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Abstract 

Path integral Monte Carlo computations have been done to study 
the local structure of water molecules around an isolated lithium ion 
(7Li+) at T=298K. The solute was treated as a quanta1 particle and the 
water solvent was treated classically. The water-water interaction 
was modelled by the MCY pair-potential and the solute-water 
interaction by the Kistenmacher et al. pair-potential. Purely classical 
simulations, at the same conditions and using the same model 
potentials, where also performed for comparison. 

Significant changes are observed on the results of the quanta1 
simulations when compared with the results of the classical 
simulation. The major difference is the coordination number that 
increases from 5, the result of the classical simulation, to 6, for the 
quanta1 simulation. In addition, structural analysis of the generated 
configurations showed that the local structure of the water molecules 
surrounding the ion is also clearly different in the two simulations. 
The reliability of the results is discussed. 

1. Introduction 

The study of ionic solutions is fundamental to the understanding 
of their role in many chemical and biophysical processes. To date, 
numerous experimental and theoretical investigations have delt with 
this subject [l-5]. Among the theoretical work, statistical simulations 
that gave significant contributions to our understanding of these 
systems should be singled out [3-51. 

Most of the simulation work so far have been focused on 
developing and testing accurate interaction potentials. Attempts, have 
been made to design potentials that take into account the important 
many-body effects [51 to best reproduce the experimental data. 
However, apart from the quality of the potentials to be used, there are 
other effects that can affect the results of the simulations. In the case 
of light solvated solutes, their quantum properties may have some 
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influence on the local structure of the water molecules in the solution. 
In the last few years, quantum solvated particles, like the solvated 
electron, muonium or hydrogen, have already been studied with path 
integral methods [6,7]. The extent of the quantum effects on a given 
particle is directly connected with its degree of localization. This can 
be inferred from the thermal de Broglie wavelength h=(h*/mkT)l/* of 
the particle. If the potential energy of the particle does not change 
appreciably over distances of the order of h then the system may be 
treated classically. When this condition is not satisfied, then a 
quantum description is strictly necessary. 

Most of the solvated particles studied until now are very light, 
and they are expected to have strong quanta1 properties. Other more 
massive particles have been studied, mainly in the condensed phase 
[8,9]. The lightest metal ion is the Li+ ion and its thermal wavelength h 
(isotope 7Li) is 0.152A (at 298K) to be compared with 1.9581, the 
typically Li-oxygen distance (d) in water. Since this h value is 
reasonably smaller than d, the particle should be localized. However, 
due to the steepness of the Li+-water potential, reasonable variations 
on the potential energy can be expected on a h length scale. Quantum 
effects for this particle may thus be expected. The main purpose of this 
work is the investigation of this possibility. 

In this work, the water has been treated classicaly, which is 
reasonable for its translational degrees of freedom [91. On the other 
hand, quantum effects are more important for the orientational 
degrees of freedom of water which, for a complete description, should 
be taken into account. However, apart from being extremely 
demanding computationally, their effect appear to be small [9,101 and 
thus the present work is done at this much less expensive level of 
calculation. The outline of the paper is as follows. In section 2 below, 
the methodology used to treat the quantum solute and the details of 
the Monte Carlo (MC) simulations are presented. The results of these 
simulations are collected in section 3. Finally, the main results of this 
work are summarized in section 4. 
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2. Methodology 

2.1. Simulations of a quantum solute 

Water is treated as a classical rigid body and the lithium ion as a 
quantum particle. For modelling the quantum particle we adopted the 
Feynman path integral representation Ill]. In this representation the 
quantum particle is mapped onto a cyclic chain of P pseudo-classical 
particles (beads), this isomorphism beeing exact in the I’->= limit. In 
the cyclic chain, each bead i interacts with its neighbours i-l and i+l 
through an harmonic potential with force constant mP/2h2P2, where 
m denotes the particle mass, h is the Planck’s constant divided by 2n 
and B=l/kT, k beeing the Boltzmann’s constant and T the absolute 
temperature. Note that this harmonic potential derives from the 
kinetic energy operator of the quantum particle. Each bead is also 
acted on by the external interaction potential, divided by P. So, with a 
Feynman P-point discretization for the quantum particle and the N 
classical water molecules we have a “potential” like: 

