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Abstract

The derivation of semi-classical dynamics of electrons in bands, in weak and slowly varying �elds

is notoriously tricky. The existence of the anomalous Hall e�ect ultimately revealed the need to

consider the e�ects of the Berry curvature of the band in the semi classical equations of motion.

The modern framework to include such e�ects has been provided by the work of [1] who resort to

a variational principle to derive the equations of motion of the parameters de�ning a wave packet.

We review their method as applied to a set of tight-binding bands.
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I. SCHRÖDINGER EQUATION FROM VARIATIONAL PRINCIPLE

The time dependent variational principle can be traced apparently to Dirac, but the

classic reference is the work of [2]. The basic principle is to de�ne an action for a arbi-

trary evolution in Hilbert space and derive the Schrödinger time dependent equation as an

extremum of this action. The proposed action for a Hamiltonian Ĥ is

S =

∫
dtL(ψ, ψ) =

∫
dt 〈ψ(t)| i~ d

dt
− Ĥ |ψ(t)〉 (1)

The trajectories we vary in this Lagrangian are arbitrary paths |ψ(t)〉 in the Hilbert space of

the system. The present form of the Lagrangian requires that |ψ(t)〉 is always normalized.

The method can formulated without this restriction [Kramer and Saraceno [2]].

Let us proceed. The principle states the action is stationary for a true evolution of the

system:

δS =

∫
dtδL(ψ, ψ) = 0 (2)

Now,

δL(ψ, ψ) = i~
[
〈ψ|δψ̇〉+ 〈δψ|ψ̇〉

]
− 〈δψ| Ĥ |ψ〉 − 〈ψ| Ĥ |δψ〉

= i~
[
d

dt
〈ψ|δψ〉+ 〈δψ|ψ̇〉 − 〈ψ̇|δψ〉

]
− 〈δψ| Ĥ |ψ〉 − 〈ψ| Ĥ |δψ〉 (3)

We can ignore the full time derivative (it integrates to zero) and get

δS =

∫
dt 〈δψ|

[
i~
d

dt
|ψ〉 −H |ψ〉

]
+

∫
dt

[
−i~ d

dt
〈ψ| − 〈ψ| Ĥ

]
|δψ〉 = 0 (4)

Su�cient conditions for an extremum are

i~
d

dt
|ψ〉 − Ĥ |ψ〉 = 0 (5)

−i~ d
dt
〈ψ| − 〈ψ| Ĥ = 0 (6)

which are the known equations of motion.
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II. PARAMETRIZING THE TRAJECTORY

A. Free particle in 1D

To apply this as a variational principle to obtain wave packet dynamics, we parametrize

the state |ψ(t)〉 with semi-classical coordinates and the require the action to have an ex-

tremum in these restricted trajectories. We illustrate with the case of a free particle in one

dimension (1D).

Take |ψ(t)〉 to be a 1D wave packet parametrized by a center xc(t) and a momentum

pc(t):

|ψc(t)〉 =
∫

dp

2π
ϕ (p; pc(t), xc(t)) |p〉 (7)

To lighten the notation, we use ϕ (p; pc(t), xc(t)) → ϕc(p). We can insure the state is nor-

malized at all times with ∫
dp

2π
|ϕc(p)|2 = 1 (8)

The function ϕc(p) is peaked about pc with

〈ψc(t)| p̂ |ψc(t)〉 =
∫

dp

2π
p |ϕ(p)|2 = pc (9)

The wave packet is also localized at xc

〈ψc(t)| x̂ |ψc(t)〉 =
∫

dp

2π
ϕ∗c (p)

(
i~
∂

∂p

)
ϕc (p) = xc (10)

We assume that the momentum and position are well de�ned and express this fact by

assuming that for any slowly varying function of x or p∫
dp

2π
f(x, p) |ϕc(p)|2 ≈ f(xc, pc) (11)

If we write

ϕc (p) = e−iγc(p) |ϕc (p)| , (12)

is is easy to see that the equation for xc is (the position operator in the p-representation is

x̂ = i~∂/dp)

xc = ~
∫

dp

2π
|ϕc (p)|2

∂γc
∂p
≈ ~

∂γc(p)

∂p

∣∣∣∣
p=pc

(13)

The term involving the derivative of |ϕ(p)| is zero because of the normalization condition.

