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1. Linearized Boltzmann Equation

The semi–classical approach to transport treats carriers as particles with well defined
Bloch momentum and spatial position. Wave packets describing these particles satisfy
the uncertainty principle restriction

∆k∆r ≥ 1 (1)

Good momentum definition means

∆k � kF ∼
1

a
; a,lattice parameter, (2)

and good position definition,

∆r � L; L scale of perturbation, system size (3)

It is possible to have

∆k � kF

a�∆r � L
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without violating (1), provided L� a.
Carriers described by wave-packets with well defined Bloch momentum k and position

r. The motion of carriers described by wave-packets with well defined Bloch momentum
k and position r includes two effects:

� drift terms, determined by the semi-classical equations of motion;

� scattering events, originating from deviations of the lattice from perfect periodicity
(lattice vibrations, impurities, defects, vacancies etc.). These events are local (or
quasi-local) in real space but non-local in momentum space.

The Boltzmann equation (BE) refers to the density of such particles in (k, r) space

f(k, r, t)
ddk

(2π)d
ddr = number of carriers in cell ddkddr (4)

with marginal distributions∫
ddk

(2π)d
f(k, r, t) = ρ(r, t) (real space density) (5)∫

ddrf(k, r, t) = n(k, t) (momentum space density) (6)∫
ddk

(2π)d

∫
ddrf(k, r, t) = Nc (number of carriers) (7)

Time changes f(k, r, t) at fixed point in phase space (k, r)

∂

∂t
f(k, r, t) =

∂

∂t
f(k, r, t)

∣∣∣∣
drift

+
∂

∂t
f(k, r, t)

∣∣∣∣
col

Drift term arises from smooth variation of k and r that result in a current in phase space

J = (k̇, ṙ)f(k, r, t)

leading to a continuity equation describing the conservation of number of carriers,

∂

∂t
f(k, r, t)

∣∣∣∣
drift

= −∇k

[
k̇f(k, r, t)

]
−∇r [ṙf(k, r, t)]

= −∇k

[
k̇f(k, r, t)

]
−∇r [vkf(k, r, t)] (8)

There is an important result (Liouville’s theorem), if the (k,r) follow Hamiltonian dy-
namics

~̇k = −∇rH (9)

ṙ = ∇kH (10)

In that case
∇k · ~̇k +∇r · ṙ = (−∇k · ∇r +∇r · ∇k)H = 0 (11)
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and
∂

∂t
f(k, r, t)

∣∣∣∣ = −k̇ · ∇kf − vk · ∇rf (12)

In the case where both the magnetic field B and the Berry curvature ω(k) are non-
zero, Liouville’s theorem does not apply because k and r are not canonically conjugate
(see appendix A). For the moment we assume that either B or ω are zero.

The semi-classical equations of motion are

~k̇ = q (E + vk ×B) (13)

vk =
1

~
∇kεk − k̇× ωk (14)

∂

∂t
f(k, r, t)

∣∣∣∣
drift

= −vk·∇rf −
q

~
(E + vk ×B) · ∇kf (15)

We will proceed with the BE as

∂

∂t
f(k, r, t) = −vk·∇rf −

q

~
(E + vk ×B) · ∇kf +

∂

∂t
f(k, r, t)

∣∣∣∣
col

(16)

For stationary (DC) transport the first term is zero and

vk·∇rf +
q

~
(E + vk ×B) · ∇kf =

∂

∂t
f(k, r, t)

∣∣∣∣
col

(17)

2. Local Equilibrium Hypothesis

In the usual situation in transport one can define in a small, but macroscopic, region
local values of the temperature and chemical potential, T (r, t) and µ(r, t). We can also,
in general, define a global temperature and chemical potential. For instance, we can
measure a thermal conductivity as a function of a global temperature T0 using a probing
temperature gradient such that |T (r)− T0| � T0. This allows the following definitions:

� Global equilibrium distribution:

f0
k =

1

eβ(εk−µ) + 1
(18)

� Local equilibrium distribution (LED)

f
(le)
k (r, t) =

1

eβ(r,t)(εk−µ(r,t)) + 1
(19)

The deviation of the actual distribution from the global equilibrium can then be written
as

δf(k, r, t) =
[
f(k, r,t)− f (le)

k (r, t)
]

