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Measure



Measurable spaces

Given a set X, let P(X) be the collection of all subsets of X.
We say that A C P(X) is a o-algebra if the following conditions hold:

(1) D e A
(2) Ac A = X\Aec A
(3) A, A, e A = UX A € A

(X,.A) is called a measurable space and the sets in A are called measurable sets.

Example 1.1
A =P(X) is a o-algebra.

Exercise 1.2

Show that

Q@ ABeAd = AUBe A AnBeAand A\ Be A;
Q AL Ay, e A = N A €A




Borel sets

Given any family F C P(X), the intersection of all o-algebras containing F T is a
o-algebra, called the o-algebra generated by F.

In case X is a topological space, the o-algebra Bx generated by the open sets is
called the Borel o-algebra on X, and its elements are called Borel sets.

Exercise 1.3

Show that
@ Bg contains the family Z of all intervals in R;
@ the o-algebra generated by Z coincides with Bg.

Considering R with the usual structure of topological space, it is a non-obvious
fact that

Bg # P(R). (1)

t there exists at least one: P(X).



Measures

Given a o-algebra A C P(X), we say that u: A — [0,400] is a measure if
Q@ u(0)=0;
Q if Ai, A, ... are pairwise disjoint sets in A, then

( U Ai) = Z 11(A;).- (2)

We say that p is a probability measure if u(X) = 1. We refer to (X, A, u) as
measure space or a probability measure space, in case p is a probability measure.
Exercise 1.4
Show that
@ property (2) holds for finite disjoint unions;
Q given A, B e A,
ACB = p(A) < u(B) (3)
AC B and u(A)<oco = u(B\ A)=u(B)— u(A). (4)

We say that a property about the elements in X holds y almost everywhere (a.e.)
if the set N for which the property does not hold has p(N) = 0.



Example 1.5 (Counting measure)
Given a set X, consider v : P(X) — [0, +00] defined as

V(A) = {#A, if A is finite;

400, otherwise.

v defines a measure, called the counting measure in X.

Example 1.6 (Dirac measure)

Given a set X and x € X, consider d, : P(X) — [0, +oc0] defined as

5u(A) = 1, ifx €A
0o, ifx ¢ A

Ox defines a probability measure, called the Dirac measure at x.

Exercise 1.7
Show that v and d, in the previous examples are measures.




Lebesgue measure

Let Z be the family of subintervals of an interval J C R. Though Z is not a
o-algebra, we have a notion of length ¢ : T — [0, 4+00], defined for | € T as

- fgm0-0- 412

Theorem 1.8
There exists a unique measure X : By — [0, +00] such that X(I) = ¢(1), VI € T.

A is called the Lebesgue measure on J. See e.g. [Barra 2003] or [Halmos 1950] for
a proof of Theorem 1.8. Standard proofs give that, for all A € 5,

AA)=infe> A(l) thyby---€Tand AC | o g (5)
n=1 n>1
Remark 1.9

Similar conclusions hold in the circle S, with length replaced by arc length.
Lebesgue measure can actually be introduced in any R” (or any Riemannian
manifold), generalizing our intuitive notion of length, area, volume...




Exercise 1.10

© Show that Lebesgue measure on R is translation invariant, i.e.
A(x+ B) = X(B), forall B € Bg.
@ Show that there is no measure 1: P(R) — [0, +00] such that

#((0,1]) =1 and pu(x+ A) = pu(A), forall ACR.

Hint: Arguing by contradiction, consider the equivalence relation ~ in R given by
x ~y <= x—y € Q. Define a set A C (0, 1] choosing a single element from each equivalence class.
Denoting by R the set of rational numbers in (—1, 1), show that the sets z + A, with z € R, are
pairwise disjoint and
(0,1)c J@Ez+A) c(-1,2.
zZER

Deduce that 1 < 3> pu(z + A) < 3, which is not possible.

The previous exercise shows that there is no reasonable extension of Lebesgue
measure to P(R); recall (1). Standard proofs of Theorem 1.8 give that A can
actually be extended to a o-algebra M such that

Br C M C P(R).



Integration
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Measurable functions
Let (X,.A) me a measurable space. We say that f : X — R is measurable if

fY(B) € A, VB € Bp.

Exercise 2.1

Show that the characteristic function x4 of any measurable set A € A is
measurable.

Recall that
xa(x) = {

Exercise 2.2

Show that if c € R and f,g: X — R are measurable functions, then ¢, cf, |f],
f g, fg, f/g (when it makes sense), max{f, g} and min{f, g} are measurable.

