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Topology of the electronic current density in molecules
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This paper presents the first complete topological description of the electronic-probability
current-density field in molecules under an external homogeneous magnetic field. The
analysis is general, applying both to the many-electron current density and to its one elec-
tron (orbital) components. The singular lines of the vector field form a stagnation graph
which is the skeleton of the qualitative theory presented here. This graph may be discon-
nected, with one connected part playing a leading role in the description. Other secondary
connected parts are encased into topologically spherical separatrices defined by two isolated
singular points. This is one of the types of separatrices which are introduced here. The oth-
er one is defined by saddle singular lines and encases the axial vortices which are associated
with the vortex stagnation lines. The vertices of the stagnation graph are critical points of
the current-density field, points where the stagnation lines may branch out according to an
index theorem that is proved here. The basic units in this qualitative description of the
current field are axial or toroidal vortices. Each vortex is a whirlpool of electronic-charge
probability flowing around a vortex stagnation line and encased into a closed separatrix.
Vortices may exist inside other vortices but separatrices cannot cross one another. Saddle
stagnation lines belong to the boundary of four or more axial vortices.

I. MOTIVATION

The flux of probability density in N-electron mol-
ecules is of primary importance in determining
many properties, namely, the molecular magnetic
properties. The concepts developed in this paper
concern an isolated molecule under the effect of an
external, homogeneous, constant magnetic field. Its
application to the case where no magnetic field is
present is immediate and will be referred to; more
complicated fields will not be considered here, but
extensions are possible. The arguments evolved
throughout the paper are of a topological nature, the
mathematical formalization being avoided whenever
possible.

Hirschfelder discussed the axial and toroidal vor-
tices which are associated with the nodal lines of
one-electron state functions. For ¹lectron mole-
cules, the analysis may be made on the 3N
dimensional configuration space, or the natural or-
bital components may be studied in ordinary
space. ""' However, these orbital components are
not constrained to satisfy the continuity equation,
which makes the interpretation of the orbital
current-density plots very difficult. The present au-
thor has proposed that the exchange currents
should be considered to form a complete orbital
current that satisfies the continuity equation but
leaves the orbital contribution to most properties un-
changed. ' The topological analysis made in this pa-

per applies to any smooth, nondivergent vector field
in three space. It may be used both for the N
electron currents and for the complete orbital
current components. Extension of the theory to
comprehend fields with a nonzero divergence (like
the standard orbital current density) introduces cer-
tain complications, including new topological ele-
ments. This will not be attempted in the present
paper.

The basic elements for the topological analysis of
a vector field are associated with its singular points,
i.e., the points where it vanishes. The most interest-
ing results of differential topology ' apply to fields
with isolated singularities only. In the present case,
singular lines exist and play a role of foremost im-
portance; accordingly, they will be given very special
attention in the present study. The nodal lines con-
sidered by Hirschfelder" ' have associated a vortex
circulation. The singular lines of the ¹lectron
current or the complete orbital current are not
necessarily associated with nodal regions of the
probability charge density. The present author has
shown that these singular lines (or stagnation lines,
as they may also be called) have associated one of
two regimes of circulation, either vortical or saddle-
like (normal). Transitions between the two regimes
may occur at certain critical points. There may be
some control parameter leading to the change of re-
gime at what is formally a catastrophe. At a criti-
cal point, stagnation lines may branch out, a process
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ruled by theorem 8 proved in Sec. III. The set of all
singular lines forms the stagnation graph of the sys-
tem, a sort of skeleton defining the topology of the
vector field. Another concept introduced in this pa-
per is that of separatrix, a closed surface filled with
asymptotic lines (i.e., lines of current originating and
terminating at singular points) separating the
domains of the different vortices which make up the
current field.

In Sec. II, below, are discussed the types of isolat-
ed singularities allowed, and the concept of spherical
separatrix associated with them is introduced. Line
singularities are discussed in Sec. III, particularly
their interconnections at the critical points. In Sec.
IV, the structure of the stagnation graph is estab-
lished, and its implications for the vector field are
discussed. Two examples are considered in Sec. V
for the application of the new concepts developed in
the earlier sections. One is a model vector field
given analytically whose topological structure is de-
duced and discussed; the other refers to the current
density which is induced in the cyclopropenyl cation
by an external magnetic field perpendicular to the
molecular plane. Finally, in Sec. VI, the major con-
clusions of this work are summed up and some of its
physical implications discussed.

points must be of types (3,+ 1). Singularities of type
(2,0) form stagnation lines, which are considered in
the next section; on these lines, certain critical points
may occur which are in fact (0,0) singularities.