+
[
f

(le)
k (r, t)− f0

k

]
= δf(k,r,t) + δf

(le)
k (r, t) (20)
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The hydrodynamic regime of transport assumes that the distribution is close to the local
equilibrium one

δf(k,r, t)� δf
(le)
k (r, t) (21)

so that a definition of time and space varying temperature and chemical potential fields
is possible. The collision term, however, is zero for the local equilibrium distribution
because collisions are local in real space. In other words, collisions do not change the
LED. We then write the collision term as a linear functional of the deviation δf

∂

∂t
f(k, r, t)

∣∣∣∣
col

:= Ik
[
δf
]

=

∫
ddk′

(2π)2 I(k,k′)δfk′

The term∇rf
0 is zero and, in the hydrodynamic regime, we replace f(k, r,t) by δf

(le)
k (r, t)

in the drift terms and linearize in the driving fields

∇rδf
le
k (r, t) =

∂f0
k

∂εk

[(
εk − µ
β

)
∇rβ −∇rµ

]
=

(
−
∂f0

k

∂εk

)[
εk − µ
T
∇rT +∇rµ

]
(22)

∇kf
le
k (r, t) =

(
∂f0

k

∂εk

)
∇kεk

The term with ∇kf(k, r, t) is trickier to linearize. The reason is twofold:

� ∇kf
0
k is not zero;

� it would seem that since we already have the external fields multiplying∇kf(k, r, t)
we could just replace f → f0. This is true for the E term, but semi-classical
transport is not linear in B.

We will proceed with specific cases.

2.1. Linearized Boltzmann Equation

In this case

∇kf
0 =

∂f0
k

∂εk
∇kεk = ~

∂f0
k

∂εk
vk (23)

and
q

~
(E + vk ×B) · ∇kf → −q (E · vk)

(
−
∂f0

k

∂εk

)
(24)

The magnetic field term cancels, since

(vk ×B) · f lek = (vk ×B) · ∇kεk

(
∂f lek
∂εk

)
= ~

(
∂f lek
∂εk

)
(vk ×B) · vk = 0
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To include magnetic field terms we cannot be content stick with the LED and must
include

q

~
(vk ×B) · ∇kδf (25)

as the lowest order contribution. The linearized BE becomes(
−∂f

0

∂εk

)
vk·
[
εk − µ
T
∇rT +∇rµ− qE

]
= Ik

[
δf
]
− q

~
(vk ×B) · ∇kδfk (26)

to be solved for δf .

2.2. The currents

What can we calculate with the solution of the BE, f(k, r) = f0
k + δf

(le)
k + δfk?

� the electric current density

je = 2q

∫
ddk

(2π)d
vkf(k, r) = 2q

∫
ddk

(2π)d
vkδf(k, r)

we are assuming that there is no current for the equilibrium distribution for any
T or µ. But if ∫

ddk

(2π)d
vkf

0
k = 0 (27)

clearly ∫
ddk

(2π)d
vkf

(le)
k = 0 (28)

� Heat current

jh = 2

∫
ddk

(2π)d
vk(εk − µ)f(k, r) = 2

∫
ddk

(2π)d
vk(εk − µ)δf(k, r) (29)

How can we justify this expression? From thermodynamics

dU = TdS − PdV + µdN (30)

for a infinitesimal (but macroscopic) cell of fixed volume ddr, TdS = dU − µdN and

jh = ju − µjn (31)

where ju is the energy current and jn the particle current.

ju :=

∫
ddk

(2π)d
vkεkδf(k, r) (32)

jn :=

∫
ddk

(2π)d
vkδf(k, r) (33)
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3. The Relaxation Time Approximation

3.1. Electric and Thermal conductivities

The Linearized Boltzmann Equation (LBE), Eq. 26 turn out to be an equation for the
deviation δf(k, r), appearing only in the collision integral and the magnetic field term.
No solution can be sought until we specify the collision integral. There is, however, a
quite general approximation for this term.

