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Classical dynamics of a coupled double well oscillator in 
condensed media. lIa) 
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Paolo Grigolini and Fabio Marchesoni 
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The influence exerted on reaction processes by the coupling between the reaction coordinate x and 
transverse nonreactive modes is discussed. Attention is mainly focused on the synergism ofinertia 
and multiplicative fluctuation, which enhances the reaction rate throughout a wide domain, 
ranging from the high to the low-friction region. The high-friction region is explored by applying 
the adiabatic elimination procedure (AEP) described in the first paper ofthis series: When the 
relaxation time of x is larger than that of the nonreactive mode, a new term occurs. This term is 
shown to be responsible for making the "noise-induced phase transition effects" discussed in the 
first paper more pronounced. The low-friction region is explored with a first-passage time 
procedure by using energy as the slow variable. The synergism of inertia and multiplicative noise 
is then shown to produce finite reaction rates even in conditions where Kramers theory predicts 
them to be vanishingly small. 

I. INTRODUCTION 

In an earlier paper, I henceforward called paper I, we 
used the framework ofthe classical (stochastic) dynamics to 
study the influence of nonreactive normal modes on a chemi­
cal reaction. When the irrelevant dynamics, i.e., that of the 
nonreactive normal modes, is much faster than the reactant 
dynamics, we can replace the actual reaction potential with 
an effective one obtained via a suitable averaging over the 
eqUilibrium distribution of the nonreactive normal modes. 
This effective potential makes more energy available for mo­
tion along the reaction coordinate thereby speeding up the 
chemical reaction. This is the classical counterpart of the 
quantum-mechanical effect found by Christoffel and Bow­
man.2 We refer to this as a standard adiabatic effect. In paper 
I we focused our attention on nonstandard adiabatic effects, 
i.e., significant contributions to the increase of the reaction 
rate coming from the interaction between reactive and non­
reactive modes, which cannot be interpreted using a modi­
fied potential. 

I(t) and!,(t) are independent white Gaussian noises defined 
by 

To stress the elements of novelty of the present paper, it 
is worthwhile to review the basic approximations underlying 
the analytical results of paper I. Let x be the reaction coordi­
nate with a potential (/J (x), a friction r, and a stochastic force 
fIt ); this coordinate is coupled to a harmonic transverse mode 
y which has a friction A and a stochastic forcef'(t): 

x=v, 
i; = - (/J '(x) - yv - 1/I'(X)y2 + f(t), 

Y=W, (Ll) 
w = - AW - 2yl/l(x) - ycv~ + f'(t). 

alWork supported by INIC (Lisbon) and CNR (Rome). 

(f(O)f(t) = W8(t) , 

(f'(O)f'(t) = 2D '8(t) . 
(1.2) 

Variables x and y interact with one another via the coupling 
potential 1/1 (x) y2, where we assume 

CV2 
I/I(x) = - _0 A,. e -x'l,.'-

2 m! 

The reaction potential is 

V. 
(/J (x) = _0 (x2 _ a2)2 . 

a4 

(1.3) 

(1.4) 

Both 1/1 (x) and (/J (x) are the same as those used in paper I. CVo is 
the frequency of the nonreactive normal mode. 

Throughout the present paper we shall assume for sim­
plicity that the nonreactive mode is overdamped, i.e., 
A» 2cvo. This will allow us to replace Eqs. (1.1) by 

x=v, 
i; = - (/J '(x) - yv - 1/I'(X)y2 + f(t), 

y = _ ~ yl/l (x) - L cv~ + f'(t) . 
A A A. 

(1.5) 

To clarify the role of nonstandard adiabatic effects, the 
situation where the reactive mode is also overdamped (i.e., 

r>4JY;;/a) was discussed in paper I; Eqs. (1.5) then take the 
form 

x = - ~ (/J '(x) _ ~ 1/1 '(x) y2 + f(t) , (1.6) 
r r r 

y = - ~ ytP(x) - L cv6 + f'(t ) (scheme A) . 
A A A 

The relaxation dynamics of y has to be assumed faster, 
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though not infinitely faster, than the reaction dynamics. 
This is a basic prerequisite for the application of the adiaba­
tic elimination procedure (AEP) of paper I, implying that 

(1.7) 

where r - 1 and r - 1 denote x and y time scales, respective-x y 

ly. [wb = ~4V oIa2 is the imaginary frequency of <P (x) at the 
origin, x = 0.] 

