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Physical measures
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Physical measures

Let M be a compact Riemannian manifold and f : M → M. An f -invariant
probability measure µ on the Borel sets of M is called a physical measure
if, for a positive Lebesgue measure set of points x ∈ M, we have

1

n

n−1∑
j=0

δf j (x)
w∗−−−→

n→∞
µ, (∗)

or equivalently, for all continuous ϕ : M → R

lim
n→+∞

1

n

n−1∑
j=0

ϕ(f j(x)) =

∫
ϕ dµ.

We define the basin of µ as

B(µ) =
{
x ∈ M : (∗) holds

}
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Singular vs. absolutely continuous

The average of Dirac measures supported on an attracting periodic
orbit is a physical measure.

Any ergodic absolutely continuous (wrt Lebesgue measure) invariant
probability measure is a physical measure.

Exercise

Prove the second statement above.
Hint for the second one: use Birkhoff’s Ergodic Theorem and the fact
that C 0(M) has a countable dense subset.
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Toy model I: Doubling map

Consider f : S1 → S1 given by

f (x) = 2x (mod 1).

It is clear that f preserves the length of intervals, and so (...)
f preserves the Lebesgue (length) measure m on the Borel sets.

Exercise

Show that m is ergodic.
Hint 1: Use Fourier series and the fact that f is ergodic iff for all ϕ ∈ L2(m)

ϕ ◦ f = ϕ =⇒ ϕ = const.

Hint 2: Use that any interval becomes the whole interval after a finite number

iterates, the fact that f preserves proportions and Lebesgue Density Theorem.
6



Toy model II: Solenoid attractor

Consider the unit disk D ⊂ C, the map
F : S1 × D → S1 × D given by

F (t, z) =

(
2t (mod 1),

z

4
+

1

2
e2πit

)
,

and the attractor
A =

⋂
n≥0

F n(S1 × D).

Some well-known facts:

1 A is a hyperbolic attractor.

2 Each x ∈ A has a stable leaf γs(x) and an
unstable leaf γu(x).

3 The unstable leaves of points in A are
contained in A.

4 There exists a unique F -invariant ergodic
probability measure µ such that π∗µ = m.

A
F−−→ A

π
y y π
S1 f−−→ S1
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Some more facts:

(1) A is foliated by unstable leaves.
(2) The conditional measures of µ on unstable leaves are equivalent to

the conditionals of Lebesgue measure on those leaves.
(3) For any continuous φ : A→ R and any ξ̃ ∈ γs(ξ) we have

lim
n→∞

1

n

n−1∑
j=0

φ(F j(ξ̃)) = lim
n→∞

1

n

n−1∑
j=0

φ(F j(ξ)).

(4) The stable foliation is absolutely continuous.

µ ergodic supported on A
⇓ (1)

µγu almost every point in an
unstable leaf γu belongs in B(µ)
⇓ (2)

mγu almost every point in an
unstable leaf γu belongs in B(µ)
⇓ (3)+(4)

µ is a physical measure
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Lyapunov exponents

Let f : M → M be a diffeomorphism of a smooth manifold M.
Given x ∈ M and v ∈ TxM, define

λ(x , v) = lim
n→±∞

1

n
log ‖Df n(x)v‖,

if these limits exist and coincide.

Theorem (Oseledec 1968)

Assume that f preserves an invariant probability measure µ. There exist
measurable functions λi and a Df -invariant splitting TxM = ⊕iEi (x) with
λ(x , v) = λi (x) for µ almost every x ∈ M and every v ∈ Ei (x). Moreover,
if µ is ergodic, then λi and dim(Ei ) are constant µ almost everywhere.

Each λi is called a Lyapunov exponent of f (with respect to µ).
We define the regular set R ⊂ M as the set of points for which the
Lyapunov exponents are defined.
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SRB measures

Theorem (Pesin 1976)

If x ∈ R has at least one positive Lyapunov exponent, then there is a
small disk γu(x) ⊂ M tangent to ⊕λi>0Ei (x) such that for all y ∈ γu(x)

lim sup
n→∞

1

n
log d(f −n(y), f −n(x)) < 0.

γu(x) is called the local unstable manifold of x ∈ R.
A local stable manifold γs(x) can be obtained similarly for a point x ∈ R
with at least one negative Lyapunov exponent.

The measure µ is called an Sinai-Ruelle-Bowen (SRB) measure if it has at
least one positive Lyapunov exponent and the conditionals {µγu} of the
Rokhlin decomposition of µ on local unstable manifolds are absolutely
continuous with respect to the Lebesgue conditionals {mγu}.
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Absolute continuity of the stable foliation
Given D,D ′ ⊂ M embedded disks intersecting
transversally a set {γs(x)}x of stable leaves,
define the holonomy map

h :
⋃

xγ
s(x) ∩ D −→

⋃
xγ

s(x) ∩ D ′

assigning to z ∈ γs(x) ∩ D the unique point
in γs(x) ∩ D ′. The stable foliation is absolutely
continuous if for any A ⊂

⋃
x γ

s(x) ∩ D, we have
mD(A) > 0 iff mD′(h(A)) > 0.