We know that, in the absence of driving fields, any deviation from equilibrium should
relax to equilibrium distribution. We make the rather drastic approximation that this
relaxation is exponential and that at each k, δf(k, r) relaxes with its own relaxation
time, independent of the the occupation of other states

Ik
[
δf
]

= −δfk
τk

(34)

In the absence of the magnetic field, this leads at once to an explicit solution

δfk =

(
−∂f

0

∂εk

)
vk·
[
−εk − µ

T
∇rT + q

(
E− 1

q
∇rµ

)]
τk (35)

and expression for the currents

jie = 2q

∫
ddk

(2π)d
vikδfk

= 2q2

∫
ddk

(2π)d

(
−∂f

0

∂εk

)
vikv

j
kτk

(
E− 1

q
∇rµ

)j
+ 2q

∫
ddk

(2π)d

(
−∂f

0

∂εk

)
vikv

j
kτk (εk − µ)

(
−∇T
T

)j
(36)

Since the driving fields are
(
E− 1

q∇rµ
)

and −∇T this defines the transport coefficients

jie = q2
∑
j

Lij0

(
E− 1

q
∇rµ

)j
+ q

∑
j

Lij1

(
−∇T
T

)j
(37)

with similar expression for the heat current

jih = q
∑
j

Lij1

(
E− 1

q
∇rµ

)j
+
∑
j

Lij2

(
−∇T
T

)j
(38)

where in general

Lijn := 2

∫
ddk

(2π)d

(
−∂f

0

∂εk

)
vikv

j
kτk (εk − µ)n (39)

These expressions allow the calculation of the transport coefficients provided we know
the band structure and can calculate the relaxation time. The presence of the Fermi
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Figure 1: changing coordinates to integration over energy and constant energy surfaces

factor is telling, We know that in the degeneracy limit, kBT � εF , (−∂f/∂εk) in peaked
about εk = µ, with exponential decay for |εk = µ| & kBT and with area 1∫ +∞

−∞
dεk

(
−∂f

0

∂εk

)
= f(+∞)− f(−∞) = 1− 0 (40)

and thus forms the basis of the Sommerfeld expansion. For a degenerate Fermi system,
all the transport is then due to the states close to the Fermi surface: the expressions for
the velocities, density of states and relaxation rates are only relevant close to the Fermi
Surface. As with the specific heat or the Pauli susceptibility, transport is also a Fermi
surface property.

To reduce to a convenient form for the Sommerfeld expansion we perform the k inte-
gration by integrating over constant energy surfaces Σ(ε) and energy∫

ddk

(2π)d
(. . . ) =

1

(2π)d

∫
dk⊥

∫
Σ(k⊥)

dσ(. . . ) (41)

=
1

(2π)d

∫
dε

∫
Σ(ε)

dσ

|∇kεk|
(. . . ) (42)

1

(2π)d

∫
dε

∫
Σ(ε)

dσ

~ |vk|
(. . . ) (43)

and

Lijn :=

∫
dε (ε− µ)n

(
−∂f

0

∂ε

)
Kij(ε) (44)

where

Kij(ε) :=
2

(2π)d

∫
Σ(ε)

dσ

~ |vk|
vikv

j
kτk (45)

In the Sommerfeld expansion of Eq.(44) we express the transport coefficients in Kij(ε)
and its derivatives at the Fermi surface.
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3.1.1. Low temperature properties

The Sommerfeld expansion is obtained by expanding Kij(ε) in a power series around µ.

Lijn :=

∫
dε (ε− µ)n

(
−∂f

0

∂ε

)
Kij (ε)

=

∫
dε (ε− µ)n

(
−∂f

0

∂ε

)[
Kij (µ) +

dKij

dε

∣∣∣∣
µ

(ε− µ) +
1

2

d2Kij

dε2

∣∣∣∣
µ

(ε− µ)2 + . . .

]
(46)

The integrals can be computed with the substitution x = β(ε− µ)∫
dε (ε− µ)n

(
−∂f

0

∂ε

)
= (kBT )n

∫ +∞

−∞
dx

xnex

(ex + 1)2 = In (kBT )n (47)

where the Fermi integrals

In =


0 n odd

1 n = 0
π2

3 n = 2

(48)

If we estimate a characteristic scale of Kij (ε) as W , which we take to be of order of the
Fermi energy εF , so that

dKij

dε

∣∣∣∣
µ

∼ O
(
Kij

W

)
(49)

d2Kij

dε2
∼ O

(
Kij

W 2

)
(50)

we see that the Sommerfeld expansion is a power series in the dimensionless parameter
kBT/W . Keeping the lowest order terms

Lij0 = Kij (εF ) (51)

Lij1 =
π2

3

dKij

dε

∣∣∣∣
εF

(kBT )2 (52)