N N I' 

CD= C V(Rini,RjRj) + l/P C C U(RiS2ifrj) 
i>j i=l j=l 

P 

+ mP/2h2p2c (ri - ri+l>’ (++I =rl) 111 
i=l 

where Rini denotes the center of mass and orientation, 
respectively, of the ith water molecule and ri represents the 
coordinates of the ith bead of the lithium necklace. V(RiRi,Rj~j) gives 
the potential between the ith and jth water molecules and U(I$Qi,rj)/I’ 
gives the potential between the ith water molecule and the discrete ion 
bead j, U(RR,r) beeing the potential of interaction of one water 
molecule with one classical lithium ion at position r. Making P=l, the 
cyclic chain “polymer” reduces to one bead, the harmonic term 
vanishes and the potential Q, reduces to that corresponding to N 
classical water molecules interacting with each other and with one 
classical ion. 

This “potential” function looks like a classical “potential” of one 
cyclic-chain polymer with harmonic interactions between the nearest 
neighbours, interacting with a collection of N molecules. The 
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“polymer” represents the quantum particle and, in the case of several 
quantum particles interacting with each other, one would have in this 
picture, several “polymers” interacting. There are, however, 
substantial differences between these “polymers” and true polymers. 
In fact, the beads of these “pseudo’‘-polymers carry labels and 
different polymers interact with each other through beads with the 
same labels. Another difference is that the minimum energy distance 
between beads of the same “polymer” is zero. The strength of the 
harmonic interactions depends on the mass of the particle, the 
temperature and the number of “particles” in the polymer. It is clear 
that heavy particles will tend to coalesce on a point in contrast with 
light particles which will spread over larger regions of space. So, the 
“potential” in eq. [l] can be seen as the classical limit of the N massive 
particles in which all the beads had coalesced to the same point, 
maintaining the quantum features of the light particle. 

With this “potential” a stochastic simulation with the Metropolis 
recipe [12] can be performed to get observable averages or, if masses 
and momenta conjugated to the configurational variables are 
introduced, it is possible to do molecular dynamics simulations. It must 
be stressed that the dynamics obtained does not correspond to the real 
dynamics of the system, so that, one is limited to the calculation of 
static quantities. 

2.2. Details of the simulations 

The MC simulations have been carried out on the NVT ensemble 
at a temperature of 298K for the diluted solution of 7Li+, represented 
by the system Li+-(H,O),OO. In these simulations, a cubic box of side 
length of about 1881 has been chosen to give a density of cu. lgcm-3 for 
the 200 water molecules. The simulations have been done according 
to the Metropolis algorithm [12] and periodic boundary conditions 
under the minimal image convention [13] were applied. The 
intermolecular interactions have been computed under the 
assumption of pairwise additivity. For the water-water interactions, 
the ab initio MCY potential [14] was used. This potential is known to 
give a reasonable description of water in the condensed phase 1151. 
For the ion-water interactions the “simple” model potential of 
Kistenmacher et al. [16] was used, which is also based on ab initio 
computations. These two potentials where chosen in order to have the 
same kind of potentials, i.e., potentials entirely derived from ab initio 
computations and not empirical ones that are normally forged to 
reproduce experimental results. 
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All the simulations started with a initial configuration that has 
been obtained from a cubic lattice of Hz0 molecules. 

In the purely classical simulations, the number of steps needed to 
achieve statistical equilibration was 2x104 and another 2x104 MC 
steps were used for data collection (An MC step is made up of 200 
single water sequential steps. Notice that the ion was also moved 
periodically.) 

