
Parallel Implementation of a Monte Carlo Molecular Simulation Program

Alfredo Palace Carvalho, Jose´ A. N. F. Gomes, and M. Nata´lia D. S. Cordeiro*

CEQUP/Departamento de Quı´mica, Faculdade de Cieˆncias do Porto, Rua do Campo Alegre 687,
4169-007 Porto, Portugal

Received August 11, 1999

Molecular simulation methods such as molecular dynamics and Monte Carlo are fundamental for the
theoretical calculation of macroscopic and microscopic properties of chemical and biochemical systems.
These methods often rely on heavy computations, and one sometimes feels the need to run them in powerful
massively parallel machines. For moderate problem sizes, however, a not so powerful and less expensive
solution based on a network of workstations may be quite satisfactory. In the present work, the strategy
adopted in the development of a parallel version is outlined, using the message passing model, of a molecular
simulation code to be used in a network of workstations. This parallel code is the adaptation of an older
sequential code using the Metropolis Monte Carlo method. In this case, the message passing interface was
used as the interprocess communications library, although the code could be easily adapted for other message
passing systems such as the parallel virtual machine. For simple systems it is shown that speedups of 2 can
be achieved for four processes with this cheap solution. For bigger and more complex simulated systems,
even better speedups might be obtained, which indicates that the presented approach is appropriate for the
efficient use of a network of workstations in parallel processing.

I. INTRODUCTION

In theoretical chemistry, molecular simulations are very
important tools for the calculation of equilibrium thermo-
dynamic properties as well as the microscopic structure of
chemical and biochemical systems. The methods which are
usually used in these calculations are molecular dynamics
(MD) and Monte Carlo (MC).1 These two methods are
similar in their aim but follow slightly different approaches.

MD1 is based on the solution of differential equations of
classical mechanics such as Newton’s or Lagrange’s equa-
tions. Thermodynamic properties are calculated in this
method by averaging over the trajectories generated by the
dynamics.

MC,2 on the other hand, is a method where the thermo-
dynamic properties are calculated by solving the statistical
mechanics’ integrals and resorts to the generation of random
configurations of the system for a particular ensemble.

Although these two methods differ in their approach, they
both give equivalent results by the Gibbs postulate of the
statistical mechanics if the simulated system is ergodic.

Any of these two kinds of calculations, however, are gen-
erally quite heavy since the simulated systems are necessarily
big and the number of cycles required for obtaining a
significant sampling are of the order of millions (apart from
some initial equilibration steps). Therefore, in some cases,
the amount of computations performed by these methods
demands the use of more powerful parallel computers.

High-performance computing and parallel processing has
been gathering, over these last years, considerable renewed
interest. The availability of new types of more affordable
parallel systems, such as the network-based clusters of

workstations and some less expensive symmetric multipro-
cessor (SMP) machines, where communication is normally
done in this case by shared memory, has made this kind of
computing more accessible. Additionally, the development
of programming standards, such as message passing interface
(MPI),3,4 parallel virtual machine (PVM),5 and high-
performance Fortran (HPF),6 which make the writing of
parallel codes more portable between different parallel
systems, has also contributed largely to this enthusiasm.

Message passing models of parallelization such as MPI
and PVM are becoming increasingly more popular, mainly
because of their great flexibility. In this model, the various
concurrent processes communicate via the exchange of
messages, usually through the network, but shared memory
may also be used in SMP systems.

This model is suitable for the development of codes based
on the multiple instruction multiple data (MIMD) paradigm,
in which the various processes are independent from each
other, as opposed to the single instruction multiple data
(SIMD) paradigm where the various processes must execute
the same instructions at the same time, although on different
sets of data.7

Much of the parallel code developed these days is,
however, of the single program multiple data (SPMD) type.
This is a special case of the MIMD paradigm, where identical
copies of the same program are put in the various processing
nodes, although each copy may afterward follow different
paths of execution. This implies that they must be effectively
independent, unlike the SIMD paradigm.