Lij2 =
π2

3
Kij (εF ) (kBT )2 (53)

Computing Kij (µ) requires knowledge of the details of the scattering mechanisms (to
compute τ) but also of the band dispersion, which determines the domain of integration
Σ (ε) and the integrand that appears in Kij . Rather simple results can be obtained for
isotropic Fermi surfaces, though, where vk = v(ε)k̂.
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For d = 3

Kij(ε) :=
2

(2π)3

∫
Σ(ε)

dσ

~ |vk|
vikv

j
kτk

=
1

4π3

∫
k2dΩ

|~v(ε)|
v2(ε)k̂ik̂jτ(ε)

k2(ε)v(ε)τ (ε)

4π3~

∫
dΩk̂ik̂j (54)

The angular integral is trivial ∫
dΩk̂ik̂j =

4π

3
δij (55)

so

Kij(ε) =
k2(ε)v(ε)τ (ε)

3π2~
δij (56)

It is useful to express this in terms of the density of states

ρ(ε) =
1

8π3

∫
Σ(ε)

dσ

~ |vk|
=

1

2π2

k2(ε)

~v(ε)
(57)

Defining the effective mass by

v(ε) =
~k(ε)

m∗
(58)

so

K(ε) =
2ρ(ε)v2(ε)τ (ε)

3
(59)

With this result, for electron carriers q = −e,

je = e2K(εF )

(
E− 1

q
∇rµ

)
+
π2

3
(−e)K ′(εF )(kBT )2

[
−∇T
T

]
jh =

π2

3
(−e)K ′(εF )(kBT )2

(
E− 1

q
∇rµ

)
+
π2

3
K(εF )(kBT )2

[
−∇T
T

]
From this expression we can obtain the electrical and thermal conductivities, and the
thermo-electric coefficient.

Drude conductivity The definition of conductivity is

je = σE (60)

If we consider a sample at uniform temperature, our analysis gives

je = e2K(εF )

(
E +

1

e
∇rµ

)
(61)

The extra term in e−1∇rµ is in fact expected because in an experimental situation the
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Figure 2: The energy drop when an electron travels from B to A (current flowing from
A to B) is e(VA − VB) equal to e(φA − φB) + µB − µA where φ is the electric
potential.

electric field that appears in the definition of the conductivity, we may call it Eobs, is
not −∇φ, with φ the electric potential. The reason is the following. If we are measuring
a conductivity, with current flowing between two metallic electrodes, from A to B, and
have a potential difference between VA − VB, the change in energy of an electron in
moving between B and A is ∆E = e (VA − VB) = e

∫ B
A Eobs · dl. But this change in

energy is
∆E = e (φA − φB) + µB − µA (62)

The electron moves form the Fermi level of B to the Fermi level at A. Hence the “electric
field” that appears in Drude’s law is

e

∫ B

A
Eobs · dl = e

∫ B

A

(
−∇φ+

1

e
∇rµ

)
· dl (63)

Eobs = E +
1

e
∇rµ (64)

In other words, the potential difference that we measure with a voltmeter includes a
electric potential and a chemical potential term. So

σ = e2k
2
F vF τF
3π2~

(65)

=
2e2ρF v

2
F τF

3
(66)

If we look at the first form of the expression and recall the definition of effective mass
(also a Fermi surface property)

vF =
~kF
m∗

(67)
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we obtain

σ = e2 k
3
F

3π2

τF
m∗

(68)

which is none other than Drude’s classical result

σDrude =
nee

2τ

m∗

since ne = k3
F /(3π

2) for an isotropic Fermi system. If the conductivity is determined
entirely by Fermi surface terms how come it is expressed in the electronic density, as if
all electrons participate in the current?

The explanation lies in the form of the solution of Boltzmann equation

δfk = −e
(
−∂f

0

∂εk

)
vk·EτF (69)

which can be regarded as the expansion of a shifted equilibrium distribution to first order
in E:

fk = f0
k+eEτF /~ ≈ f

0
k +

∂f0
k

∂εk
(∇kεk) · eEτF /~ = f0

k + e
∂f0

k

∂εk
vk ·EτF (70)

Hence, we can compute the current as

je = −2e

∫
d3k

(2π)3
vkf

0
k+eEτF /~ = −2e

∫
d3k

(2π)3

~k
m∗

f0
k+eEτF /~ (71)

Even though we have shifted the whole distribution, as long as eEτ/~� kF only states
near kF see their occupation changed relative to the unshifted distribution. So it is
permissible to use the result vk = ~k/m∗ valid near the FS, with m∗ is the FS effective
mass. But now, a simple change of variable,

je = −2e

∫
d3k

(2π)3

hk− eEτF
m∗

f0
k

=
e2τF
m∗

E×2

∫
d3k

(2π)3
f0
k =

e2τF
m∗

neE (72)

because ∫
d3k

(2π)3
hkf0

k = 0 (73)

and we re-obtain Drude’s result.