In summary, we may set γ = (p/~)xc and our wave-packet (WP) is

|ψc(t)〉 =
∫

dp

2π
e−i(p/~)xc |ϕc (p)| |p〉 (14)
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We now derive the equations of motion for xc(t), pc(t) by requiring the action to be

stationary. Note, that we are not deriving the true evolution of the system because we are

forcing the shape of |ψ(t)〉 , only allowing for variation of xc(t) and pc(t).

Our Lagrangian is (do not confuse: in this context , pc is a generalized coordinate not a

momentum)

L (xc, pc; ẋc, ṗc) = 〈ψc(t)| i~
d

dt
− Ĥ |ψc(t)〉 (15)

We denote

〈ψc(t)| Ĥ |ψc(t)〉 := H (xc, pc) (16)

and

i~
d

dt
|ψc(t)〉 = i~ (ẋc |∂xcψc〉+ ṗc |∂pcψc〉) (17)

because the only variation allowed in the WP is that of the coordinates xc and pc.

Therefore, the Lagrangian is

L (xc, pc; ẋc, ṗc) = i~ [ẋcX(xc, pc) + ṗcP (xc, pc)]−H(xc, pc) (18)

= i~ [ẋcXc + ṗcPc]−Hc (19)

with

Xc := 〈ψc|∂xcψc〉 (20)

Pc := 〈ψc|∂pcψc〉 (21)

We could calculate immediately Xc and Pc as functions of xc, pc using Eq. (14) but, for

the moment, we keep them unspeci�ed. Consistent with our notation we indicate their

dependence on (xc,pc) our generalized coordinates by a subscript,

We vary the Lagrangian with respects to the coordinates xc, pc as

δL = i~ [δẋcXc + ẋcδXc + δṗcPc + ṗcδPc]− δHc = 0 (22)

We integrate by parts the variation of the action δS = δS =
∫
dtδL and throw away full

derivatives, as they are without consequence in the equations of motion

i~
[
−δxcẊc + ẋcδXc − δpcṖc + ṗcδPc(xc, pc)

]
− δH(xc, pc) = 0 (23)
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We now use

Ẋc = ẋc
∂Xc

∂xc
+ ṗc

∂Xc

∂pc
(24)

Ṗc = ẋc
∂Pc
∂xc

+ ṗc
∂Pc
∂pc

(25)

and

δXc =
∂Xc

∂xc
δxc +

∂Xc

∂pc
δpc (26)

δPc =
∂Pc
∂xc

δxc +
∂Pc
∂pc

δpc (27)

Gathering terms,∫
dtδL = i~

∫
dt

[
δxc

(
−ẋc

∂Xc

∂xc
− ṗc

∂Xc

∂pc
+ ẋc

∂Xc

∂xc
+ ṗc

∂Pc
∂xc
− 1

i~
∂Hc

∂xc

)
(28)

+δpc

(
−ṗc

∂Pc
∂pc
− ẋc

∂Pc
∂xc

+ ṗc
∂Pc
∂pc

+ ẋc
∂Xc

∂pc
− 1

i~
∂Hc

∂pc

)]
= 0 (29)

Because the variations are independent

−i~ṗc
(
∂Xc

∂pc
− ∂Pc
∂xc

)
=
∂H
∂xc

(30)

−i~ẋc
(
∂Pc
∂xc
− ∂Xc

∂pc

)
=
∂H
∂pc

(31)

For our WP, Eq. (14)

Xc =

[∫
dp

2π
(−ip/~) |ϕc(p)|2

]
= −ipc/~ (32)