Theorem (Pesin 1976)

Let f : M → M be a C 2 diffeomorphism having all Lyapunov exponents
nonzero with respect to an ergodic invariant probability measure µ. Then
the stable foliation is absolutely continuous.

Corollary

Every ergodic SRB measure with non-zero Lyapunov exponents
is a physical measure.

11



Decay of correlations
The correlation of observables ϕ,ψ : M → R is defined as

Corµ(ϕ,ψ ◦ f n) =

∣∣∣∣∫ ϕ(ψ ◦ f n)dµ−
∫
ϕdµ

∫
ψdµ

∣∣∣∣ .
Taking ϕ and ψ characteristic functions of Borel sets, we obtain the usual
notion of mixing. when Corµ(ϕ,ψ ◦ f n)→ 0. We are interested in specific
rates (polynomial, exponential,...) for the convergence of Corµ(ϕ,ψ ◦ f n)
to zero. For this, we usually need to impose some regularity of the
observables and assume that (at least) ϕ is Hölder continuous.

Remark

In many cases, µ is equivalent to the Lebesgue measure m. Assuming m
normalized and taking ϕ = dm/dµ, we have

Corµ(ϕ,ψ ◦ f n) =

∣∣∣∣∫ ψf n∗ dm −
∫
ψdµ

∣∣∣∣ .
So, the decay of Corµ(ϕ,ψ ◦ f n) gives information on the speed at which
the push-forwards f n∗ m approach the physical measure µ. 12



Other statistical properties

Here we will be focused on Decay of Correlations. Under the same
approach (inducing schemes) several other statistical properties of SRB
measures can be deduced.

[Young 1998; Young 1999]: Central Limit Theorem;

[Melbourne and Nicol 2008; Melbourne 2009]: Large Deviations;

[Melbourne and Nicol 2005; Melbourne and Nicol 2009]: Almost Sure
Invariance Principle;

[Gouëzel 2005]: Local Limit Theorem;

[Gouëzel 2005]: Berry-Esseen Theorem.
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Entropy
Let µ be a probability measure on M and P a countable µ mod 0 partition
of M into measurable subsets of M. We define the entropy of P with
respect to µ as

Hµ(P) =
∑
P∈P
−µ(P)logµ(P).

Given f : M → M preserving µ and n ∈ N, consider the dynamically
generated partition

Pn =
n−1∨
j=0

f −j(P).

The entropy of f and the partition P with respect to µ is given by

hµ(f ,P) = lim
n→∞

1

n
Hµ(Pn).

The entropy of f with respect to µ is

hµ(f ) = sup
P

hµ(f ,P),

where the supremum is taken over all partitions of M as above.
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Entropy formulas

[Ruelle 1978]: upper bound for the entropy of an invariant measure in
terms of the positive Lyapunov exponents;

[Pesin 1977]: equality in Ruelle’s result if the measure is absolutely
continuous w.r.t. Lebesgue measure;

[Ledrappier and Young 1985]: characterization of measures satisfying
Pesin’s entropy formula;

[Ledrappier and Strelcyn 1982]: entropy formulas for certain systems
with singularities (inspired by billiards);

[Liu 1998]: Pesin’s entropy formula for endomorphisms;

[Alves, Oliveira, and Tahzibi 2006; Alves, Carvalho, and Freitas
2010a]: use entropy formulas to obtain the continuous variation of
entropy for SRB measures in certain families of systems.
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Systems with expanding structures
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Gibbs-Markov maps
Let (∆0,A,m) be a finite measure space. We say that F : ∆0 → ∆0 is
Gibbs-Markov if there exists an m mod 0 countable partition P into
measurable subsets of ∆0 such that:

1 Markov: F maps each ω ∈ P bijectively to ∆0.

2 Nonsingular: ∃ JF > 0 such that for each A ⊂ ω ∈ P

m(F (A)) =

∫
A
JFdm.

3 Separation: for all x , y ∈ ∆0 there is

s(x , y) = min
{
n ≥ 0 : F n(x), F n(y) lie in distinct elements of P

}
.

4 Bounded distortion: ∃K > 0 and 0 < β < 1 s.t. for all
x , y ∈ ω ∈ P

log
JF (x)

JF (y)
≤ Kβs(F (x),F (y)).
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Consider the space

Fβ(∆0) =

{
ϕ : ∆0 → R s.t. |ϕ|β ≡ sup

x 6=y

|ϕ(x)− ϕ(y)|
βs(x ,y)

<∞

}
.

endowed with the norm
|ϕ|β + ‖ϕ‖∞,

and
F+
β (∆0) =

{
ϕ ∈ Fβ(∆0) : ϕ ≥ c for some c > 0

}
.

Lemma 2.1

Fβ(∆0) is relatively compact in L1(∆0).

Exercise

Prove this lemma.
Hint: mimic the proof of Ascoli-Arzela Theorem in Wikipedia.
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An F -invariant probability measure is exact (⇒ mixing ⇒ ergodic) if

A ∈
⋂

n≥0F
−n(A) and ν(A) > 0 =⇒ ν(A) = 1.