The quanta1 simulations were tested with increasing number of 
beads (lo,20 and 30) until the results of the simulations did not show 
significant difference within the statistical errors. This number was 
then fixed at 20 which appears to be enough. For each simulation we 
took 2x104 MC steps (for each moved water, one bead was also 
moved) to equilibrate the entire system and 2x104 more steps to collect 
results. It should be stressed that these simulations were very hard to 
equilibrate since one is dealing with a stiff “polymer” chain that may 
relax very slowly, and thus several test runs were made with longer 
periods to assure that no further drift of the properties ocurred. On 
the other hand, to speed up the convergence of the quanta1 
simulations, apart from one bead movements, periodic translations of 
the entirely necklace were also done. In fact, this strategy was shown 
to really decrease the needed computation time. The averages were 
taken as block averages with size of 250 MC steps and then checked 
for the degree of correlation. Successive sets of these blocks were 
combined until no correlation appeared between the averages, their 
final errors being estimated from their standard deviations. 

In all the simulations, the structure of the solution was analysed 
in terms of radial distribution functions (RDFs) and coordination 
numbers. In addition, a pattern recognition analysis of the significant 
structures of the Li+ solution has been performed for both simulations, 
using the method developed by Tapia and Lluch [17]. This method 
allowed us to clarify the geometrical disposition of the H,O molecules 
of the first Li+ shell. 

An 
average 

R= 

important quantity to discuss the quantum particle is the 
value 

P 

( P/(P-1)x< (ri - ri+*)2>)1 I2 
i=l 

(rp+l=q) M 

which is related to the thermal de Broglie wavelenght by 

h=R/43 [31 
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Thus, computing h as above for the quantum solute in the 
presence of water and by comparing it with the free particle value, it is 
possible to estimate the degree of dispersion of the quantum particle. 

3. Results and discussion 

The main results of the classical and quanta1 simulations are 
presented in table I. 

Table I - Li+- water first coordination shell data. 

Method 

MC, Classical 

MC, Quanta1 

a a 

%O %iH 

[A 14 

1.98 2.55 

2.03 2.59 

b 

no 
[fu 

5.0 

6.0 

b 

nH 

[ti3 

10.7 

12.7 

C 

Exper . 1.95 2.31-2.55 2.3-5.5 ---- 

Position of the maxima on the first peaks of the radial 
ion-oxygen (Rfio ) and ion-hydrogen (RLiH) 
distribution functions. 

Calculated by integrating the radial ion-oxygen distribution 
function (n& or the radial ion-hydrogen distribution function 
(n& up to their first peak minima. 

The range of experimental results shown were obtained for 
27.77,9.95 and 3.57 molal solutions of LiCl[12]. 
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A selection of experimental results is also presented in this table 
for comparison. The classical results for the position of the first 
maxima of the ion-oxygen and ion-hydrogen RDFs do agree with 
those obtained on the experimental work [2]. In the quanta1 
simulation, these peaks are slightly shifted outwards. Looking at the 
experimental data in table I, it is clear that the hydration of Li+ is 
markedly influenced by the concentration of the solution, the 
coordination number decreasing as the concentration of the sample 
solution increases [2]. Experimental results for the lowest 
concentration give a coordination number of 5.5 which is in fair 
agreement with both, classical and quanta1 predictions. 

A better insight into the differences between the distribution 
functions determined in the purely classical and the quanta1 simulation 
is gained from Fig. 1. 

1 1.5 2 2.5 3 3.5 4 

R (A) 

Fig. 1 a - Ion-oxygen radial distribution function and its 
corresponding running coordination number for the quantum (dashed 
line) and classical (solid line) simulations of a diluted Li+ solution at 
298K. 
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Fig. 1 b - Ion-hydrogen radial distribution function and its 
corresponding running coordination number for the quantum (dashed 
line) and classical (solid line) simulations of a diluted Li+ solution at 
298K. 