A major aim of the present paper is to discuss the role 
played by the inertia of coordinate x, which is completely 
disregarded when using the scheme of calculation from Eqs. 
(1.6). It is convenient to express the relaxation time of the 
irrelevant variable v, 1/y, in units of the relaxation time of the 
other irrelevant variable y, i.e., via the ratio of 1/y to 1/ r y ' 

R = ry/Y = W6/(AY) . (1.8) 

Scheme A applies when R<1. In the present paper we 
shall show that a novel nonstandard adiabatic effect comes 
into existence when exploring the region R -1, while still 
assuming both ry and Y very large. To this end we apply the 
AEP to Eqs. (1.5), while regarding both v and y as fast varia­
bles. This will be referred to as the scheme B of calculation. 

To shed further light into the role of inertia, we shall 
consider also the case when both x and v are slow variables 
(scheme C below). 

The formalisms of the three schemes of calculation just 
mentioned are presented in Sec. II and results obtained in 
each of these schemes by a continued fraction numerical pro­
cedure are compared. To explore further into the inertial 
region, we introduce in Sec. III a first-passage time proce­
dure with the energy as the slow variable. 

This research has been stimulated by the theoretical 
remarks of Graham and Schenzle3 on the role of inertia in a 
system belonging to the same family as that ofEqs. (1.5). 

II. THE ROLE OF INERTIA IN THE HIGH-FRICTION 
REGIME 

Within scheme A, the AEP described in Sec. II of paper 
I leads to 

a ( { (y2) a "I'() 1 a m.,( ) -px,t)= ---r x +--'Y x 
at yax yax 

+ (v
2
) a

2 
} p(x,t) + ~ (y2) ~ I/I'(x) 

y ax2 W6 y ax 

{
(y2) ~I/I'(X)-~I/I(X)}P(X,t). (2.1) 

Y ax A 

The term 

(y2) ~ I/I'(x) (2.2) 
y ax 

is responsible for the adiabatic effects of standard typ~. The 
last term on the right-hand side of Eq. (2.1) can be wntten 

~ (y2)2 ~[I/I'(xW-~ (y2)2 ~I/I'(x)I/I"(x) 
w6 fax2 w6 f ax 

_ 2. (yZ) ~ 1/I'(x)l/I(x). (2.3) 
w6 y ax 

When a large amount of energy is pumped into the 
transverse mode, the third term ofEq. (2.3) can be neglected. 
According to the discussion given in detail, e.g., in Ref. 4, the 
interplay between the remaining two terms is proven to be 
responsible for "noise-induced phase transition" phenom­
ena. As shown in paper I, the same analytical form as that 
discussed in Ref. 4 can be recovered when r>a and the addi­
tive stochastic force is neglected. 

As (y2) increases, the reactant equilibrium distribu­
tion shifts towards the center of the barrier which separates 
the reactant from the product regions until a sort of thresh­
old is reached. After this threshold, the largest part of the 
reactant population is found to be close to the center of the 
barrier (on the reactant side). This is indeed a chemical acti­
vation which results in a dramatic increase of the chemical 
reaction rate when the additive stochastic force is properly 
taken into account. 

In scheme B, both v and yare assumed to be fast varia­
bles when compared to x, 

rx <ry, y, (2.4) 

with rx and ry defined in Eq. (1.7). Starting from Eqs. (1.5), 
the AEP of paper I may be applied leading to 

y~p(x,t) = - ~[ - <P '(x) - (r) I/I'(x) + 2 (y2) l/I(x)I/I'(x) 
at ax w6 

+ (y2)2I/1'(X)I/I"(X)_~(y2)2 [I/I'(xW+ (V2») 
Rfax Rf y 

_ 2(r)2 1/I'(x)I/I"(x)- 4(y2) 1/I'(X)1/I2(X)]p(X,t). 
f(1 + 2R ) (W6)2 

(2.5) 

To derive Eq. (2.5), terms up to the fourth order in the per­
turbation expansion I have to be used, while the same level of 
approximation is obtained in scheme A [Eq. (2.1)] with terms 
up to the second order only. Indeed, the assumption of no 
inertia implied in scheme A generates ipso facto second-or­
der perturbation terms. Scheme B, however, generates two 
new terms, the last two on the right-hand side of Eq. (2.5). 
The first plays a major role, especially when the parameter 

( y2) is given large values. For vanishing small values of R, 
however, even this term becomes negligible compared to the 
fourth term of the same equation, thereby allowing the result 
of scheme A to be recovered. Hence, schemes A and Bare 
equivalent in the region R<1 and scheme B will be used to 
explore the region R -1. For large R, the two terms cancel 
each other out in accordance with a similar result already 
obtained by Graham and Schenzle.3 The effect of these new 
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FIG. I. Comparison between the decay rates K as calculated in the two 
schemes A and B using the continued fraction procedure. The parameters 
were given the values: Vo = 2X 10-7

,0
2 = 0.5, r = 0.5 Xo, R = 1, and 

(.1)CIJ~ = (UJ') = (v2
) = I X 10- 7 

• Atomic units are used throughout. 