The fact that the model is very flexible, and that it can
now be implemented in a practical and portable way through
the use of the well-established MPI standard and the de facto
standard PVM, accounts for this popularity. In fact, message
passing parallel code, which is typical of distributed memory
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architectures, is being developed and used nowadays even
in shared memory machines. In these types of machines, the
traditional way for processes to share data and communicate
between them was not by the passing of messages but instead
by the use of the operating system’s memory sharing
facilities. Additionally, before the release of the MPI
standard, there were several different message passing
parallel programming languages (or dialects of a language),
released by the various vendors of the hardware and specific
for a particular brand of machine. This made the development
of portable parallel code an impossible task. With the
implementation of the MPI standard in the various parallel
systems, developers were presented a programming interface
which is uniform across different types of hardware.

Despite the recent growth of the offer of SMP and NUMA
(nonuniform memory access) solutions, one kind of solution
for the setup of a parallel system that has been seen as
particularly attractive is the assembly of a number of cheap
PC-style or Unix workstation machines, operating as the
processing elements, interconnected by cheap but reasonably
fast communication hardware like Ethernet or Fast-Ethernet.

However, the limited bandwidth of the Ethernet hardware
imposes a much lower scalability on the parallel code
developed for this kind of setup. Still, for medium size
problems that do not require too much communication
between the processing elements, this solution is indeed a
very interesting one. In addition, this setup could serve as
an initial test environment for developing codes to be used
in more sophisticated systems afterward. However, in this
case one should not neglect the need to adapt the codes in
order to take advantage of any features the architecture
provides.

In summary, in order to efficiently take advantage of the
network of workstations (NOW) as a parallel machine, one
has to attempt to optimize the code in the communications
side, even more than one usually does in other types of
parallel systems where the communication hardware is much
faster.

In the present work, an attempt to develop an approach
for a parallelization suitable for a NOW is presented. The
type of computation that is being parallelized is a molecular
simulation’s code based on the metropolis MC method. In
spite of MC (and even MD, if the goal is to calculate only
thermodynamic properties but not dynamic properties) being
easily broken into multiple independent runs in a trivial
parallelization approach, there are some issues that may
justify a less trivial parallelization method. First of all, any
simulation (MC or MD) always requires an initial period of
equilibration, where the starting positions (and velocities in
MD) are allowed to relax to equilibrium values. The breaking
of one longer run into several shorter ones means increasing
the total amount of equilibration relatively to the useful
production CPU time. Additionally, this approach is not
suitable for some kinds of simulations (such as free energy
calculations, for example).

Performance results will be compared for different types
of interconnection hardware, namely, SMP and Fast Ethernet
network connected both by a switch or a repeater.

II. PARALLELIZATION STRATEGY

The Monte Carlo method of molecular simulation is
suitable for the implementation of a parallelization strategy

that attempts to optimize the amount of communication
between the processing elements. The usual Metropolis
algorithm for the canonical ensemble,2 for example, can be
outlined as follows:

(1) One particle is picked from the set of particles and is
moved by a random displacement from its previous position.

(2) The energy of the system in this trial configuration is
calculated.

(3) A test is made with the difference between the energies
of the trial configuration and the previous one:

(a) If the energy of the trial configuration is lower than
the previous one, this movement is accepted as the new
configuration.

(b) Otherwise, a test is made, using a random number, to
accept the movement with a probability proportional to e-â∆E.
If this test is failed, the previous configuration is taken as
the new configuration.

(4) The thermodynamic properties of the system in the
ensemble are calculated by averaging over the several
configurations generated by this algorithm.

The fact that movements of molecules can be carried out
one at a time (although they need not to be) makes it possible
to distribute the work of interaction calculations between the
processors with a little amount of data having to be
exchanged between the several processing elements at the
end of each MC cycle. These data are, basically, only the
collective sum of the energies and, afterward, the update of
the moved molecule’s position.