P =

∫
dp

2π
ei(p/~)xc |ϕc(p)|

∂

∂pc
e−i(p/~)xc |ϕc(p)|

=
1

2

∂

∂pc

∫
dp

2π
|ϕ(p)|2 = 0 (33)

and

∂Xc

∂pc
= − i

~
(34)

∂Pc
∂xc

= 0 (35)

The equations of motion reduce to

ṗc = −
∂H
∂xc

(36)

ẋc =
∂H
∂pc

(37)
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and the Lagrangian is simply

ẋcpc −H(xc, pc) (38)

This is exactly as expected for a free particle.

B. Free Particle in external Field

A slightly more involved case in that a particle moving in an electromagnetic �eld:

H =
~2

2m

[
−i∇r −

q

~
A(r, t)

]2
+ qφ(r) (39)

We can de�ne our plane wave

〈r|p〉 = eip·r (40)

Suppose we have a WP centered about rc(t) in real space

|ψc(t)〉 =
∫

d3p

(2π)3
wc(p) |p〉 (41)

The normalization condition is
(
〈p|p′〉 = (2π)3 δ (p− p′)

)
∫

d3p

(2π)3
|wc(p)|2 = 1 (42)

For this particular Hamiltonian (as for the later case of a band) it proves useful to do a

change of variable,p→ k, ~k = p− qA(rc, t), and write

|ψc(t)〉 =
∫

d3k

(2π)3
wc(k) |~k+ qA(rc, t)〉 (43)

The position operator is still

r = i~∇p = i∇k (44)

and so

〈ψc| rc |ψc〉 =
∫

d3k

(2π)3
w∗c (k)i∇kwc(k)∫

d3k

(2π)3
(∇kγk) |wc(k)|2 = rc (45)

This means that our previous choice of γk = k · rc still gives a WP centered in real space

about rc. Our WP is

|ψc(t)〉 =
∫

d3k

(2π)3
|wc(k)| e−ik·rc |~k+ qA(rc, t)〉 (46)
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Since

〈r|~k+ qA(rc, t)〉 = ei(k+qA(rc,t))·r, (47)

in real space the WP looks like

ψc(r, t) = 〈r|ψc(t)〉 =
∫

d3k

(2π)3
|wc(k)| e−ik·rcei[k+qA(rc,t)]·r

= ei(q/~)A(rc,t)·r
∫

d3k

(2π)3
|wc(k)| eik·(r−rc] (48)

All we did with the change of variable was add a phase factor exp [i (q/~)A(rc, t) · r] to the

wave function. This is still a linear superposition of plane waves (the shift in wave vector

k → k + (q/~)A(rc, t) is independent of r) but, at �xed k, the plane wave of amplitude

|wc(k)| has di�erent wave vectors at di�erent times,namely

q(t) = k+ (q/~)A (rc(t), t)

We are now using kc and rc as parameters of the WP. This change of variable is well known

in classical physics. There are two momenta in the presence of a vector potential: p is the

canonical momentum, conjugate to r; but the mv momentum in not p, it is mv = p− qA,

in our case ~k, as we shall soon �nd out.

There is an interesting consequence of our choice of coordinates in the mean energy; since

[−i~∇− qA(r, t)] |k+ qA(rc, t)〉 = ~k− q (A(r, t)−A(rc, t)) |~k+ qA(rc)〉 (49)

we get

〈ψc| Ĥ |ψc〉 =
∫

d3k

(2π)3
w∗(k)

[
1

2m
(~k− q (A(r, t)−A(rc, t)))

2 + qφ(r)

]
w∗(k)

=
~2k2

c

2m
+ qφ(rc) (50)

where we used Eq. (11) to make the vector potential disappear from the classical Hamilto-

nian. It has been gauged away by the phase factor added to the wave-function.