3.1.2. The thermal conductivity

If je = 0

Eobs =
π2

3e

K ′(εF )

K(εF )
(kBT )2

[
−∇T
T

]
(74)
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This means that the thermo-electric coefficient, S, is

Eobs = S∇T (75)

S = −π
2

3e

K ′(εF )

K(εF )
k2
BT (76)

and the heat current

jh = −
(
π2

3

)2
[K ′(εF )]2

K(εF )
(kBT )4

(
−∇T
T

)
+
π2

3
K(εF )(kBT )2

[
−∇T
T

]
(77)

The first term can be is smaller than the second by a factor of order

π2

3

[
K ′(εF )

K(εF )

]2

(kBT )2 ∼
(
kBT

W

)2

� 1 (78)

so we obtain for the thermal conductivity

jh = −κ∇T (79)

κ =
π2

3
K(εF )k2

BT (80)

and the famous Wiedemann-Franz Law

κ

σT
=
π2

3

k2
B

e2
= 2.44× 10−8 W ΩK−2 (81)

actually followed closely by several metals at low temperatures, when elastic scattering
dominates. This constant is known as the Lorentz number.

3.2. Classical Hall Effect

The classical form of the Hall effect is relatively easy to obtain in the for an isotropic
Fermi surface (FS). We assume that τk only depends on the energy (at least near the
FS) and that

vk =
~k
m∗

(82)

With the magnetic field term, BE is(
−∂f

0

∂εk

)
vk· [−qE] τk = −δfk −

q

~
τk (vk ×B) · ∇kδfk (83)

It is still true that δfk is only significant in the vicinity of the FS. Instead of solving
this, let us compute the electric current directly

jie = 2q2

∫
ddk

(2π)d
vik

(
−∂f

0

∂εk

)
vikτkE

j − 2
q

~
2
∫

ddk

(2π)d
τkv

i
k (vk ×B)j

∂

∂kj
δfk (84)
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If τk is a function of εk only, integrating by parts the second term, we get

−2
q

~
2
∫

ddk

(2π)d
τkv

i
k (vk ×B)j

∂

∂kj
δfk = 2

q

~
2
∫

ddk

(2π)d

[
∂

∂kj
τkv

i
k (vk ×B)j

]
δfk

= 2
q

~
2
∫

ddk

(2π)d
∂τk
∂εk

~vjk
[
vik (vk ×B)j

]
δfk

+ 2
q

~
2
∫

ddk

(2π)d
τk

∂

∂kj

[
vik (vk ×B)j

]
δfk (85)

The term of the second line is zero because is involves the factor vk · (vk ×B). Also

∂

∂kj
(vk ×B)j = ∇ · (vk ×B) = B · (∇× εk) = 0 (86)

because the curl of a gradient is zero. Therefore

je = σE + 2
q

~
2
∫

ddk

(2π)d
τk
∂vik
∂kj

(vk ×B)j δfk

= σE + 2
q

~
2
∫

ddk

(2π)d
τk

~
m∗

(vk ×B)i δfk (87)

je = σE+
qτF
m∗

je ×B (88)

which we can rewrite in the form

E =
1

σ
je +

qτF
m∗σ

je ×B (89)

For the Hall effect geometry , B = Bêz, je = jeêx , we get

Ex =
1

σ
jx +

qτF
m∗σ

Bjy (90)

Ey =
1

σ
jx −

qτF
m∗σ

Bjx (91)

Note that the classical precession frequency of electron orbits is

ωc =
eB

m∗

and so

Ex =
1

σ
jx −

ωcτF
σ

jy (92)

Ey =
1

σ
jx +

ωcτF
σ

jx (93)

σ is given by the Drude’s formula,

σ =
ne2

m∗
τF
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and the resistivity tensor becomes

ρxx = ρyy =
1

σ
(94)

ρxy = −ρyx = − B
nq

(95)

which is the classical Hall effect result.