The strategy of parallelization of the MC code proposed
in this paper will be the following:

(1) One master process will be responsible, in the
beginning, for processing the input data and setting up the
details for the simulation, and, in the end, for outputting the
results.

(2) Several slave processes will be responsible for the
calculation of the interactions between the moved particle
and only one subset of the whole system’s particles.

(3) At each Metropolis MC cycle, the master process will
perform the random displacement of one particle and
announce the trial position to the slave processes.

(4) The slave processes will make the interaction calcula-
tions between the received particle trial position and its
particular subset of particles.

(5) The master computes the new energy by summing the
interactions collected from the slaves.

(6) The master compares the new energy with the energy
of the previous configuration to perform the metropolis test.
The master gets this past energy from the slaves, who keep
this information for their subset of particles.

(7) The master announces to the slaves whether the new
configuration was accepted, in which case, the slave who
includes the moved particle in its subset, updates the
particle’s position.

The amount of communication involved in this scheme
consists of an initial big amount of data (but only sent once)
which distributes all the details of the simulation, including
the particles’ initial positions, among the slave processes.
Then, the main communication load consists of broadcasts,
at each cycle, of the trial position, the collection of the
energies calculated by the slaves, and some control messages
to notify the slaves of the acceptance/rejection of the
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movement and also of any error condition that may cause
the premature end of the simulation.

The way the whole system particles are to be distributed
by the several processes is a matter of crucial importance
for a good parallelization. Load balancing, i.e. the even
distribution of work to the slaves, is vital for the optimal
performance of the parallelization scheme. The situation
where some processes spend time doing nothing useful while
others still have got enough work to be done should occur
the least frequently as possible.

In the scheme that is presented, a good load balancing
can be obtained with a very simple distribution method,
assuming a homogeneous network environment, i.e. a
network composed by nodes similar in their hardware and
basic software (operating system, communications and
message passing software, etc.). The work is evenly distrib-
uted to the slaves, in a static way, simply by attributing to
each slave the task of calculating the interactions between
the moved particle and one portion of the whole set of
particles. For instance, with a system of 100 particles and 2
slave processes, the first process will calculate the interac-
tions for particles 1-50 and the second process for particles
51-100. Since the duration of each interaction calculation
is similar, every slave will take about the same time to
complete its task provided they all take care of the same
number of particles. In a heterogeneous network, instead of
a static load distribution, a dynamic distribution can be
adopted with few changes: tasks will have a size fixed a
priori (instead of being divided evenly by the available
processors) and will be attributed to the slaves as they finish
computing their previous task and become available for the
next. This dynamic scheme will, however, increase the
communications overhead in comparison with the static
scheme for a homogeneous environment.

In MD calculations, it is common to see the use of a
distribution scheme known as the domain decomposition,
which consists of distributing the particles to the processes
on the basis of its spatial localization. In MD, where all the
particles are moved in each cycle, less communication
between the processes is necessary to find out the new
positions of the particles if the neighboring particles are kept
in the same processor. This is, of course, assuming that no
long-range interactions are considered in the system, which
is not often the case. However, in the present case, no
additional benefit is obtained by using the domain decom-
position instead of the method that is used here, since in
this type of MC calculation only one particle is moved at
each cycle (note that this implies that we are defining a MD
step to be equivalent toN MC steps,N being the number of
particles).

III. RESULTS

The parallelized code was tested in several types of
communication hardware, namely, SMP, a four processor
SMP system with Intel Pentium Pro 200 MHz CPUs; Fast
Ethernet with switch, four Intel Pentium II 266 MHz PCs
connected by a 100 Mb/s Ethernet switch; and Fast Ethernet
with repeater, four Intel Pentium II 266 MHz PCs connected
by a 100 Mb/s Ethernet repeater.

The system with the fastest communications is the SMP
machine. It can exchange data by sharing part of the memory,

in which case the bandwidth is that of the memory bus
(which is typically fast). However, the memory bus is shared
by all the processes, which means that the performance
degrades with an increasing number of processes. Also, the
use of shared memory in MPI is implementation dependent.
Some implementations use Unix network sockets instead,
which have a bigger overhead than plain shared memory.
The implementation of MPI used in this work, LAM version
6.2beta,8 has the option of using shared memory.

