > 1 this
state is very long lived (infinitely so, for N — oo) and we can just as well assume it to
be the GS with a broken symmetry. Anderson argued that a similar result holds for the
AF short-range models that have Néel order.

The short range model a state with saturated sub-lattice magnetization is in fact one
which is totally symmetric in the exchange of any two spins of the same sub-lattice; the
maximum spin multiplet of S

Sa=)_8, (16)
i€A

is totally symmetric under exchange of two spins (of the same sub-lattice). Hence,
SIS]]\I![)) iGA;j €B (17)

is independent of i, because the state is symmetrical in the exchange of any two spins in
A. If the sub-lattice magnetization is saturated,
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The ground state of this model will again be a singlet but the quantum fluctuations
are again negligeable because S(p) are essentially classical spins with quantum spin
number NS/2 > 1. Nevertheless, linear spin-wave theory shows that the sub-lattice
magnetization is nol saturated.



2.1 Linear spin wave theory

The Néel state

S;|¥N)=S|¥n);  1€A
S;|¥N)=-S8|¥n); i€B

The Goldstone mode
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So the zero energy mode is
DS+, 5] | 1w)
i€A j€B
This suggest a Holstein-Primakoff transformation defined by spin deviations
[{nia},{n;js})
with
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Using the linearized version of HP transformation
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which we now replace in Hamiltonian

H=> Jy [sgs; + % (5787 + S;Sj)}
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The first term is the Néel reference state energy

H=Ex+J0)S D alai+> blbi | +5 > Jy [aibj + ajbﬂ (29)
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This a Boson Hamiltonian quadratic in second quantized operators that can be diago-
nalized exactly:

e Fourier transformations

e Bogoliubov-Valatin two-mode canonical quantization

2.2 Fourier Transformation

The FBZ is now that of each sub-lattice. (N is the number of sites in each sub-lattice)
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After Fourier transform

H=Ey+S5 > [J0) (afax+b' ) + k) (ados +afpl)]
keFBZ

2.2.1 Bogoliubov-Valatin two-mode canonical transformation
For each k we have a pair of coupled modes
ax,b_x
Modes of different k commute and we can diagonalize separately each
Hic =S| J(0) (afar + 1, b ) + T(0) (axbrc + al] )|
or simplifying notation
Hy = € (aTa n b%) + Aab + afbh)

Results (A real) :
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: 2 2 _
In version uses uj, — vi; = 1 to get

ax = UkxQk — Ukﬁl (46)

bT_k = —vkak + Uk/Bli (47)

Spin wwve dispersion at low k
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Note that a lower bounded spectrum requires a non-negative real spin wave energy
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which is verified if ~
k
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For J;; this is verified
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