Consider the asymptotic lines of current, lines
starting and finishing at singular points. For each
isolated singularity, whatever its type may be, the
asymptotic lines fill a surface with a single asymp-
totic line perpendicular to it at the singular point
(Fig. 1). The plane, defined by the two eigenvectors
associated with eigenvalues of the same sign for
their real parts, ( 1 ) and (2), is locally tangent to what
I define as the separatrix. The smoothness and lack
of divergence of the vector field guarantee that the
separatrix defined locally at the singular point is a
closed boundaryless surface. Through any of its
regular points passes an asymptotic current line
which starts at a source and finishes at a sink singu-
lar point. The separatrix must satisfy the Poincare-
Hopf index theorem. ' As all the singularities con-
sidered on the surface (Fig. 1 ) have index + 1, this
theorem establishes that its number equals the Euler
characteristic of the surface. Now, the only com-
pact, oriented, boundaryless two-many-fold with a
positive Euler characteristic is the (topological)
sphere. This proves the following.

II. ISOLATED SINGULARITIES
AND THE SEPARATR IX

Theorem A. All the separatrices associated with
isolated singularities are topological spheres.

Consider an isolated molecule under an external,
homogeneous, constant magnetic field. The X-
electron probability current density j is conserved:

j =0
The same is true for the orbital components of the
current density when natural orbital complete
currents (exchange part included) are considered.

Points where the field is nonzero are called regu-
lar. Those points where it vanishes are the singular
points of the field, and the most interesting features
of the vector field happen in their neighborhood. In
this section I shall consider isolated singularities
only.

The vector field near a singular point may be
described by the D tensor,

D=V' j
which is traceless for Eq. ( 1 ) to be satisfied. The
singularities may be classified according to the na-
ture of the eigenvalues of D. The rank of a singular-
ity is the number of its nonzero eigenvalues; the sig-
nature is defined as the difference between the num-
ber of eigenvalues with a positive real part and the
number of those with a negative real part. In this
(rank, signature) classification, the isolated singular

This is a simple but very important result since it
guarantees that all individual pieces that compose
the vector field are surrounded by topological
spheres. Of course such spheres may exist inside
one another but without intersecting or touching.
Two types of separatrices associated with isolated
singularities may exist, depending on whether the
eigenvalues are real or complex. These are shown in
Fig. 2 in stereographic projection.

III. LINE SINGULARITIES
AND CRITICAL POINTS

It was pointed out in Sec. II that singular points
of type (2,0) form stagnation lines. In fact, these are
basically planar singular points with translation

I

+
I (2)

' 0) tC)

FIG. 1 . Asymptotic lines near an isolated (3, + 1 )

singularity. The single asymptotic line outside the plane
of the drawing converges into the singular point along
axis (3). Case (a): A, ~ & A, 2 & 0; case (b): A, ~

——A2 are com-
plex, A. ,

——k2, Re(A, , ) & 0. The third eigenvalue is
A 3 ——Re(A, ~ +A, 2).
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FIG. 2. Two types of separatrices associated with iso-
lated singularities. Both are topological spheres shown
here in stereographic projection with the source on the
north pole and the sink on the south pole. When the
eigenvalues of the D tensor are complex, the spiral case (b)

occurs.

bend back. These surfaces are separatrices of a new
kind. Having one (or more} saddle lines, this sug-
gests that they are cylindrical; it will become clear
further down that they are typically pea-pod shaped
with one or more ribs (the saddle lines) running all
the way from vertex to vertex (where the critical or
transition points are located). Examples are given in
Sec. V.

I shall now consider the properties of critical
points to show their role as branching points of the
stagnation lines. The final result is condensed into
the statement of theorem 8; it is convenient to con-
sider first the particular case of the branching of a
vortex stagnation line.