The two Fast Ethernet-based systems differ in the way
the machines are interconnected. Both networks have peak
performances of 100 Mbit/s and minimum latencies of about
80 µs, but, while in one of them the Ethernet cables are
connected by a repeater which simply copies the signals in
each cable to all the others, in the other case a switch routes
the Ethernet frames to their destination, isolating it from the
rest of the participants of the network. The outcome of this
is that the switch provides for a network with full 100 Mbit/s
bandwidth for all the machines, while the network bandwidth
of the Ethernet with the repeater is generally only a fraction
of the 100 Mbit/s since it is shared by all the participants of
the network, either the machines of the parallel system or
the network traffic generated by other machines in the net-
work. In addition, in a congested network, with lots of par-
ticipants, latencies will become higher when supported by a
repeater instead of a switch.

The present tests were performed on Linux systems, with
kernel version 2.0.34, using the MPI implementation of LAM
version 6.2beta over TCP/IP for the Ethernet clusters and
the same version of LAM using the Unix shmem system
calls in the SMP machine.

The calculation that served as a test for the performance
of the parallel code consisted of a Monte Carlo simulation
of a metal cation solvated by a certain number of water
molecules (Nwaters in Table 1). The water molecules were
considered to be rigid bodies. The interactions were calcu-
lated by fairly standard pairwise additive potentials consisting
of simple Coulombic terms and 12-6 Lennard-Jones terms.
These types of interactions are the most frequently used in
simulations of big systems such as proteins; however, more
complex types of interactions (Ewald sums, three-body
interactions, etc.) are also common in the simulations of
systems such as the one in these tests.

Table 1. Speedups for the Various Parallel Systems and Different
Problem Sizes (Nwaters)

Nwaters systema t1/t2b t1/t4b t2/t4

512 FE+ R 1.38 1.25
FE + S 1.36 1.29
SMP 1.58 1.16

1024 FE+ R 1.62 1.81
FE + S 1.62 1.93
SMP 1.70 2.06

2048 FE+ R 1.72 2.42
FE + S 1.73 2.56
SMP 1.73 2.52

4096c FE + R 1.70

a FE + R ) Fast Ethernet with Repeater; FE+ S ) Fast Ethernet
with Switch; SMP) symmetric multiprocessor system.b Speedup(n)
) t1/tn. The speedup withn processes is the ratio between the execution
time for 1 process and the execution time forn processes.c Benchmark
data are not available for the single processor case due to insufficient
memory to treat this problem size.
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In Table 1 are presented the speedups obtained for the
tested computational systems and for two different numbers
of water particles. The speedup is defined as the ratio
between the time an identical calculation took in a single
processor and the corresponding time inN processors.

As one can see, a greater number of particles increases
the performance of the parallelization. This is an easily
understandable fact since, for the same amount of com-
munication, more work has to be done. Therefore, the ratio
between work and communication increases and so does the
benefit of parallelizing the code. In the same line of thought,
more complex potential functions, which require more
expensive computations, will increase the amount of work
and the benefits from parallel execution. In the present
example, the interactions considered were fairly simple ones.
More complex interaction calculations (e.g. electrostatic
interactions calculated by Ewald sums) will certainly lead
to higher speedups.

The highest speedups are obtained, naturally, on the
systems with faster communications’ hardware, namely, the
shared memory SMP systems, where the communications
are made through the memory bus. But it looks promising
that, even in the slowest Ethernet connected by a repeater,
the speedup profiles seem quite satisfactory, provided the
problem has a suitable size to be parallelized.