Theorem 2.2

Any Gibbs-Markov map has a unique exact absolutely continuous invariant
probability measure ν. Moreover, dν/dm belongs in Fβ(∆0) and there is
K > 0 such that

1

K
≤ dν

dm
≤ K .

The idea is to prove that the sequence of densities of the measures

µn =
1

n

n−1∑
j=0

F j
∗m.

is bounded in Fβ(∆0). By Lemma 2.1, it has an accumulation point in
L1(∆0), which is the density of an F -invariant measure.
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Inducing schemes
Consider m a measure on M and f : M → M. Given ∆0 ⊂ M with
m(∆0) <∞ we say that a Gibbs-Markov F : ∆0 → ∆0 is an induced map
for f if there is R : ∆0 → N constant on each ω ∈ P such that

F |ω = f R(ω)|ω.

Proposition 2.3

If ν0 is the ergodic f R -invariant probability measure � m|∆0 , then

1 µ′ =
∑∞

j=0 f
j
∗ (ν0|{R > j}) is an ergodic f -invariant measure;

2 µ′ finite ⇐⇒ R ∈ L1(m|∆0) ⇐⇒
∑∞

j=0 m{R > j} <∞;

3 f nonsingular with respect to m =⇒ µ′ � m;

4 if µ′ is finite, then µ = µ′/µ′(M) is the unique ergodic f -invariant
probability measure with µ� m and µ(∆0) > 0.

We usually denote the induced map F by f R and say that µ is liftable to ν.
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Decay of correlations
Consider now the case of a smooth map f : M → M, where M is a
Riemannian manifold and m is Lebesgue measure on the Borel sets,
and H the space of Hölder continuous functions from M to R.

Theorem (Young 1999)

Assume that f has an induced Gibbs-Markov map f R with R ∈ L1(m).
Then f has some (liftable) ergodic invariant probability measure µ� m.
Moreover, if gcd{R} = 1, then for all ϕ ∈ H and ψ ∈ L∞(m)

1 if m{R > n} . n−α for some α > 0, then Corµ(ϕ,ψ ◦ f n) . n−α+1;

2 if m{R > n} . e−cn
θ

for some c > 0 and 0 < θ ≤ 1, then

Corµ(ϕ,ψ ◦ f n) . e−c
′nθ for some c ′ > 0.

If gcd{R} = k , the same conclusion holds for f k .

The optimal estimate in the stretched exponential case is due to
[Gouëzel 2006].
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Entropy formula

Theorem 2.4 (Alves and Mesquita 2020)

Let f : M → M be a measurable map admitting a strictly positive
Jacobian Jf with respect to some finite reference measure. If f has an
induced Gibbs-Markov map with integrable recurrence time, then for any
liftable f -invariant probability measure µ we have

hµ(f ) =

∫
log Jf dµ.
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Tower extension

Consider the partition
P = {∆0,i}i associated to an induced
Gibbs-Markov map f R : ∆0 → ∆0.
Define the tower over ∆0 as

∆ =
{

(x , `) : x ∈ ∆0 and 0 ≤ ` < R(x)
}
,

and the tower map T : ∆→ ∆ as

T (x , `) =

{
(x , `+ 1), if ` < R(x)− 1;
(f R(x), 0), if ` = R(x)− 1.

The map
π : ∆ −→ M

(x , `) 7−→ f `(x)
(1)

satisfies f ◦ π = π ◦ T .
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The `th level of the tower is the set

∆` = {(x , `) ∈ ∆}.

The 0th level is naturally identified with the set ∆0 ⊂ M. Under this
identification we have that TR = f R : ∆0 −→ ∆0 is a Gibbs-Markov map.

The `th level of the tower is a copy of {R > `} ⊂ ∆0. This allows us to
extend the σ-algebra A and the reference measure m to the tower ∆. We
also extend P to an m mod 0 partition of ∆

Q = {∆`,i}.

Finally we extend the separation time to ∆×∆, defining s(x , y) for
x , y ∈ ∆ in the following way: if x , y ∈ ∆`, then there exist unique
x0, y0 ∈ ∆0 such that x = T `(x0) and y = T `(y0). Set

s(x , y) = s(x0, y0).

Define s(x , y) = 0 for all other points x , y ∈ ∆.
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We consider as before

Fβ(∆) =
{
ϕ : ∆→ R | ∃C > 0 : |ϕ(x)− ϕ(y)| ≤ Cβs(x ,y), ∀x , y ∈ ∆

}
and

F+
β (∆) = {ϕ ∈ Fβ(∆) | ∃c > 0 : ϕ ≥ c} .

Theorem 2.5

If R ∈ L1(m), then the tower map T : ∆→ ∆ has a unique ergodic
invariant probability measure ν which is equivalent to m. Moreover,
dν/dm ∈ F+

β (∆) and (T , ν) is exact if gcd{R} = 1.

Note that gcd{R} > 1 =⇒ (T , ν) is not mixing.