terms is reminiscent of the standard adiabatic effect intro­
duced by the term (2.2). A detailed analysis shows that these 
terms cooperate to reduce the height of the effective barrier, 
thereby rendering the chemical reaction even faster. Results 
of calculations within schemes A and B are compared in 
Figs. I and 2. They show that the effect of the new terms 
obtained in scheme B becomes especially noticeable when 
the constraint of energy equipartition 

(VZ) = cu6 (yZ) (2.6) 

is released. This may be obtained by pumping energy in some 
way (e.g., by a selective radiation field) into the nonreactive 
mode only. On the other hand, this seems to be the only 
straightforward mechanism to reach the threshold for the 
noise-induced phase transition. Figure 2 shows in particular 
that the influence of the first new term is especially signifi­
cant in the threshold region. 

FIG. 2. Variation of the reaction rate K while increasing the energy in the 
nonreactive mode. A comparison is made between schemes A and B. The 
parameters were given the values: Aint = 0.5, Vo = 2x 10- 7

, 

(V
2

) = I X 10- 7
, R =!, 0 = 0.5, and r = 2Xo. The threshold value of 

(.1)CIJ~ for the noise-induced phase transition is about 6 X 10-6
. 

Ko = 1.2 X 10- 5 is the K value when (w2
) = (v2

). 

These interesting results stimulated us to explore the 
inertial regime, i.e., the region on y-cu~ . Indeed, we are led 
to believe that the influence of mUltiplicative fluctuations on 
the reaction rate should be magnified in this regime. To this 
end, we introduce now scheme C (cf. Sec. I). Variables x and 
v are assumed to be slow when compared to y: 

r x , y<ry . (2.7) 

Applying the AEP to Eqs. (1.5) we obtain the equation of 
motion of the joint probability distribution of the two slow 
variables: 

a {a a a a a
Z 

-p(X,V,l) = - v- + -f/>'(x) + - rv + - W'(x)(yZ) + _z y(VZ) 
at ax av av av av 

2 a a2 
A } - -- (y2)W'(X)W(x) + -2 (y2) - [W'(xW p(x,v,l). 

cu6 av av cu6 
(2.8) 

The fourth term on the right-hand side ofEq (2.8) gives the 
standard adiabatic effect. The fifth and seventh terms give, 
in the overdamped region, the nonstandard adiabatic effects 
found in scheme B above. 

In Fig. 3, the chemical rate K is displayed as a function 
of R = (cu6IA)/y, In the high-friction region (large y, small 
R ), we obtain a linear dependence on 1/ y, in agreement with 
the classical Kramers result.5 

As Aint increases, we obtain straight lines of increasing 
slope. This is a further manifestation of the role played by 
inertia: The sensibility of the reaction rate K to Aint increases 
as the reacting system becomes more inertial (smaller y). 

For large values of R, the lines start bending down, a 

sign that the intermediate friction regime is being ap­
proached. Unfortunately, the method of computation used 
fails in that region. The numerical computations are made 
using a continued fraction procedure6 which has conver­
gence difficulties for large R. 

III. THE ROLE OF NONREACTIVE MODES IN THE 
ENERGY-CONTROLLED REGIME 

The energy-controlled regime is currently becoming of 
increasing interest as testified by Refs. 7 and 8 and many 
other papers quoted there. The important role played by the 
interaction between reactive and nonreactive modes can be 
assessed by some remarks on Eq. (2.8). Let us consider the 
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o .5 1. 1.5 2. R 

FIG. 3. Synergism of inertia and multiplicative fluctuation. Variation of the 
reaction rate throughout a wide domain, ranging from the high to the low­
friction region. The curves on the left-hand side were obtained using the 
continued fraction procedure and those on the right-hand side were ob­
tained by the first passage time technique. The arrow denotes the value of r 
for which, in accordance with Larson and Kostin, 13 the diffusional regime 
ceases to be valid in the uncoupled case. The parameters were given the 
values: Vo = 2X 1O~7, a = 0.5, r = 2Xa. and (y2)CtJ~ = (v2) = (w2) 
=lXlO~7. 

case where (y2) = O. If r(v2) is also assumed to vanish, Eq. 
(2.8) describes a purely deterministic process and the over­
coming of the barrier is rigorously forbidden when the total 
energy of the reactant is lower than the barrier height. How­
ever, when the coupling between reacting and nonreacting 
modes is restored, the reactant undergoes the influence of 
the fluctuations acting on the nonreacting mode and this can 
supply enough energy for the reactant to overcome the bar­
rier. Fluctuations become ineffective near the top of the bar­
rier, where their intensity vanishes as implied by 1/1 '(0) = 0 
[cf. Eq. (1.3)]. This means that inertia is absolutely necessary 
for the barrier to be really overcome. As a result of such a 
synergism between inertia and multiplicative fluctuation, 
the chemical reaction can take place even when Kramers 
theory5 predicts vanishingly small rates. 