Lemma Bl. A vortex line may branch out at one
of its critical points into X new stagnation lines with
conservation of the index sum,

symmetry (locally) along the direction associated
with the zero eigenvalue. The regime of circulation
near the singularity depends on whether the eigen-
vaiues are real or imaginary as displayed in Fig. 3.

The saddle line shown in Fig. 3(a) has a D2h local
symmetry. The index associated with it is
while the vortex line has an index + 1. Saddle lines
with higher D„~ local symmetry may exist, their
points being in fact (0,0) singularities. Their
analysis needs derivatives higher than the first used
in defining the D tensor. Following a technique
parallel to that used in Ref. 5 for the exchange
current, it is easily shown that the index associated
with a D„q saddle line is (1 n)—

There are no asymptotic lines of current associat-
ed with a vortex line. On the contrary, for the sad-
dle line, four asymptotic directions exist in the plane
of Fig. 3(a), which extend in space to form two sur-
faces which touch at the saddle line, where they

This statement is misleadingly elementary. The dis-
cussion of the proof in some detail will help to
understand its implications. A first implication of
the wording of the lemma is that the stagnation
lines are to be considered as directed, i.e., that in-

spection of the (%+1) lines coalescing at the criti-
cal point allows the identification of the matrix vor-
tex line, the one with an index io ——+1 that branches
out into a set of X lines. The stagnation graph dis-
cussed in the next section is thus a directed graph.
The proof of lemma Bl may be given with the fol-
lowing argument. It is possible to construct a topo-
logical sphere around the critical point and locally
orthogonal to all the stagnation lines that meet
there, such that the current is everywhere tangent to
it. The Poincare-Hopf theorem ' may be applied to
this surface with an Euler characteristic g =2.
Since the matrix vortex line has an index + 1, the
sum of the indices of all other lines (indices of the
singularities on the sphere) must equal + 1 as
prescribed by (3). The simplest case of this class of
branchings is sketched in Figs. 4(a) and 4(b). The
general law of branchings at critical points may be
considered now.

FIG. 3. Regime of circulation near a stagnation line.
Stagnation lines are dense one manifolds of (2,0) singular
points. Real eigenvalues correspond to a normal regime
(a) near what shall be called a saddle line; imaginary
eigenvalues are associated with the vortex regime (b)
around what shall be called a vortex line. The transition
between the two regimes may occur at critical points
which are (0,0) singularities and is ruled by theorem B in
the text.

Theorem B. The branchings of stagnation lines
that may occur at critical points do conserve the
sum of the indices associated with the lines.

This is a generalization of lemma Bl to include
the branching of a saddle stagnation line and other
more complex cases. A simple proof of this
theorem is obtained by starting with the branching
of a vortex line as in Fig. 4 and enlarging the sphere
to enclose new critical points. This is possible be-
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(a}

FIG. 4. Branching of a vortex stagnation line at a criti-
cal point. The northbound vortex line (waving) branches
out into two new vortex lines and a saddle line (straight).
In (b) is represented the stereographic projection of the
field on a sphere around the critical point. In (c) a further
branching of the saddle line is considered. Enlarging the
sphere to enclose both critical points leads to a field on its
surface which is represented in (d) in stereographic projec-
tion.

cause of the fact shown in Sec. IV that any connect-
ed part of the stagnation graph has a vortex line. As
a new critical point is enclosed into the topological
sphere, the sum of the indices of the lines crossing
the surface must be unchanged as its Euler charac-
teristic is invariant. This proves theorem B.

In the particular case of the branching of a saddle
line into a number of new stagnation lines, theorem
B implies that the sum of the indices of the new
lines equals —1. In a general case where M lines
merge at a critical point and then branch out into X
new stagnation lines, theorem B may be put in the
form of Eq. (4),

(4)

This may occur due to the high (local) symmetry of
the particular molecule being studied. In such com-
plex cases the directionality of the stagnation lines
becomes very important and great care must be exer-
cised to avoid inconsistencies.