1, ifxeA
0, ifx¢A.

4

Exercise 2.3

Show that if X is a topological space and A is the o-algebra of Borel sets in X,
then any continuous function f : X — R is measurable.
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Integral of a simple function

Let (X, A, ) be a measure space.
We say that ¢ : X — [0, 400) is a simple function, if it can be written as

Y= Z AiXA;» (6)
i=1

with A; € A and a; > 0. We define the integral of the simple function ¢ as

/sﬁdﬂ = aiu(A),
i=1

with the convention that 0- oo = 0.

Exercise 2.4
Show that the value of [ ¢du does not depend on the representation of ¢ in (6). }

We have in particular for all A€ A

/XAdu = pu(A). (7)
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Integral of a nonnegative function

We define the integral of a nonnegative measurable function f : X — [0, +00) as

/fd,u = sup {/apd,u: o simple function and ¢ < f} .

It follows that if f and g are nonnegative measurable functions, then

f<g = /fdug/gdu.

Exercise 2.5

Show that if f : X — [0, +00) is a measurable function, then

/fduzO <~ =0, pae

13



Integral of a measurable function
Given a measurable function f : X — R, set
fT =max{f,0} and f~ = max{—f,0}.
It follows that f™ and f~ are measurable functions (recall Exercise 2.2),
f=f"—f" and |fl=Ff"T+f".
We say that f is integrable if

/f*du<oo and /f*d,u<oo.
In case at least one of the two integrals above is finite, we define the integral of f

/fdu:/f+du—/f_du.

Given A € A, we say that a measurable function f : X — R is integrable on A if
fxa is integrable. We define the integral of  in A

/fdu:/fx,qd,u.
A

14



Invariant measures
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Invariant measures

Let (X, A, ) be a measure space.
We say that f: X — X is measurable if

f1(A)e A, forallAc A

We say that a measurable function f preserves p (or yu is f-invariant) if
WfH(A)) = w(A), VA€ A

Defining the push-forward f.u as
f(A) = u(f71(A), VA€ A,

we have

‘/1 is f-invariant <= fou = .

(8)

(9)
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Example 3.1 (Doubling map)
Let f: [0,1] — [0,1] be given by
f(x) =2x (mod 1).
f preserves the Lebesgue measure X on the Borel sets of J = [0, 1].

In fact, let Z be the family of subintervals of J. Given /| € Z, we have that f (/)

is made of two disjoint intervals /; and /, with

1
A(h) = Ak) = =A(1).
Therefore 2

EA) = MF1 (1) = Al U b) = A(h) + A(h) = %A(I) + %A(I) — (D).

This shows that A|z = f,\|z, and so X and £\ are both extensions of A|z = ¢ to
the Borel sets in [0,1]. It follows from Theorem 1.8 that LA = A.

1

0 I, 12 L 1
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Example 3.2 (Rotation)
Consider the circle St = {z € C: |z| = 1} = {€*™" : § € R} and, for a € R, the
rotation R.: S st
Q2mi0 | g2mi(6+a)
Considering the Lebesgue measure \ on the Borel sets of S and Z the family of

arcs in ST, we clearly have
Ro A1) = MR (1) = \(1), VI€T.

(63

This shows that A and R, .\ are both extensions of A|z to the Borel sets of St
It follows from Theorem 1.8 (see also Remark 1.9) that Ry, A = .

Exercise 3.3
Let f: [0,1] — [0, 1] be given by

o ={ 1 18

Show that there is no f-invariant probability measure on the Borel sets of [0, 1].
Hint: Arguing by contradiction, show that the intervals (1/2", 1/2"71] must all have measure zero, for n > 1.

Deduce that the measure of {0} is equal to 1. Obtain a contradiction.
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Weak* topology

Let P(X) denote the set of probability measures on the Borel o-algebra Bx of a

compact metric space X. The weak* topology on P(X) is characterised as
follows: a sequence (pn), in P(X) converges to u € P(X) if

/godun — /god,u, for all continuous ¢: X — R.

Lemma 3.4

P(X) is a compact metric space.

We associate to a measurable map f: X — X a new map
fo: P(X) — P(X),
assigning to each p € P(X) the push-forward f.p € P(X); recall (8).

Lemma 3.5
f continuous — f, continuous.

See e.g. [Viana and Oliveira 2016] for a proof of the two lemmas above.
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Krylov-Bogolyubov Theorem

Let X be a compact metric space and f: X — X be a continuous map.
Then f has some invariant probability measure.