This is quite an interesting property, a quantitative dis­
cussion of which requires that a point of view completely 
different from that which inspired Sec. II be adopted. To 
derive a Fokker-Planck equation for the energy, we follow 
Lindenberg and Seshadri9 who used energy and displace­
ment as independent variables. 

We define the energy E as follows: 

v2 

E=2+e(x), (3.1) 

where 

e (x) = <P (x) + 1/1 (x)( y2) _ [1/I(xW (y2) . (3.2) 
(U~ 

After some manipulations, Eq. (2.8) can be rewritten in 
terms of the new pair of variables (x,E): 

-p(x,E,!) = - - [2(E - e(x))] + - r[2(E - e(x))] - r(v2) - [1/I'(XW(y2)2-a [a a { A} 
~ ~ ~ ~ 

(3.3) 

+ a~2 {[ r(v2
) + [1/I'(xW( y2)2 :~ ] [2(E - e (x))] } ] p(x,E,!) . 

Note that, in the absence of the additive and multiplicative 
stochastic forces corresponding to the last two terms on the 
right-handsideofEq. (2.8), Easdefined byEq. (3.1) would be 
a constant of the motion, rigorously independent of time. 

Under the influence of these fluctuations, E becomes 
time dependent but its dynamics will certainly be very slow 
when compared to the dynamics of the variable x. This leads 
us to assume that 

1 
p(x,E,!) = aiE,!) 2q? '(E HE _ e (x)F/2 ' (3.4) 

I 
where the prime denotes a derivative with respect to the ar-
gument and 

fP(E) = f dx(E - e(xW /2 (3.5) 

with the integration extending over a domain that includes 
all values ofx for which E;;.e (x). The approximation behind 
Eq. (3.4) was suggested by the paper of Lindenberg and Se­
shadri,9 who, in tum, followed a procedure introduced by 
Stratonovich. 1O 

When replacing Eq. (3.4) into Eq. (3.3) and integrating 
the latter one over x, we obtain 

(3.6) 
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with 

(3.7) 

where the region of integration is the same as in Eq. (3.5) and 
the explicit form of lJI(x) as given by Eq. (1.3) is used. 

To evaluate the chemical reaction rate via Eq. (3.6), we 
adopted the first-passage time method. to." The mean first­
passage time 'TEo is calculated by 

'T =2 e-U1E)dE _e __ dE , i
Vrnax IE U(E') 

Eo Eo 0 K
2
(E') , 

(3.8) 

where 

UtE) = 2 IE K,(E') dE' (3.9) 
Jo K 2(E') , 

K (E) = _ r fP(E) + r(v2) + A fnt (y2)2 ~ X'(E) 
, fP'(E) r4 lU~ fP'(E) , 

(3.10) 

(3.11) 

and V max is the height of the barrier as given by the effective 
potential of Eq. (3.2). 

As stressed by the recent work of Garrity and Skinner'2 
and references therein, the classical transition state theory, 
being based on the assumption of no recrossing after the first 
crossing of the barrier, appears to overestimate (by nearly 
one order of magnitude in the conditions of Ref. 12) the 
chemical reaction rate when dealing with fiat, wide barriers. 
Similar features will develop within the context of our model 
as (y2) increases. As Christoffel and Bowman2 have dis­
cussed, the coupling to a transverse mode may create an 
effective potential in which the potential barrier is deformed 
to show a plateau or even a third well at the center. As (y2) 
increases, this may develop into a "wedge" driven into the 
double well potential that progressively widens and deepens, 
thereby acting as an even more effective reservoir for re­
crossing processes. In these conditions our first-passage 
method would also overestimate the chemical reaction rate. 

In the right-hand side of Fig. 3 and in Fig. 4, results 
obtained by the first-passage time technique are displayed. 
The rate K is taken as the inverse of 'TEo given by Eq. (3.8); a 
numerical procedure was used throughout. 

In the situations considered here, the difficulty men­
tined above of gross overestimates is not expected to occur. 
The results illustrated on the right-hand side of Fig. 3 show 
that, in this region, the increase in K is much more sensitive 

FIG. 4. Variation of the reaction rate in the low friction region y-+O. These 
results were obtained using the first-passage time method. Parameters were 
given the same values as in Fig. 3. 

to the increases in Aint than it is in the high-friction region, 
thereby corroborating our statements on the role of inertia. 
In Sec. II, we remarked that K shows a more and more sensi­
tive dependence on the coupling between reactive and non­
reactive modes as inertia increases. This appears now to be a 
general trend, especially emphasized at r-D. This is better 
seen in Fig. 4. In accordance with what was noted at the very 
beginning of this section, the rate stays finite in this zero­
friction limit counter to Kramers' prediction. 
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