4. Elastic scattering

The relaxation time approximation is a brutal simplification, and solving the Boltzmann
equation without it can be a daunting task, often impossible to address analytically.
These is, however, an important situation where the relaxation time approximation can
be justified through a microscopic analysis of the collision integral. That is the case
when all scattering events are elastic, in other words, the perfect crystal is perturbed by
a static potential, created by impurities, vacancies, lattice defects, anything not endowed
with dynamics.

Let us then assume that the perturbation induces electronic transitions from k → k′

with a certain probability rate in the form of Fermi’s Golden rule,

1

Ω
ω(k′,k)δ (εk′ − εk) ; (96)

the rate of change of fk(r, t) is(
∂fk
∂t

)
col

= − 1

Ω

∑
k′

[
ω(k′,k)fk (1− fk′)− ω(k,k′)fk′ (1− fk)

]
δ (εk′ − εk) (97)

where the occupation factors express the probability that the initial state is occupied
and the final one empty. Since we expect

ω(k′,k) ∝
∣∣〈k|V ∣∣k′〉∣∣2 =

∣∣〈k′∣∣V |k〉∣∣2
the collision integral can simplify to(

∂fk
∂t

)
col

= − 1

Ω

∑
k′

ω(k′,k) (fk − fk′) δ (εk′ − εk) .

As f0
k and δf lek only depend on k through the energy εk, we can make the replacement

(fk − fk′) δ (εk′ − εk)→
(
δfk − δfk′

)
δ (εk′ − εk) (98)

and the collision integral becomes

Ik
[
δf
]

=
1

Ω

∑
k′

ω(k′,k)
(
δfk − δfk′

)
δ (εk′ − εk) . (99)
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Recall the form of BE, without magnetic field(
−∂f

0

∂εk

)
vk·Dk(r, t) = Ik

[
δf
]

(100)

Solving BE is finding the function δf that satisfies this equation. The LHS is zero away
from the Fermi surface, so for |εk − εF | � kBT , δfk = 0 does solve the equation. In
other words, in the collision integral we can assume that εk = εk′ ∼ εF . Now suppose
that the dispersion relation is isotropic near the Fermi level (spherical Fermi surface)
and the scattering rate between two k values at the Fermi surface depends only on the
angle between them,

ω(k′,k) = ω
(
kF , θk,k′

)
(101)

Also the isotropy of the Fermi surface allows us to write

vk = vF k̂, (k ∼ kF ) (102)

The driving field Dk only depends on the modulus of k , Dk → Dk and, δfk can only
depend on the angle of k and Dk. The following Ansatz is easily seen to solve BE

δfk = −
(
−∂f

0

∂εk

)
η(εk)k̂ ·D (103)

By inserting it in the collision integral and taking into account that the delta function
imposes εk′ = εk,

Ik
[
δf
]

=

[(
−∂f

0

∂εk

)
η(εk)Dk

]
·

[
1

Ω

∑
k′

ω
(
kF , θk,k′

) (
k̂− k̂′

)
δ (εk′ − εk)

]

We can write
k̂′ = (k̂ · k̂′)k̂+q⊥ = k̂ cos θk,k′ + q⊥ (104)

with q⊥ · k = 0. Using k̂ as the Oz axis in the integral over k′

q⊥ = sin θkk′(cosϕk′ , sinϕk′ , 0). (105)

The angular integral of the q⊥term over ϕk′ yields zero because the scattering rate only
depends on θk,k′ . Hence

Ik
[
δf
]

=

[(
−∂f

0

∂εk

)
η(εk)Dk · k̂

]
× 1

Ω

∑
k′

ω
(
kF , θk,k′

) (
1− cos θk,k′

)
δ (εk′ − εk)

=

[(
−∂f

0

∂εk

)
η(εk)Dk · k̂

]
1

τtr
(106)

= −δfk
τtr

(107)
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exactly as hypothesised in the relaxation time approximation, with

1

τtr
:=

1

Ω

∑
k′

ω
(
kF , θk,k′

)
(1− cos θk,k0) δ (εk′ − εk)

=

∫
d3k

(2π)3ω
(
kF , θk,k′

) (
1− cos θk,k′

)
δ (εk′ − εk) (108)

Comparing with the driving term(
−∂f

0

∂εk

)
vk·Dk(r, t) =

[(
−∂f

0

∂εk

)
η(εk)Dk · k̂

]
1

τtr
(109)

we get
η(εk) = vF τtr

and

δfk = −
(
−∂f

0

∂εk

)
vk ·Dkτtr

is the solution of BE, exactly in the form of the relaxation rate approximation, now with
an explicit expression for the elastic transport time, namely, Eq.(108).