Proof. Given any p € P(X) (e.g. a Dirac measure), define the sequence in P(X),
1 n—1 )
Mn = n ZO flp.
J:

We know by Lemma 3.4 that P(X) is a compact metric space. Thus, (un)s has a
subsequence (fin, )k converging to some pg € P(X). We have for all k

1 & 1%, 1 1, 1 1,
fetme = — > A== fHu——pt — = pin, — —p+ —fp.
M =5 " = ne Nk ne Nk

Together with the continuity of f., given by Lemma 3.5, this yields
f, lim f, li 1 + 1 .
<o = lim fiu, = lim o — — —f, = Ug.
Ho Paties Hny PRI Hony nk'u nK H Ho

Hence, pg is an f-invariant probability measure; recall (9). [ ]



Poincaré Recurrence Theorem

Let f preserve a probability measure . If A is a measurable set, then for p almost
every x € A, there are infinitely many n € N for which f"(x) € A.

Proof. Set
A" ={x € A: f"(x) € A for infinitely many n's},
We need to show that
H(AT) = p(A).
Set for each kK > 0,
By ={x€A: f(x) € Aand F*""(x) ¢ A, forall n>1}.

Note that
A\A" = [ ] B..
k>0
It is enough to show that
’ By is measurable and p(Bk) =0, for all k > 0.‘ (10)

We have
Be = Anf KA N DX\ AN DX\ AN -

and so By is measurable. 01



For all k > 0 and n > 1, we have
f_n(Bk) N By = 0. (11)

In fact, if x € f~"(By), then f*¥"(x) € A, and so x ¢ Bk. It follows from (11)
that
F(mM (B N F™(By) = 0

for all n > 1 and m > 0. Therefore,
F(B)NF~™(Bk) =10
if n# m. It follows that

1> .“(Un>1 ZH Bk

n>1
Since f preserves 11, we have pu(f~"(By)) = p(Bx) for all n > 1, and so

1(B) =0, forall k> 0.
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Ergodicity
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Ergodic measures
Poincaré Recurrence Theorem gives no information on the asymptotic frequency

im #{0<j < n: fi(x) € A}.

n— oo n

(12)

Does this limit exist? Does it depend on x? (almost everywhere...)
The limit clearly depends on x if there is A C X such that

1(A) > 0 WX\ A) >0
{f(A)CA and {f(X\A)CX\A (13)

In such case

#{0 < j < n: fi(x) € A} _

n

xXEA = 1, VneN.

#{0 <j < n: fi(x) € A}
n
The nonexistence of a set A as in (13) can be translated as

fLA)=A = u(A)=0 or u(X\A) =0.

If this condition holds, we say that pu is ergodic for f. Ergodicity is then a
necessary condition for the limit in (12) not depend on x. It is also sufficient...

xeEX\A =

=0, VneN.
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Birkhoff Ergodic Theorem

If f : X — X preserves a probability measure i and ¢ : X — R is integrable, then

there is * : X — R integrable such that, for i almost every x € X,
n—1

1 )
.1 ; _
lim_ nz;so(f () = ¢"(x).
J:
Moreover, if i is ergodic, then
P (x) = / edu,

for p almost every x € X.

See e.g. [Viana and Oliveira 2016] or [Walters 1982] for a proof.
Taking ¢ = xa we get

n—o0 n

1 ; ) 0<j<n: filx)e A
i b3 o i) = iy #OSIZ A )
=0

Hence, this limit exists for u almost every x € X and, if p is ergodic, it coincides
with [ xadu = p(A); recall (7).



Circle rotations

Consider the circle
St={zeC:|z| =1} = {9 € R}
and, for a € R, the rotation
R,: St — St
Q270 g2mi(f+a)
Theorem 4.1

Q@ o€ Q = every orbit is periodic;
Q@ a € R\Q = every orbit is dense;

See [Rechtman 2021] for a proof.
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Ergodicity of rotations

We have seen in Example 3.3 that R,, preserves Lebesgue measure X in S!.

Exercise 4.2
Show that if & € Q, then A is not ergodic for R,,.

Theorem 4.3
A is ergodic for Ry, iff « € R\ Q.

Proof. The “only if" part corresponds to Exercise 4.2. Assume now that
a € R\ Q and consider a Borel set A C S* such that

R7Y(A)=A and X(A)>0.