The Lagrangian still has the general form

L(rc,kc, ṙc, k̇c) = 〈ψc(t)| i~
d

dt
− Ĥ |ψc(t)〉 , (51)

but now there is an extra factor in the time derivative of |ψc(t)〉 coming from A(rc, t)

〈ψc(t)| i~
d

dt
|ψc(t)〉 = i~

(
−ik · ṙc + i

q

~
Ȧ(rc, t) · rc

)
(52)
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because, once again

Pc = 〈ψc|∇kcψc〉 =
∫

d3k

(2π)3
eik·rcw*

c (k)∇kce
ik·rcwc(k)

=
1

2
∇kc

∫
d3k

(2π)3
|wc(k)|2 = 0 (53)

Therefore

L(rc,kc; ṙc, k̇c) = ṙc · ~kc − qȦ(rc, t) · rc −
(
~2k2

c

2m
+ qφ(rc)

)
(54)

Let us now derive the Euler-Lagrange equations of motion. The terms proportional do δkc

are (
ṙc −

~kc
m

)
· δkc (55)

To obtain the term is δrc requires more work; we will not worry about total derivatives;

δṙc · ~kc = −~k̇c · δrc +
d

dt
(. . . )

δ
[
qȦ(rc, t) · rc

]
= qȦ(rc, t) · δrc − qδA · ṙc +

d

dt
(. . . )

= q
∂A

∂t
· δrc − q

[
∂Aβ

∂rαc
ṙαc δr

β
c −

∂Aβ

∂rαc
ṙβc δr

α
c

]
= q

∂A

∂t
· δrc − q

(
∂Aβ

∂rα
ṙαδrβ − ∂Aα

∂rβ
ṙαδrβ

)
= q

∂A

∂t
· δrc + q

(
∂Aα

∂rβ
− ∂Aβ

∂rα

)
ṙαδrβ (56)

δ [qφ(rc)] = q∇φ · δrc (57)

The equations of motion become

ṙc =
~kc
m

(58)

~k̇βc = q

[
− ∂φ

∂rβc
− ∂Aβ

∂t

]
+ qFβαṙα (59)

with

Fβα :=
∂Aα

∂rβ
− ∂Aβ

∂rα
(60)

in 3D

Bγ =
1

2
εγβαFβα =

1

2
εγβα

(
∂Aα

∂rβ
− ∂Aβ

∂rα

)
= εγβα

∂Aα

∂rβ
= (∇×A)γ (61)
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and

(ṙ×B)β = εβαγ ṙαBγ =
1

2
εβαγεγµν ṙαFµν = 1

2
(δβµδαν − δβνδαµ) ṙαFµν

= Fβαṙα (62)

or

ṙc =
~kc
m

(63)

~k̇c = q [E+ ṙc ×B] (64)

These are the expected classical equations of motion. The second term in the Lorentz force.

As stated above, ~k is the mv momentum, and so the second equation is Newton's second

law for a particle in the presence of electric and magnetig �elds.

III. THE EQUATIONS OF MOTION IN BANDS

A. Wave Packet of Bloch States

The only adaptation we need to do from the free electron example to a band is to consider

a superposition of Bloch states of a single band

|ψc(t)〉 =
1√
V

∑
k

wc(k) |ψks〉 (65)

As before, |wc(k)|2 ,is peaked about kc and normalized in the large V limit:∫
d3k

(2π)3
|wc(k)|2 = 1, (66)∫

d3k

(2π)3
k |wc(k)|2 = kc, (67)

The state is also peaked about rc in real space.