Existence and uniqueness of ν follows from Proposition 2.3.
(Recall that TR = f R is a Gibbs-Markov induced map for T ).
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Back to the original dynamics
Define µ = π∗ν, where π : ∆→ M is the projection given by (1).
Recalling that f ◦ π = π ◦ T , we have that

(T , ν) is an extension of (f , µ).

Lemma 2.6

1 ν|∆0 = ν0 (the f R -invariant measure in Proposition 2.3);

2 µ =
1∑∞

j=0 ν0{R > j}

∞∑
j=0

f j∗ (ν0|{R > j});

3 Corµ(ϕ,ψ ◦ f n) = Corν(ϕ ◦ π, ψ ◦ π ◦ T n) for all ϕ,ψ and n ≥ 1;

4 for each ϕ ∈ H, there is β > 0 such that ϕ ◦ π ∈ Fβ(∆);

5

∫
log Jf dµ =

∫
log JT dν;

6 hµ(f ) = hν(T ).

By the first two items µ = π∗ν is the measure given by Proposition 2.3.
The last item has been proved in [Buzzi 1999] for general extensions. 26



Decay of correlations for tower maps

Young Theorem is then a consequence of

Theorem 2.7

Assume that gcd{R} = 1. For all ϕ ∈ Fβ(∆) and all ψ ∈ L∞(m)

1 if m{R > n} . n−α for some α > 0, then Corν(ϕ,ψ ◦ T n) . n−α+1;

2 if m{R > n} . e−cn
θ

for some c > 0 and 0 < θ ≤ 1, then

Corν(ϕ,ψ ◦ T n) . e−c
′nθ for some c ′ > 0.

Below we show how Corν(ϕ,ψ ◦ T n) can be controlled in terms of the
total variation of a certain sequence of signed measures.
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Given ϕ ∈ L∞(m) with ϕ 6= 0, define

ϕ∗ =
1∫

(ϕ+ 2‖ϕ‖∞)dν
(ϕ+ 2‖ϕ‖∞). (2)

Note that ϕ∗ is strictly positive and its integral with respect to ν is 1.

Lemma 2.8

For all ϕ ∈ Fβ(∆) with ϕ 6= 0 we have

1 ϕ∗ ∈ F+
β (∆) and 1/3 ≤ ϕ∗ ≤ 3;

2 Corν(ϕ,ψ ◦ T n) ≤ 3‖ϕ‖∞‖ψ‖∞|T n
∗ λ− ν| for all ψ ∈ L∞(m),

where λ is the probability measure on ∆ such that dλ/dν = ϕ∗.

We have
‖ϕ‖∞ ≤ ϕ+ 2‖ϕ‖∞ ≤ 3‖ϕ‖∞. (3)

Since ν is a probability measure, we get

1

3‖ϕ‖∞
≤ 1∫

(ϕ+ 2‖ϕ‖∞)dν
≤ 1

‖ϕ‖∞
. (4)

From (3) and (4) we get 1/3 ≤ ϕ∗ ≤ 3.
28



For all x , y ∈ ∆ we have

ϕ∗(x)− ϕ∗(y)

βs(x ,y)
=

1∫
(ϕ+ 2‖ϕ‖∞)dν

· ϕ(x)− ϕ(y)

βs(x ,y)
. (5)

Since ϕ∗ ≥ 1/3,
ϕ ∈ Fβ(∆) =⇒ ϕ∗ ∈ F+

β (∆).

Setting a =
∫

(ϕ+ 2‖ϕ‖∞)dν, we may write

Corµ(ϕ,ψ ◦ T n) =

∣∣∣∣∫ ϕ(ψ ◦ T n)dν −
∫
ϕdν

∫
ψdν

∣∣∣∣
= a

∣∣∣∣∫ ϕ∗(ψ ◦ T n) dν −
∫
ϕ∗dν

∫
ψ dν

∣∣∣∣
= a

∣∣∣∣∫ (ψ ◦ T n) dλ−
∫
ψ dν

∣∣∣∣
= a

∣∣∣∣∫ ψ dT n
∗ λ−

∫
ψ dν

∣∣∣∣
≤ a‖ψ‖∞|T n

∗ λ− ν|.
Observing that a ≤ 3‖ϕ‖∞, we obtain Lemma 2.8.
The proof of Theorem 2.7 is then reduced to estimate |T n

∗ λ− ν|. 29



Convergence to the equilibrium

Theorem 2.9 (Young 1999; Gouëzel 2006)

Assume that gcd{R} = 1. Given any measure λ such that ϕ = dλ/dm
belongs in F+

β (∆) we have:

1 if m{R > n} ≤ Cn−ζ for some C > 0 and ζ > 1, then
|T n
∗ λ− ν| ≤ C ′n−ζ+1 for some C ′ > 0;

2 if m{R > n} ≤ Ce−cn
η

for some C , c > 0 and 0 < η ≤ 1, then
|T n
∗ λ− ν| ≤ C ′e−c

′nη for some C ′, c ′ > 0;

Moreover, c ′ does not depend on ϕ and C ′ depends only on C+
ϕ .