In comparison to available MD benchmark data9 obtained
in Beowulf systems, the best speedups obtained with the
present scheme (t2/t4 ) 1.70 for 4096 waters+ 1 metal ion)
compare well with speedups for analogous systems (t2/t4 )
1.87-1.94 for 3830 waters+ MbCO), considering that the
network used is a Gigabit Ethernet instead of the slower Fast
Ethernet and that there is more computation to be performed
in the treatment of the intramolecular degrees of freedom
(the water molecules are flexible) in comparison with the
present MC calculations (where the water molecules are
rigid).

It must be noted that, as expected, these cheaper solutions
do not present a very good scalability. Especially in the cases
with the slowest communication hardware, the gains of
parallelizing beyond four processes are somewhat modest
(one can even obtain some speeddowns with Ethernet+
Repeater and for small problem sizes). Scalability can be
enhanced with some improvements in communications, both
at the operating system’s level and the hardware level
(namely, with the use of several network cards), as proposed
in the Beowulf project.10 For problems that require much
more computational power and, therefore, the use of a greater
number of processes, massively parallel machines may be
the only resort. However, since MPI is implemented for most
of these machines, the porting of this code for those systems
does not impose many important problems. Naturally, a
successful parallelization must try to take into account the
peculiarities of the hardware as well as the network topology
of the parallel machine, trying to adapt the algorithm to it
(for instance, to try to restrict communication between
processor with closer/faster links). However, the simple
scheme proposed does not seem to require any special
adaptations. In fact, this code presents quite good scalability
when run in a MPP system such as the Cray T3E, as can be
seen in Table 2.

The comparison with benchmarks performed in similar
systems with well-known MD programs9,11 shows that the

speedups obtained are interesting. Once again, one must
remember that, frequently, MD calculations include the
treatment of intramolecular terms not accounted for in this
example, which would increase the computation/communica-
tion ratio and, therefore, lead to a better parallelizable
problem with higher speedups.

IV. CONCLUSIONS

In the present work, a scheme was proposed for the
parallelization of a Monte Carlo molecular simulation code
that would make it suitable to be used in a parallel
environment composed of cheap slower communication
hardware.

The main aspects of the proposed scheme which can make
it appropriate for these types of setups are the particular
characteristic of the Metropolis algorithm used, where a
particle is moved at a time, diminishing considerably the
amount of communication performed at the end of each MC
cycle, and a load distribution based on the subdivision of
the particles domain, which can easily assure a perfectly
balanced work distribution, with little communication over-
head if done statically in a homogeneous network. In a
heterogeneous network, an extra communication overhead
to implement a dynamic load balancing scheme may have
an impact on performance.

The proposed parallelization method showed, in an Eth-
ernet based environment, satisfactory speedups of up to four
processes when the problem size is not too small. This type
of parallel setup is typically not very scalable, because the
communications overhead increases with the number of
processes due to network packet collisions in the Ethernet,
which cause some latency. On the other hand, this overhead
is lowered as the amount of calculation is increased between
communications at the end of the MC cycles. Therefore,
more complex types of interaction functions (e.g. consider-
ation of some intramolecular degrees of freedom or the use
of Ewald sums in electrostatic interactions) and the simula-
tion of bigger systems could show much better parallelization
efficiencies. And, in fact, it is in these cases that one will
want to speed up the execution of the code in a parallel
machine.

Better speedups and an overall better scalability can be
achieved in shared memory SMP machines, which are
nowadays available at very interesting prices, built with
cheap PC-style hardware. One should note that the tests for
the SMP machine presented in this work were performed
on a Intel Pentium Pro system, which has a memory bus
working at a 66 MHz frequency and a 32-bit data width (266
MB/s bandwidth). Faster and/or wider data buses are
available in the market which can give significantly better
performances.

On the other hand, the portability of MPI makes it possible
for the code to be run, if needed, on more powerful MPP

Table 2. Speedups in the Cray T3E, for the Problem 4096 Waters
+ Metal Iona

n t8/tn n t8/tn

8 1.00 32 2.90
16 1.80 64 4.11

a Timings are relative to the run in 8 processors.
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machines, without the need for many significant modifica-
tions in the source code and with a good scaling behavior.
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