〈ψc(t)| r̂ |ψc(t)〉 = rc (68)

For slowly varying functions of k and r∫
d3k

(2π)3
f (r̂,k) |wc(k)|2 ≈ f (rc,kc) , (69)
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To proceed we need the position operator in the k representation;

r̂→i∇k + ξkss (70)

where the Berry connection, ξk,s′s is de�ned by

ξk,s′s :=
i

vc

∫
uc

ddru∗ks′ (r)∇kuks (r) , (71)

uks (r) is the periodic component of the Bloch wave function of band s and vc the volume

of the unit cell. The chosen normalization is

〈uks|uks′〉uc :=
1

vc

∫
uc

ddru∗ks (r)uks′(r) = δss′ (72)

From here on, since we are working only with one band, we drop the band index s. Contin-

uing

〈ψc(t)| r̂ |ψc(t)〉 =
∫

d3k

(2π)3
wc(k) (i∇k + ξk)wc(k) (73)

If, as before,

wc(k) = |wc(k))| e−iγc(k) (74)

we get

〈ψc(t)| r̂ |ψc(t)〉 =
∫

d3k

(2π)3
(∇kγ(k) + ξk) |wc(k)|

2 = rc

= ∇kγc(k)|k=kc
+ ξkc

= rc (75)

We choose

γc(k) := k · rc − (k− kc) · ξk (76)

Then

∇kγc(k)|kc
= rc − ξkc

. (77)

and

〈ψ(t)|r |ψ(t)〉 =
∫

d3k

(2π)3
(∇kγ(k) + ξk) |wc(k)|

2 = ∇kγc(k)|kc
+ ξkc

(78)

= rc (79)
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where we used Eq. (69).With this choice

X := 〈ψc(t)|∇rcψc(t)〉 = −ik (80)

P = 〈ψc(t)|∇kcψc(t)〉 = −iξkc
(81)

and the Lagrangian density is

L = ṙc · ~kc − ~k̇c · ξkc
−H(kc, rc) (82)

In the case of an unperturbed band we can simply write

H(kc, rc) = ε(kc) (83)

From this point on, we will refer only to the WP coordinates, and can, without confusion

with the Bloch vector of position operator, drop the c index. The beauty of this treatment

is that we already considered a Lagrangian of this form

L = ṙ · ~k− ~k̇ · ξk − ε(k) (84)

Up to a total derivative it has the form

L = ṙ · ~k+ ξ̇k · ~k− ε(k)

If we compare it to Eq. (54), we see that ξk is equivalent to the term −qA,except that it

works as a vector potential momentum space. The equations of motion become simply

~k̇ = 0

ṙ =
1

~
∇kε(k)− k̇×ω(k)

with

ω(k) := ∇k × ξk

called the Berry curvature. Just like the vector potential changes the phase of the WP as is

moves through real space, the Berry connection ξk expresses a change of phase (Berry Phase)

as the state moves in the Brillouin zone. The Berry curvature amounts to a �magnetic� �eld

in Bloch space. In the absence of external �elds though, there is no e�ect of this term, since

~k̇ = 0.
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B. Perturbed Bands

We now arrive at the problem we are really interested in: what happens when we perturb

the bands with an external �eld?

The Hamiltonian is now

Ĥ =
1

2m
(−i~∇r − qA(r))2 + VL(r) + qφ(r, t) (85)

where VL(r) is the lattice potential. We build our wave packet,as before, using Bloch states

|ψc(t)〉 =
1√
V

∑
k

wc(k) |ψks〉 (86)

where

〈r|ψk〉 =
1√
V
eik·ruks(r) (87)

We can repeat the same gauge transformations and de�ne

〈r|ψ̃k〉 =
1√
V
ei[k+(q/~)A(rc)]·ruks(r) (88)

Note that the �magnetic Bloch states�
∣∣∣ψ̃k

〉
are still orthogonal for di�erent k′s and remain

normalized.

|ψc(t)〉 =
1√
V

∑
k

wc(k)
∣∣∣ψ̃ks

〉
(89)

Within approximations that we have been doing,

〈ψc(t)| Ĥ |ψc(t)〉 ≈ 〈ψc(t)|
1

2m
(−i~∇r)

2 + VL(r) + qφ(rc, t) |ψc(t)〉

≈ ε(kc) + qφ(rc, t) (90)

where ε(kc) in the unperturbed band energy. To ensure the WP is peaked about rc, we

again choose w(k) = |w(k)| exp(−iγk) with

γc(k) := k · rc − (k− kc) · ξk (91)