IV. THE STAGNATION GRAPH
AND THE VORTEX CIRCULATIONS

The stagnation graph of the electronic current
density in a molecule under an external magnetic
field is the set of all stagnation lines. The vertices of
the graph are the critical points of the vector field
where stagnation lines (the edges of the graph)
merge. The stagnation graph is in general discon-
nected, each of the connected subgraphs being made
up of a vortex line with ramifications at critical
points obeying theorem B above. The first result I
prove concerns the nature of these subgraphs.

cule under an external magnetic field is composed of
a number of connected subgraphs. One of these, the
primary stagnation subgraph, is constituted by an
open vortex line along the external field; other con-
nected subgraphs may exist, the secondary stagna-
tion subgraphs, constituted by closed vortex lines.
Any of the above-mentioned vortex lines may
branch into saddle lines and new vortex lines at ver-
tices of the graph which coincide with the critical
points of the vector field.

This long statement about the structure of the stag-
nation graph follows immediately from two facts.
First, there are no restrictions on the number of con-
nected subgraphs and, second, only one of these sub-
graphs may be open, its vortex line extending to in-
finity. This I shall prove presently. Consider the
molecule at the center of a sphere with a radius
large compared with the molecular dimensions. The
effect of the external magnetic field on the (minute)
electronic charge located on the sphere is equivalent
to its rigid rotation. The current field on the sphere
is regular everywhere except for two vortex centers
[Fig. 3(b)] on the opposite poles (obviously, satisfy-
ing Poincare-Hopf theorem). The singularities of
the sphere at the poles are at the intersection with
the vortex line as it extends to infinity, northward
and southward. This shows that one (and only one)
such open vortical line exists. This line may branch
out in the region closer to the molecule, originating
the primary, connected, stagnation subgraph. Other
stagnation lines not connected to the primary sub-
graph may exist, but they cannot extend to infinity.
As boundary points do not exist, they must form
closed cycles. Having established the basic structure
of the stagnation graph, I discuss now its imphca-
tions for the current density vector field.

Proposition D. Crave the stagnation graph of a
smooth vector field, this has the following elements.

(1) Associated with each finite vortex line, there is
a vortex which is encased into a pea-pod shaped
separatrix having one or more saddle lines as ribs.
These separatrices may exist one inside another and,
as vortex and saddle lines may terminate at different
critical points {at one end), a fusion between two
separatrices may occur.

(2) Associated with both the northbound and the
southbound infinite vortex lines, there is a vortex
which completely surrounds the molecule.

(3) Associated with a closed (vortex) loop, there is
a toroidal circulation which is encased by a topologi-
cally spherical separatrix with two isolated singular
points on its surface.

Proposition C. The stagnation graph of a mole- In the language of algebraic topology, ' '" the por-
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tions of space limited by the separatrices are associ-
ated with conj ugacy classes of the fundamental
group, and the current loops in them are freely
horn otopic.

The contents and justification of proposition D
above is best understood through an example such as
the one created in Figs. S and 6. As one moves
south, the vortex circulation (A) breaks up at critical
point (1) into two encased new vortices separated by
the saddle line as shown in section (8). When the
critical point (2) is reached, the right-hand side
internal vortex originates two new vortices again
separated by a saddle line. To understand the
changes between sections (C) and (D) in Fig. 6, it is
better to restart the analysis from the south pole.
Events at (4) are identical to those at (1). Next, at
(3), the saddle line breaks up to originate a new vor-
tex in between two saddle lines that define its
separatrix. Now, between (C) and (D) there is no
change in the stagnation graph, and therefore no
discontinuity exists. Considering the schematical
drawings in Fig. 6, (D) may be obtained from (C) by
making the right-hand side (rhs) lobe of the external
separatrix to contract, squeezing the current lines
between the two. This process of fusion of separa-

—B-

AorF

8 or E

t

~if
FIG. 6. Patterns of circulation (sketched) in certain

sections of the molecule with the stagnation graph in Fig.
5. Between (C) and (D), there is no change in the stagna-
tion graph; however, the internal separatrix with vertex at
critical point (2) fuses with the separatrix that has its ver-
tex at (3). The process of fusion is continuous and there-
fore it is not associated with any singular feature. (G)
represents the section of the toroidal circulation in a re-
gion where one of the arms is branched. The dashed line
is the isolated asymptotic that crosses the spherical
separatrix at the isolated singularities.