Although we solved BE without magnetic field, the derivation of the classical Hall
effect, presented in section (3.2) is still valid because all it used is the form of the
collision integral of Eq.(107).

A. Liouville’s Theorem in semi-classical dynamics

In deriving BE we assumed
∇r · ṙ +∇k · k̇ = 0 (110)

This is true only if r and k are canonically conjugate, obeying Hamilton’s equations of
motion. With the semi-classical equations of motion this is not true. In the following
we calculate this term with liberal use use the identity

∇× (A×B) = (B · ∇)A+ (∇ ·B)A− (A · ∇)B+ (∇ ·A)B (111)

∇r · ṙ = −∇r · k̇× ω (k) =− ω (k) ·
(
∇r × k̇

)
(112)

∇kk̇ =
q

~
∇k · (vk ×B) =

q

~
B · (∇k × vk) (113)

Using the equation of motion

ṙ =
1

~
∇kε(k)− k̇× ω (k) (114)

~k̇ = q (E + ṙ×B) (115)
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∇r × k̇ =
q

~
[∇r ×E +∇r × (ṙ×B)]

=
q

~

[
−∂B
∂t

+ (B · ∇r)ṙ + (∇r ·B) ṙ− (ṙ · ∇r)B− (∇rṙ)B

]
=
q

~

[
−dB
dt
−B(∇rṙ) + (B · ∇r)ṙ

]
(116)

and

∇r · ṙ = − q
~

[
−dB
dt
· ω (k)−B · ω (k) (∇rṙ)−B(B · ∇r)ṙ · ω (k)

]
(117)

The divergence of a curl, B, is zero; the last term is also zero because the anomalous
velocity term is orthogonal to the Berry curvature;

∇r · ṙ
(

1− q

~
B · ω (k)

)
=
q

~
dB

dt
· ω (k) (118)

Now we consider the second term. Not surprisingly it will have a similar structure:

∇k × vk = −∇k ×
[
k̇× ω (k)

]
= −

[
(ω (k) · ∇k) k̇ + (∇k · ω (k))−

(
k̇ · ∇k

)
ω (k) -

(
∇k · k̇

)
ω (k)

]
= −

[
− d

dt
ω (k)−

(
∇k · k̇

)
ω (k) + (ω (k) · ∇k) k̇

]
(119)

and

∇kk̇ =
q

~

[
B · d

dt
ω (k) +

(
∇k · k̇

)
ω (k)− (ω (k) · ∇k) k̇ ·B

]
∇kk̇

(
1− q

~
B · ω (k)

)
=
q

~
B · d

dt
ω (k) (120)

So the final result is(
∇r · ṙ +∇k · k̇

)(
1− q

~
B · ω (k)

)
=
q

~
d

dt
[B · ω (k)] (121)

which we can write as a total time derivative(
∇r · ṙ +∇k · k̇

)
:= − d

dt
ln
[
1− q

~
[B · ω (k)]

]
(122)

The LHS is the divergence of the velocity field in phase space. This results expresses the
violation of Liouville’s theorem: the volume of phase space is not conserved in evolution.
In general for a velocity field v(q) we have

d

dt

∫
V (t)

ddq =

∫
∂V
dσn̂ · v =

∫
V (t)

ddq∇q · v; (123)

for a infinitesimal volume
d

dt
∆V = ∇q · v∆V (124)
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or
d

dt
ln ∆V = ∇q · v (125)

In our case this becomes

d

dt
ln ∆V = − d

dt
ln
[
1− q

~
[B · ω (k)]

]
(126)

or
∆V

(
1− q

~
[B · ω (k)]

)
= const. (127)

This result is presented in Xiao et. al. [4] where it is stated that the correct way to
compute averages in the semi-classical limit is to use the invariant phase space volume
element

ddk

(2π)d
ddr

(
1− q

~
[B · ω (k)]