When we compute the Lagrangian, as in the case of the free particle, we must include in the

term

〈ψc(t)|
d

dt
|ψc(t)〉 (92)
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the term coming from the time derivative of exp [i(q/~)A(rc) · r]. So the full Lagrangian

becomes

L = ṙc · ~kc − ~k̇c · ξkc
− qȦ(rc, t) · rc − [ε(kc) + qφ(rc, t)] (93)

Our previous analysis then leads to the semi-classical equations of motion of electrons in a

band

ṙ =
1

~
∇kε(k)− k̇× ω (k) (94)

~k̇ = q (E+ ṙ×B) (95)

IV. TRANSPORT IN MAGNETIC BLOCH BANDS

There is an interesting generalization of these results in [3]. In the presence of a uniform

magnetic �eldB0 that satis�es a commensurability condition (�ux φ per unit cell is a rational

fraction of the of the �ux quantum h/e, φ/φ0 = p/q) one can still apply Bloch's theorem

with a larger unit cell that contains q of the original cells of the crystal. What Chang

and Niu consider in [3] is the motion of electrons in the magnetic Bloch bands under the

presence of an electric �eld and an extra magnetic �eld δB (which may not be uniform or

may drive the total �eld from the commensurability condition. I will not give the details of

this generalization but only mention that the semi-classical equations of motion are almost

unchanged

ṙ =
1

~
∇kE(k)− k̇× ω (k) (96)

~k̇ = −e (E+ ṙ× δB) (97)

I say almost because the band energy E (k) is modi�ed by the extra magnetic �eld as

E(k) = ε(k) +
e

2m
δB · L

where L is the angular momentum of the wave-packet

L := 〈W | (r− rc)× (−i~∇r) |W 〉

If δB = 0, we obtain the same equations of motion as before without the uniform �eld B0.

But remember the dispersion ε(k) refers to the magnetic Bloch bands.
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Appendix A: Classical equations of motion in a magnetic �eld

The classical Hamiltonian for a charge q in an electromagnetic �eld is

H(r,p) =
1

2m
(p− qA(r, t)) + qφ(r) (A1)

The Hamilton equations become

ṙ =
1

m
(p− qA(r, t)) (A2)

ṗi =
q

m
(pj − qAj(r, t))

∂

∂xi
Aj(r, t)− q

∂

∂xi
φ (A3)

These look quite di�erent from the known Newton's law with the Lorentz force. In fact they

are not, but we require the distinction between the canonical momentum p and the mv :=k

momentum of Newtonian physics. Note �rst that

v = ṙ =
1

m
(p− qA(r, t)) =

k

m
(A4)

and

ṗi = qvj
∂

∂xi
Aj(r, t)− q

∂

∂xi
φ (A5)

We resort to the identity

[v × (∇×A)]i = εijkεklmvj∂lAm

= εkijεklmvj∂lAm

= (δilδjm − δimδjl) vj∂lAmIn

= vj∂iAj − vj∂jAi (A6)

other words

vj∂iAj = [v × (∇×A)]i + (v · ∇)Ai (A7)

and the second Hamilton equation is

ṗ− q (v · ∇)Ai = qv × (∇×A)− q ∂

∂xi
φ (A8)

Now note that

k̇ = ṗ− qȦ (r, t) = ṗ− q∂A
∂t
− q(ṙ · ∇)A (A9)

so

k̇ = qv ×B+ q

(
−∂A
∂t
− ∂

∂xi
φ(r)

)
(A10)
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or

v =
k

m
(A11)

k̇ = q (E+ v ×B) (A12)

The Lorentz force is the time derivative of k, the mv momentum, not of p, the canonical

momentum. In semi-classical equations of motion in a band the Bloch momentum ~k is the

canonical momentum, so we expect the semi-classical equations of motion to be expressed

in the ~q := ~k− qA.