The proof of this result uses a probabilistic coupling argument, based on
a careful study of returns to the base of the tower.
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Entropy formula for the tower map

Proposition 2.10

hν(T ) =

∫
log JT dν.

Entropy formula for Gibbs-Markov maps can be deduced using (in an
importnt way) the Markov property; see e.g.

(1) [Denker, Keller, and Urbański 1990]
(2) [Alves, Oliveira, and Tahzibi 2006]
(3) [Alves and Pumariño 2018]

For tower maps, we follow ideas from (3), using a quasi-Markov property:
there is η > 0 such that for m-almost every (x , `) ∈ ∆ there are infinitely
many values n ∈ N for which

m(T n(Qn(x , `))) ≥ η > 0, (6)

where for each n ≥ 1

Qn =
n−1∨
i=0

T−i (Q).
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Given (x , `) ∈ ∆, let M(x , `) be the set of k ∈ N for which (6) holds.

Volume Lemma

There exists C > 0 such that for all (x , `) ∈ ∆ and k ∈M(x , `),

C−1 ≤ m(Qk(x , `)) · JkT (x , `) ≤ C .

Bounded distortion gives C0 > 0 such that for all k ≥ 0 and all
(x , `), (y , `) ∈ ∆ belonging in the same element of Qk , we have

C−1
0 ≤

JkT (x , `)

JkT (y , `)
≤ C0. (7)

Using the Jacobian, it follows that

m(T k(Qk(x , `))) =

∫
Qk (x ,`)

JkT (y , `) dm(y , `)

=

∫
Qk (x ,`)

JkT (y , `)

JkT (x , `)
JkT (x , `) dm(y , `).
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Now, on the one hand, using the bounded distortion, we deduce that

m(∆) ≥ m(T k(Qk(x , `))) ≥ C−1
0 · JkT (x , `) ·m(Qk(x , `))

and consequently, for all k ∈ N,

JkT (x , `) ·m(Qk(x , `)) ≤ m(∆) · C0.

On the other hand, for all k ∈M(x , `),

η ≤ m(T k(Qk(x , `))) ≤ C0 · JkT (x , `) ·m(Qk(x , `)).

This gives the Volume Lemma.
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Using that

1 Q is a generating partition

2 Shannon-McMillan-Breiman Theorem

3 ν is ergodic and equivalent to m

4 the Volume Lemma

5 the chain rule for the Jacobian

6 Birkhoff’s Ergodic Theorem

we get

hν(T ) = hν(T ,Q) = lim
n→∞

−1

n
log ν(Qn(x , `)) = lim

n→∞
−1

n
logm(Qn(x , `))

= lim
k→∞

k∈M(x ,`)

−1

k
logm(Qk(x , `)) = lim

k→∞
k∈M(x ,`)

1

k
log JkT (x , `)

= lim
k→∞

k∈M(x ,`)

1

k

k−1∑
i=0

log JT (T i (x , `)) =

∫
log JT dν

,

thus proving Proposition 2.10.
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Systems with hyperbolic structures
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Young structures

Let M be a Riemannian manifold and f : M \ S → M a diffeomorphism
onto its image. We say that a compact set Λ ⊂ f −n(M \ S) has a product
structure if there exist a family Γs = {γs} of stable disks and a family
Γu = {γu} of unstable disks in M \ S such that

• Λ = (∪γu) ∩ (∪γs);
• dim γu + dim γs = dimM;
• each γs and γu meet in exactly one point;

Given x ∈ Λ, let γ∗(x) denote the element of Γ∗ containing x , for ∗ = s, u.
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Given disks γ, γ′ ∈ Γu, define Θγ,γ′ : γ ∩ Λ→ γ′ ∩ Λ by

Θγ,γ′(x) = γs(x) ∩ γ, (8)

and Θγ : Λ→ γ ∩ Λ by

Θγ(x) = Θγu(x),γ(x). (9)

We say that the hyperbolic product structure is measurable if the maps
Θγ,γ′ and Θγ are measurable, for all γ, γ ∈ Γu.

Λ0 ⊂ Λ is called an s-subset if Λ0 = Γs
0 ∩ Γu for some Γs

0 ⊂ Γs .

Λ0 ⊂ Λ is called a u-subset if Λ0 = Γu
0 ∩ Γs for some Γu

0 ⊂ Γu.
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A set Λ with a measurable product structure for which (Y1)-(Y5) below
hold will be called a Young structure.

(Y1) Markov: ∃ pairwise disjoint s-subsets Λ1,Λ2, · · · ⊂ Λ such that
I mγ(Λ ∩ γ) > 0 and mγ(Λ \ ∪iΛi ) ∩ γ) = 0 for all γ ∈ Γu;
I ∀i ∈ N ∃Ri ∈ N such that f Ri (Λi ) is a u-subset and for all x ∈ Λi

f Ri (γs(x)) ⊂ γs(f Ri (x)) and f Ri (γu(x)) ⊃ γu(f Ri (x)).

We define the recurrence time R : Λ→ N and the return map f R : Λ→ Λ

R|Λi
= Ri and f R |Λi

= f Ri .