FIG. 5. Stagnation graph of a molecule. This made-up
example comprehends the primary subgraph and one
secondary subgraph. The direction of the branching at
the singularities is indicated by the equator drawn in each
little sphere, this may be associated to a north to south
direction in the primary subgraph and a clockwise (or east
to west) direction in the secondary one. The dashed line
surrounding the whole secondary subgraph represents
schematically the separatrix which is a topological sphere
with two singular points, a source and a sink. The current
flow that is associated with this stagnation graph in cer-
tain regions [dividing planes (A)—(G)] is sketched in Fig.
6.

trices is essential in the interpretation of the flows
associated with many stagnation graphs. The rhs
vortex in (8) which is originated at (1) has as its
southern limit the region of fusion of separatrices.

One secondary subgraph is considered in Fig. S.
The gross features of the circulations associated
with it are those of a toroidal vortex encased in a
spherical separatrix. It was shown in Sec. II that all
such separatrices associated with isolated singulari-
ties are in fact topological spheres with two singular
points, a source and a sink. The isolated asymptotic
line, dashed in (6) of Fig. 6, which is locally orthog-
onal to the separatrix will follow the neighboring
lines of current without any special role.

V. EXAMPLES

In this section I shall discuss first a model exam-
ple with a stagnation graph of certain complexity to
clarify the process of branching of the lines and help
the visualization of the three-dimensional vector
field. The second example is based on the very re-
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cent calculations of Lazzeretti and Zanasi' on the
20-electron system C3H3+.

The most complex maps occur for z E ]—1,+ 1[ and
this is the case shown in Fig. 8. Singularities may
occur at points (a)—(h) with coordinates

A. Model vector field

Consider the vector field defined by equations

j„=y +y(z —z —2),

jy
——x3 —x(z +z —2), (5)

(a) (x =0;y =0). Stagnation line in z E ]—ae,
+ac[ with critical points (1)—(4) at z=+2, + 1,

1, and —2 and the regimes shown in Fig. 7;
(b) and (d) [x=0;y=+(—z +z+2)' ]. Stagna-

tion lines in zE]—1;+2[ with critical points (1)-
(5)-(3) and (1)-(6)-(3) and the regimes shown in Fig.
7

The stagnation graph associated with this vector
field is sketched in Fig. 7. As the current is every-
where parallel to the xy plane, it is convenient to
study the map of currents in a plane at constant z.

(c) and (e) [x =+(—z —z+2)'~;y=0]. Stagna-
tion lines in zE]—2;+1[ with critical points (2)-
(8)-(4) and (2)-(7)-(4) and the regimes shown;

(f), (g), (h), and (i) [x =+( —z —z+2)'~z;y
= + ( —z +z+ 2) ' ]. Stagnation lines in
z & [1,+1] with critical points (5)-(8), (6)-(8), (6)-(7),
and (5)-(7) and the regimes shown.

It is worth analyzing in some greater detail the
elemental vortices that integrate the vector field and
to identify certain fusions of separatrices. An exter-
nal, unbound vortex exists associated with vortical
line (a) north of critical point (1) and south of criti-
cal point (4). At critical point (1) two new vortices
are originated encased into the separatrices with the
stagnation line (a) between (1) and (2). At z=+1,
three critical points occur, (2), (5), and (6) originat-
ing five new vortices (Fig. 9). Meanwhile, the vor-
tices originated at (1) die off at the fusion of separa-
trices that occurs at z =0. The pattern of currents

FICi. 7. Stagnation graph of vector field (5). This is a
three-dimensional graph: the edges represent vortex (wav-
ing) or saddle (nonwaving) stagnation lines; the vertices
represent the critical points. The location of these ele-
ments in configuration space is better understood through
the general map in Fig. 8.