Appendix B: How does the wave packet move

In this we start with our WP and apply directly the evolution operator without resorting

to the time dependent variational method. The aim is to show that the dynamics arises

from the terms in the Hamiltonian linear in the deviations r− rc and k− kc.

|ψc(t)〉 =
∫

d3k

(2π)3
|wc(k)| eik·(r−rc] |~k+ qA(rc)〉 (B1)

with wave function

ψc(r, t) = ei(q/~)A(rc)·r
∫

d3k

(2π)3
|wc(k)| eik·(r−rc] (B2)

The question is whether we can understand the motion of the parameters rc and kc when

we apply directly the evolution operator to this wave-packet. Recall that |wc(k)| is peaked

about kc and the wave packet is localized in real space about rc

[−i~∇− qA(r, t)] |k+ qA(rc)〉 = ~k− q (A(r, t)−A(rc, t)) |~k+ qA(rc)〉 (B3)

e−iĤt/~ |k+ qA(rc)〉 = exp

[
i

(
~
2m

[
k− q

~
(A(r̂, t)−A(rc, t))

]2
+ qV (r̂)

)
t

]
|k+ qA(rc)〉

(B4)

Now we use the fact that we may assume that k ≈ kc and after integration over k, r ≈ rc.

So we expand these expressions to linear order in the deviations. We can drop constant

15



factors independent of k and r as these only change the phase of the wave function and do

not a�ect either rc or kc

qV (r̂)→ −qE(rc) · (r̂− rc) (B5)[
k− q

~
(A(r̂, t)−A(rc, t))

]2
→
[
kc + (k− kc)−

q

~
([(r− rc) · ∇rc ]A(rc, t))

]2
(B6)

Ignoring terms which do not depend on k or r this becomes

2
[
k · kc −

q

~
[(r− rc) · ∇rc ]A(rc) · kc

]
(B7)

We now need to transform the term

q

~
[(r̂− rc) · ∇rc ]A(rc) ·

~kc
m
t =

q

~
(rα − rαc )

∂

∂rα
Aβ(rc)

~kβc
m

t; (B8)

we note that

[v × (∇×A)]α = εαβγvβεγµν∂µA
ν

=δαµδβνv
β∂µA

ν − δανδβµvβ∂µAα

=∂α(v ·A)− (v · ∇)Aα (B9)

which, in our problem translates to

q

~
[(r̂− rc) · ∇rc ]A(rc) ·

~kc
m
t =

q

~
(r̂− rc) ·

[
~kc
m
t× (∇×A)

]
+
q

~
(r̂− rc)

α

(
~kc
m
t · ∇

)
Aα(rc)

(B10)

which we rewrite as (consistently with keeping linear terms in the deviation from kc and rc

q

~
(r̂− rc) ·

[
~kc
m
t× (∇×A)

]
+
q

~
(r̂− rc)

α [Aα(rc + ~kct/m)− Aα(rc)] (B11)

Dropping again constant phases we arrive at

exp

[
−i
(

~
2m

[
k− q

~
(A(r̂, t)−A(rc, t))

]2
+ qV (r̂)

)
t

]
→

exp−i
[
k · ~kc

m
t− q

~

[
(r̂− rc) ·

(
Et+

~kc
m
t× (∇×A)

)]
− q

~
r̂· (Aα(rc + ~kct/m)− Aα(rc))

]
(B12)

Now we can read the changes of WP parameters. The term in k modi�es rc. The terms in

r−rc shift kc and the last term modi�es the phase factor

rc → rc +
~kc
m
t (B13)

kc → kc +
q

~

(
E+

~kc
m
× (∇×A)

)
t (B14)
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and the last term is what is required to change the phase factor to

ei(q/~)A(rc)·r → ei(q/~)A(rc+~kct/m)·r = ei(q/~)A(rc(t))·r (B15)
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