It is clear that the quanta1 RDFs do have a broader first solvation shell 
and that they extend to longer radial distances. In a finer observation 
the quanta1 RDFs are seen to start before than their classical 
counterparts, even if their maxima and minima are shifted outwards. 
This being certainly related to a quantum tunneling effect. It can also 
be seen in Fig. 1 that the quanta1 RDFs are more structured than their 
classical counterparts. 
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For both simulations, the generated equilibrium configurations 
have been analysed by the pattern recognition method referred in 
section 2.3. The generated equilibrium configurations were first sorted 
into groups in such a way that only the water molecules falling inside 
the first shell were considered. In particular, this analysis showed 
that, in a sphere of radius RLio- -3A centered in the ion for the classical 

case (or in the barycenter of the necklace for the quantum case), 96% of 
the equilibrium configurations had 5 water molecules (or 98% of the 
equilibrium configurations had 6 water molecules on the quanta1 
simulations). The resulting groups were then divided into classes 
using a geometrical criterion which is based on the oxygen-oxygen 
inter configuration distances (see Ref. [18] for details on this 
classification). The structures of the most populated classes found in 
this way for the Li+ first shell are depicted for the classical and quanta1 
simulations in Fig. 2a and Fig2b, respectively. 

Fig 2 a - Sketch of the 
most significant structure of 
the Li+ - (H20)200 first hydra- 
tion shell determined in the 
classical simulation at T=298K. 

Fig 2 b - Sketch of the 
most significant structure of 
the Li+ - (H20)200 first hydra- 
tion shell determined in the 
quanta1 simulation at T=298K. 

Fig 2a shows a (unsymetric) distribution of five water molecules 
located over a sphere centered at the metal ion with a radius (Li-0 
distance) of 2.02f0.06A. Although slight distortions are seen in Fig. 2b, 
it is clear that the arrangement of the oxygen sites in the quanta1 
hydration complex is octahedral. 
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Table II shows the energy averages for the two simulations, 
together with the values of R as defined by eq. 121 , obtained for the 
quanta1 solute. 

Table II - Classical and quanta1 MC results of Li+ - (H,O),, 
system at 298K. 

Method 
a 

E. 
[k,/Zl 

b 

MC, Classical -1117f7 --- 

MC, Quanta1 -1148f14 0.25OkO.002 

a 
Energy for the ion-water interactions. 

b 
Computed using eq. 121 of section 2.2. 

The classical results for the ion-water energy are in good agreement 
with other classical simulation results [3,4]; the quanta1 results, 
although affected by more important statistical errors (as the 
generated configurations are more strongly correlated than in the 
classical case - see table II), show a lower value for the energy which is 
not suprising since the metal ion is coordinated with one more water 
molecule. 

More suprising is the result of R which is not very different from 
the free particle value (0.265A) in spite of the presence of the water 
molecules. It seems that the quantum delocalization of the lithium ion 
pushes the water molecules away, and this may, in addition, allow the 
entrance of one more water molecule in the first coordination shell. An 
effect similar to this was also observed in the simulation of muonium 
in water by De Raedt et al [7]. 
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4. Conclusions 

In this paper, simulations are presented for a diluted aqueous 
solution of 7Li+, using a conventional classical Monte Carlo 
simulation, and a mixed quantum-classical Monte Carlo path integral 
simulation. Differences between the two approaches are found, 
especially different coordination numbers and non-zero probability for 
finding water molecules at shorter distances from the lithium ion in 
the quanta1 method. This latter effect, though rather faint, is worth 
noting as it may be linked to quantum tunneling. 

The coordination number of 5 found in the classical method as 
been also obtained by other authors [3]. The present simulation was 
taken to a rather long 8 million configurations to assure good statistics 
and for better guarantee of the results. Tests were made with shorter 
runs, starting from a randomized configuration and from an 
octahedral shell. The results of these tests suggest the existence of a 
metastable octahedral configuration with a total energy sligthly above 
that obtained here. It is interesting to note that the quanta1 
simulations remained for a certain period in a configuration with a 5 
water first shell, then migrating and staying indefinitely in the 6 water 
coordination result reported above. Such transition was not observed 
along the classical simulations. 

Of course there is scope for improvement of this work. On the one 
hand, the comparison of these results with a full quantaI simulation 
taking into account the quantum degrees of freedom of water would 
be interesting. On the other hand, this work is based on the use of 
simple two-body potentials and their improvement to include higher 
order terms may be worthwhile. 
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