The separation time for s(x , y) for x , y ∈ Λ is the smallest n ≥ 0 such that
(f R)n(x) and (f R)n(y) lie in distinct Λi ’s.
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Consider C > 0 and 0 < β < 1 constants depending only on f and Λ .

(Y2) Contraction on stable disks: for all γ ∈ Γs and x , y ∈ γ
I dist(f R(y), f R(x)) ≤ β dist(x , y);
I dist(f j(y), f j(x)) ≤ C dist(x , y), for all 1 ≤ j < R(x).

(Y3) Expansion on unstable disks: for all γ ∈ Γu, all Λi and x , y ∈ γ ∩Λi
I dist(x , y) ≤ β dist(f R(y), f R(x));
I dist(f j(y), f j(x)) ≤ C dist(f R(x), f R(y)), for all 1 ≤ j < R(x).

(Y4) Absolute continuity of Γs : for all γ, γ′ ∈ Γu, the map Θγ,γ′ is
absolutely continuous; moreover, letting ξγ,γ′ denote the density of
(Θγ,γ′)∗mγ with respect to mγ′ , we have for all x , y ∈ γ′ ∩ Λ

1

C
≤ ξγ,γ′(x) ≤ C and log

ξγ,γ′(x)

ξγ,γ′(y)
≤ Cβs(x ,y).

(Y5) Bounded distortion: ∃γ0 ∈ Γu such that for all Λi and x , y ∈ γ0 ∩ Λi

log
detDf R |Txγ0

detDf R |Tyγ0
≤ Cβs(f R(x),f R(y)).

The structure has integrable recurrence time if for some (hence all) γ ∈ Γu∫
γ∩Λ

Rdmγ <∞.
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SRB measures

Theorem 3.1

The return map f R of a Young structure has a unique ergodic SRB
measure ν. Moreover, the densities of its conditionals with respect to
Lebesgue on unstable disks are bounded above and below by constants.

Proof similar to Theorem 2.2, controlling the densities of the measures

νn =
1

n

n−1∑
j=0

(f R)j∗mγu , some γ ∈ Γu.

Theorem 3.2

If f has a Young structure Λ with integrable recurrence times, then f has a
unique ergodic SRB measure with µ(Λ) > 0.

µ =
1∑∞

j=0 ν{R > j}

∞∑
j=0

f j∗ (ν|{R > j}). (10)
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Decay of Correlations

Let H be the space of Hölder continuous functions from M to R.

Theorem 3.3 (Young 1998)

Let f have a Young structure Λ with integrable recurrence time R and µ be
the unique ergodic SRB measure of f with µ(Λ) > 0. If gcd(R) = 1, then

1 if mγ{R > n} ≤ Cn−a for some γ ∈ Γu and C > 0, a > 1, then for all
ϕ,ψ ∈ H there exists C ′ > 0 such that Corµ(ϕ,ψ ◦ f n) ≤ C ′n−a+1;

2 if mγ{R > n} ≤ Ce−cn
a

for some γ ∈ Γu and constants C , c > 0 and
0 < a ≤ 1, then for all ϕ,ψ ∈ H there exists C ′ > 0 such that
Corµ(ϕ,ψ ◦ f n) ≤ C ′e−c

′na .

If gcd{R} = k , the same conclusion holds f k .

See also the contribution of [Korepanov, Kosloff, and Melbourne 2019]1

in the present (simplified) setting of Young structures.

1allegedly based on an oral communication by Gouëzel
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Entropy formula

Consider
Juf = | det f u|,

where f u is the restriction of f to unstable disks. Note that if µ an SRB
measure, then Juf is defined µ almost everywhere.

Theorem 3.4 (Alves and Mesquita 2020)

Let f have a Young structure Λ with integrable recurrence time R and µ
be the unique ergodic SRB measure of f with µ(Λ) > 0. Then

hµ(f ) =

∫
log Juf dµ.
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Tower extension
Let f : M → M have a Young structure Λ with recurrence time
R : Λ→ N. As before, we define a tower

∆̂ =
{

(x , `) : x ∈ Λ and 0 ≤ ` < R(x)
}
,

and a tower map T̂ : ∆̂→ ∆̂ as

T̂ (x , `) =

{
(x , `+ 1), if `+ 1 < R(x);
(f R(x), 0), if `+ 1 = R(x).

The `-level of the tower is

∆̂` = {(x , `) ∈ ∆̂}.

The 0-level of the tower ∆̂0 is naturally identified with Λ. We have a
partition of ∆̂0 into subsets ∆̂0,i = Λi . This gives a partition {∆̂`,i}i on

each level `. Collecting all these sets we obtain a partition Q̂ = {∆̂`,i}`,i
of ∆̂.
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Setting
π : ∆̂ −→ M

(x , `) 7−→ f `(x)

we have f ◦ π = π ◦ T̂ .