)
(128)

Why should this be so? The number of states in invariant under unitary quantum
evolution. In a semi-classical approach, a given cell in phase space should contain a
certain number of states. Under evolution by the equations of motion the number of
states should not change. If, under time evolution the volume element ddrddk/(2π)d

changes, this means that the density of quantum states is not constant in r,k space.
But the measure of Eq.(128)is invariant. This implies that the density of states per unit
k and r volumes is D(k, r)/(2π)d with

D(k, r) := (1− (q/~) [B · ω (k)]) . (129)

Therefore, the mean density of carriers in r,k space is

ρ(k, r, t) := D(k, r)f(k, r, t) (130)

where f(k, r, t) is the mean occupation of state k,r. It is ρ(k, r, t) that satisfies a conti-
nuity equation

∂

∂t
D(k, r)f(k, r, t) = −∇r(vkDf)−∇k(k̇Df)

= vk · ∇rDf − k̇ · ∇kDf −
(
∇r · ṙ +∇k · k̇

)
Df

= vk · ∇rDf − k̇ · ∇kDf +

(
d

dt
D

)
f (131)

The total derivative of D(k, r) is

d

dt
D(k, r) = k̇ · ∇kD + vk · ∇rD (132)

so the result is

∂

∂t
D(k, r)f(k, r, t) = D(k, r)

∂

∂t
f(k, r, t) = −D

[
vk · ∇rf + k̇ · ∇kf

]
(133)

∂

∂t
f(k, r, t) = −

[
vk · ∇rf(k, r, t) + k̇ · ∇kf(k, r, t)

]
(134)
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The BE is unchanged for f(k, r, t) . It merely states that, with drift terms only,

df(k, r, t)

dt
= 0 (135)

as expected for the mean occupation of a quantum state. The BE equation does not
change, but it is ρ(k, r, t) that satisfies a continuity equation. The current expression
should involve a sum over all states and therefore should be

j =

∫
ddk

(2π)d
ddrD(k, r)vkfk (136)

B. Anomalous Hall effect in 2D materials

There is a very important consequence of the existence of the Berry Curvature in 2D
system. In that case both r and k are 2D vectors and we can keep the form of the
equations of motion by interpreting

ω(k) =

(
∂ξy

∂ky
− ∂ξx

∂ky

)
êz (137)

and it follows for B = 0

vk =
1

~
∇kεk +

e

~
E× ω(k)

=
1

~
∇kεk +

e

~
ω(k) (E× êz) (138)

For a single band

je = 2× (−e)
∫
d2k

4π2
vkfk = −2e2

~

[∫
d2k

4π2
ω(k)fk

]
(E× êz) (139)

This expression identifies a Hall conductance

jx = σxyEy (140)

as

σxy := −2e2

~

[∫
d2k

4π2
ω(k)fk

]
(141)

This is a possible mechanism for the existence of a Hall effect in the absence of a magnetic
field, the so called Anomalous Hall effect (AHE). There are, however other possible
mechanisms [2], although in many materials this appears to be the dominant one [4].
But a very important case occurs when the system is an insulator. In that case we have
a filled band, fk = 1, and the equation of motion of the Bloch momentum does not
change the equilibrium distribution. It follows that

σxy := −2e2

~

[∫
d2k

4π2
ω(k)

]
= −2e2

h
cn (142)
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where

cn :=

∫
d2k

2π
ω(k)

is called the Band Chern number and can be proven to be an integer, a topological
invariant of the band structure. Haldane provided the first example of a model with
non-zero Chern number giving a quantized Hall effect in the absence of a magnetic
field[1].

Curiously, the quantized Hall effect in a 2D electron system in the presence of a
strong magnetic field can be understood under the same principle, if we consider the
generalization of the semi-classical equations of motion to magnetic Bloch bands. Ẃhen
the magnetic field is commensurate with the lattice, Bloch’s theorem still applies, but
the semi-classical equations of motion in magnetic Bloch bands do not include this field.
Therefore Eq.(142) still applies. This account of the quantized Hall conductivity in terms
of the Chern number of the magnetic Bloch Bands is the main result of the famous
Thouless, Kohmoto, Nightingale and den Nijs, the TKNN result [3]. It was obtained
from a full quantum mechanical calculation, though, without reference to a semi-classical
approach.
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