FIG. 8. Map of the current density field (S) for z =0.
Points (a)—(i) are the singularities of the map, i.e., the in-
tersections of the stagnation lines with the plane z =0.
The nine singularities exist for z H ]—1,+ I [, but the
square symmetric arrangement is characteristic of z =0.
For example, at z= + 1 (f) and (i) coincide with (b), corre-
sponding to critical point (S); (g) and (h) coincide with (d),
corresponding to critical point (6); and (c) and (e) coincide
with (a) for critical point (2).
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ty

z ~1+1,+2l z ~]O,+&(

FIG. 9. Separatrices of current-density field at planes z=const. The transition between the pictures shown occurs with
critical points at z= + 2, + l, —l, and —2. At z =0 occurs a fusion of separatrices which may be understood if the pat-
tern in Fig. 8 is considered for the transition between those here for positive and negative z.

in planes at z &0 is similar to those described but for
a rotation of vr/4. The vector field has a pseudoaxis
of rotation of degree 4. This is an excellent example
of the wealth of information provided by the stagna-
tion graph assuming that the location of its elements
in physical space is known.

B. The cyclopropenyl cation

The second example discussed is the one provided
by the magnetically induced currents in the cy-
clopropenyl cation as calculated very recently by
Lazzeretti and Zanasi. ' Maps are calculated for the
current density in the plane of the molecule and in
planes 0.8 a.u. off it. In this case, the current-
density vector is not constrained to the projection
plane. The interpretation of the vector field is made
very easy by the consideration of the stagnation
graph in Fig. 10. Associated with the four vortex
lines from (1) to (2), there are four vortices encased
by double-conical separatrices touching one another
at the three saddle lines. Further out, there are three
toroidal vortices encased into spherical separatrices.

one or more singular lines as ribs. This type of
separatrix encases an axial vortex of the current-
density field.

This presentation of the qualitative theory of the
magnetic current density in molecules avoids the
formal language of topology, using instead a
language closer to the physical phenomenology.
However, the topological concepts developed here
may gain generality and perhaps clarity with the in-
troduction of the formal apparatus of topology. At-
tempts in this direction have been made for some
problems with important analogies to the one dealt
with here; among them are the study of defects in
ordered media, ' '" the rotational dislocations in
liquid crystals, ' or the hydrodynamics of super-
fluids. ' Aspects of plasma transport' and of mag-

VI. CONCLUDING REMARKS

The global topological analysis of the current-
density field in molecules which is introduced in this
paper allows a clear identification of subdomains of
the physical space associated with each vortex. The
boundaries between these subdomains are the separa-
trices of the two types which are defined in Secs. II
and IV. The first type of separatrix is a topological
sphere which is associated with two isolated singular
points. Encased into this sphere is a toroidal vortex,
possibly with a number of axial vortices resulting
from branchings of the main vortex line. The
second type of separatrix is a tubelike closed surface
better described, generally, as pea-pod shaped having

8( 3Q
(c)

~: carbon atom

FIG. 10. Stagnation graph (a) and the separatrices in
the molecular plane (c) and 0.8 a.u. above that plane (b)
for the cyclopropenyl cation. The critical points (1) and
(2) occur at a distance greater than 0.8 a.u. from the
molecular plane; the three spherical separatrices [defined
by two isolated singularities each, as seen in (c)] are entire-
ly contained in between levels +Q.8 a.u. The dotted line
represents an asymptotic line linking the six isolated
singularities. [Based on data calculated by Lazzeretti and
Zanasi (Ref. 12).]
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netic turbulence' do also resemble the phenomenol-
ogy studied here. Important work is in progress in
these related fields which may be relevant to the
description and properties of the electronic currents
in molecules.

From the quantum chemical point of view, this
qualitative theory may suggest new techniques to
deal with classical problems such as that of the
atoms in molecules and the distinction between local
and nonlocal effects or properties. The proposal
made by the present author towards the introduc-
tion of an appropriate definition of delocalized
current in cyclic conjugated hydrocarbons may be
improved and generalized by considering the global
analysis presented here.

A very important problem which is outside the
scope of this paper is that of the relations between
the topology of the electronic current density, which
is discussed here, and the topology of the electronic

charge density, which was approached by techniques
related to those used here by Collard and Hall and
then extensively studied by Bader and co-workers. '

Mezey' made a thorough topological study of the
molecular energy hypersurface as a function of the
nuclear coordinates. His analysis of the distribution
of singular points (where the gradient of the poten-
tial vanishes and are also called critical points by
some authors) leads to a rigorous topological defini-
tion of molecular structure and reaction mechanism.
Research on functional dependence of the molecular
properties on the charge density is currently very ac-
tive, ' especially in relation with the Hohenberg-
Kohn theorem.
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