Theorem 3.5

Let f R be the return map and T̂ the tower map of a Young structure Λ
with integrable recurrence time R. If ν is the SRB measure of f R , then

ν̂ =
1∑∞

j=0 ν{R > j}

∞∑
j=0

T̂ j
∗(ν|{R > j})

is the unique ergodic SRB measure of T̂ . Moreover, µ = π∗ν̂ is the unique
ergodic SRB measure of f with µ(Λ) > 0.

π∗ν̂ gives precisely the formula in (10).
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Quotient return map

Given γ0 ∈ Γu as in (Y5), we define the quotient map of f R on γ0 ∩ Λ

F : γ0 ∩ Λ −→ γ0 ∩ Λ
x 7−→ Θγ,γ0 ◦ f R(x),

where γ = γu(f R(x)).

Proposition 3.6

F is Gibbs-Markov with respect to the mγ0 mod 0 partition
P = {γ0 ∩ Λ1, γ0 ∩ Λ2, . . . } of γ0 ∩ Λ.

Lemma 3.7

Let F : γ0 ∩ Λ→ γ0 ∩ Λ be the quotient map of f R : Λ→ Λ.
If ν is an SRB measure of f R , then ν0 = (Θγ0)∗ν is the F -invariant
probability measure such that ν0 � mγ0 .
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Quotient tower
Fix γ0 ∈ Γu as in (Y5), and the quotient map

F : γ0 ∩ Λ→ γ0 ∩ Λ.

Consider the tower map T : ∆→ ∆ of F with recurrence time R.
Notice that for all i ≥ 1

R|γ0∩Λi
= R|Λi

= Ri .

Since γ0 ∩ Λ ⊂ Λ, it easily follows that for all ` ≥ 0 we have

∆` ⊂ ∆̂` and T = T̂ |∆. (11)

Moreover, T̂ ◦Θ = Θ ◦ T , where

Θ : ∆̂ −→ ∆
(x , `) 7−→ (Θγ0(x), `) .

(12)

Proposition 3.8

If ν̂ is the ergodic SRB measure of T̂ , then Θ∗ν̂ is the unique ergodic
T -invariant probability measure absolutely continuous with respect to mγ0 .
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Decay of correlations
We have

π ◦ T̂ = f ◦ π and Θ ◦ T̂ = T ◦Θ. (13)

Let

ν̂ be the unique ergodic SRB measure of T̂ ;
µ be the unique ergodic SRB measure of f with µ(Λ) > 0;
ν be the unique ergodic T -invariant measure such that ν � mγ0 .

By Theorem 3.5 and Proposition 3.8, we have

µ = π∗ν̂ and ν = Θ∗ν̂. (14)

Given ϕ,ψ ∈ H, define

ψ̂ = ψ ◦ π and ϕ̂ = ϕ ◦ π. (15)

Lemma 3.9

Corµ(ϕ,ψ ◦ f n) = Corν̂(ϕ̂, ψ̂ ◦ T̂ n).

It is enough to obtain estimates for Corν(ϕ̂, ψ̂ ◦ T̂ n). The idea is to reduce
to a problem on the quotient tower T : ∆→ ∆, and apply Theorem 2.9.

47



Given k ≥ 1, define

Q̂k =
k−1∨
j=0

T̂−jQ̂. (16)

Define the discretisation ϕk : ∆̂→ R of ϕ̂, setting for each Q ∈ Q̂2k

ϕk |Q = inf{ϕ̂ ◦ T̂ k(x) : x ∈ Q}. (17)

ϕk may as well be thought of as function on ∆.

Proposition 3.10

For all ϕ,ψ ∈ H and 1 ≤ k ≤ n,

Corν̂(ϕ̂, ψ̂ ◦ T̂ n) ≤Corν(ϕk , ψk ◦ T n)

+ 2‖ϕ‖0‖ψ̂ ◦ T̂ k − ψk‖1 + 2‖ψ‖0‖ϕ̂ ◦ T̂ k − ϕk‖1.

‖ ‖1 is the L1-norm with respect to the probability measure ν̂ on ∆̂.

We are left to estimate the L1-norms in Proposition 3.10.
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Define for x ∈ ∆̂ and k ≥ 1

bk(x) = #{1 ≤ j ≤ k : T̂ j(x) ∈ ∆̂0}.

Since (11) holds, we may use the same notation as for the tower T of the
quotient map F . Recall that each bk is constant on stable disks.

Lemma 3.11

For every Hölder continuous ϕ : M → R there are C > 0 and 0 < σ < 1
such that for all k ≥ 1 and x ∈ ∆ we have

|ϕ̂ ◦ T̂ k(x)− ϕk(x)| ≤ C
(
σbk (x) + σbk (T̂ k (x))

)
.
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Define Rk =
∑k−1

j=0 R ◦ F j , for each k ≥ 1

Proposition 3.12

Given 0 < σ < 1, there exists C > 0 such that for all k ≥ 1 we have∫
σbkdν ≤ C

∑
`≥k/3

mγ0{R ≥ `}+ Ck
∑
`≥1

σ`mγ0

{
R` >

k

3

}
.

As a consequence of Lemma 3.11 and Proposition 3.12.

Corollary 3.13

For every Hölder continuous ϕ : M → R and k ≥ 1

‖ϕ̂ ◦ T̂ k − ϕk‖1 ≤ C
∑
`≥k/3

mγ0{R ≥ k}+ Ck
∑
`≥1

σ`mγ0

{
R` >

k

3

}
.

This enables us to deduce the desired estimates in the polynomial and
(stretched) exponential cases.
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Entropy formula
The natural extension of the system (∆̂, T̂ , B̂, ν̂) is a new measure
preserving system (∆̂#, T̂#, B̂#, ν̂#) defined as

∆̂# = {(. . . , (x−1, l−1), (x0, l0)) ∈
∏i=0
−∞ ∆̂ | T̂ (xn, ln) = (xn+1, ln+1) ∀n < 0}

T̂#(. . . , (x−1, l−1), (x0, l0)) = (. . . , (x−1, l−1), (x0, l0), T̂ (x0, l0)).
B̂# σ-algebra generated by cylinder sets of the form

[Ak , . . . ,A0] = {(xn, ln)n≤0 ∈ ∆̂# | (xi , li ) ∈ Ai for all i = k, . . . , 0},

where Ai ∈ B̂ for all i = k , . . . , 0.
ν̂#([Ak , . . . ,A0]) := ν̂(Ak ∩ T̂−1(Ak−1) ∩ · · · ∩ T̂−k(A0)).

Similar for (∆,T ,B, ν).

Proposition (Demers, Wright, and Young 2012)

(∆̂#, B̂#, ν̂#, T̂#) ' (∆#,B#, ν#,T#)

Proposition (Rohlin 1967)

hν̂(T̂ ) = hν̂#(T̂#) and hν(T ) = hν#(T#)
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Entropy relations

Systems with Gibbs-Markov structures

Proposition 2.10

Systems with Young structures

Recall that by (14) we have

µ = π∗ν̂ and ν = Θ∗ν̂.

52



Applications
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Since the appearance of [Young 1999; Young 1998] many results have
been obtained using induced Gibbs-Markov maps or Young structures.
This led to a fairly complete theory of non-uniformly expanding maps,
partially hyperbolic attractors and Hénon attractors.

1 Existence of SRB measures [Alves, Dias, Luzzatto, and Pinheiro 2017]

2 Decay of Correlations [Benedicks and Young 2000; Gouëzel 2006;
Alves, Luzzatto, and Pinheiro 2005; Alves and Li 2015 ]

3 Large deviations [Melbourne and Nicol 2008; Melbourne 2009]

4 Statistical stability [Alves 2004; Freitas 2005; Alves, Carvalho, and
Freitas 2010b; Alves and Soufi 2012]

5 Continuity of entropy [Alves, Oliveira, and Tahzibi 2006; Alves,
Carvalho, and Freitas 2010a]

Below we present some examples of systems with discontinuities where
entropy formula can be obtained, using Theorem 2.4 or Theorem 3.4.
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Lorenz maps
{fX}X∈X , where X is the family of geometric Lorenz vector fields

fX : IX → IX transitive C 1+

local diffeomorphism;

IX = [−rX , rX ], rX ∼ 1/2;

SX = {sX ∼ 0} singular set
(unbounded derivative);

unique ergodic SRB measure.

Theorem (Alves and Mesquita 2020)

Each fX has and induced Gibbs-Markov map with exponential tail of
recurrence times.

Corollary

Entropy formula holds for the SRB measure of fX .
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Rovella maps
{fa}a∈R, with R ⊆ [0, 1] satisfying limε→0

|R∩[0,ε]|
ε = 1.

I = [−1, 1];

fa : I \ {0} → I transitive C 1+ local
diffeomorphism;

{0} is a critical/singular set;

unique ergodic SRB measure.

Theorem (Alves and Soufi 2012)

Each fa with a ∈ R has and induced Gibbs-Markov map with exponential
tail of recurrence times.

Corollary

Entropy formula holds for the SRB measure of fa with a ∈ R.
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Luzzatto-Viana maps

{fa}a∈LV , with LV ⊆ R+
≥c such that lim

ε→0

|LV ∩ [c , c + ε]|
ε

= 1.

Ia = [−a, a], a ≥ c > 0.

fa : Ia → Ia topologically mixing C 1+

local diffeomorphism;

{0,±c} is the critical/singular set;

unique ergodic SRB measure.

Theorem (Alves and Gama 2019)

Each fa with a ∈ LV has and induced Gibbs-Markov map with exponential
tail of recurrence times.

Corollary

Entropy formula holds for the unique SRB measure of fa with a ∈ LV.
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Poincaré map for geometric Lorenz attractor
{PX}X∈X , where X is the family of geometric Lorenz vector fields

PX : Σ\ΓX → Σ diffeomorphism

ΓX nearly vertical singular line;

nearly horizontal unstable direction;

nearly vertical stable direction;

unique ergodic SRB measure.

Theorem (Alves and Mesquita 2020)

Each PX has and induced Gibbs-Markov map with exponential tail of
recurrence times.

Corollary

Entropy formula holds for the SRB measure of PX .
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