We need to show that
AA) = 1t

Fix an arbitrary 0 < & < 1.

tHere we assume A normalised, i.e. A(S') =1,

27



Claim 1. There is an arc | with A(I) < € such that

AMANT)
Sy ST

Actually, it follows from (5) that there exists a sequence of arcs Iy, b, -+ C St

such that A C Up>1/, and

D Al) < 1 A(A)

1—¢
n>1
It is no restriction to assume these arcs pairwise disjoint and each of length less

than . Since
SOAMANL) =MA) = (1—2) > Al

n>1 n>1

we must have A(AN 1) > (1 —e)A(/,) for some n > 1. Take | = I,.

28



Claim 2. There exist integers ny, ..., ngx > 1 such that the sets R™ (1), ..., Ri(/)
are pairwise disjoint and

MU R (1) > 1 — 2e.

Since the orbits of the endpoints of / are dense in S, by Theorem 4.1, these
integers may be chosen.

29



Now, since R, is invertible with a measurable inverse, R, preserves A and A is
invariant, from Claim 1 we get for all 1 <7 < k

AANT) > (1-)A()

>
4
AR (ANT) = (1= )ARY (1))
4
>

AMANRY() = (L= e)ARI()) (14)

Since the sets RI(/), ..., R () are pairwise disjoint

A(A) > A(Amuth"f(/)) = A(u,-k (ANRLD)

—~
=

I
.M“

/\(AﬂR"'(/) (1-¢) Z)\ (R (1

i=1

Claim 2
(1-MULRE(N)) = (1—e)(1 —2e)

Since 0 < € < 1 is arbitrary, we get A\(A) = 1.
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Ergodicity of the doubling map
We have seen in Example 3.1 that the doubling map f: [0,1] — [0, 1], given by

f(x)=2x (mod 1),
preserves the Lebesgue measure A on the Borel sets of [0, 1].

Theorem 4.4
A is ergodic for the doubling map f. J

Proof. Let A be a Borel set in [0, 1] such that f~1(A) = A. We need to show that
AA)=0 or AA)=1. (15)

Consider the dyadic intervals Ey = [0,1/2] and E; = [1/2,1]. Since f~1(A) = A,
then

AMANE) =MANE).
It follows that for i = 0,1

MANE)

AA) = MANE) + AMANE) =2MANE) = NE)

(16)
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Using that f~"(A) = A, we similarly prove that for any dyadic interval
[k -1 k

Eop= |2 K
k,n on ' on

)

}, n>1, 1<k<2m,
we have
MAN Exn) = MA)A(Ek,n)
If E = Uk nEk,n is a disjoint union of dyadic intervals, then
MANE) ZAAﬂEk,, Z/\ A(E.n) = MA)N(E).

Now, consider an arbltrary e > 0.

Exercise 4.5
Given any interval | C [0,1], there is a disjoint union of dyadic intervals Uy ,E »
such that | C Uy nEx n and MUk nExn \ 1) < e.

From (5) and Exercise 4.5, there is a disjoint union E of dyadic intervals such that
ACE and ME\A)<2e.
Hence ,_if—
0 < A(A) — A(A)? = A(A) — MANE) +A(A)NE) — A(A)?

= A(A) ME) — MA)] < ME) — MA) 2 A(E\ A) < 2.

Since € > 0 is arbitrary, we get A\(A) — A(A)? =0, and so (15) holds. |
32



Normal numbers

A number in x € [0,1] is said to be normal (in base 2), if the digits 0 and 1 have
the same asymptotic frequency in the binary expansion of x.

Theorem 4.6 (Borel) J

Lebesgue almost every x € [0,1] is normal.

We are going to prove this result using Birkhoff.

With no loss of generality, we may exclude (the countable set of) points in [0,1]
having more than one binary expansion.

Every countable set in the real line has zero Lebesgue measure.

Exercise 4.7 J

tThis is a simplified version of the definition, which is more restrictive.
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Translating normality

Consider the binary expansion of a number x € [0, 1]:

x=0.a1a233..., a; €{0,1}.

The asymptotic frequency of a digit d € {0,1} is

lim #{1<j<n:a=d}

n—o00 n

Does this limit exist?

The number x is normal if

im #{1§j§niaj:d}:1

n—oo n 2 ’
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Proof of Theorem 4.6
Considering x € [0, 1] in the binary expansion,
x=0.a1aa3 - = 2x = a1.a233....
Therefore
2x (mod 1) =0.a33a5. ..
Letting f be the doubling map, we have for all j > 1 and d =0,1
aj = d & fj_l(X) € Ey.
0.0... 0.1...

0 Ey 1/2 Ey 1

Hence )
#{1<j<n:a=d} #{0<j<n: Fx)€Eq}
n n '
Since the Lebesgue measure \ is ergodic for f, by Theorem 4.4, it follows from
Birkhoff Ergodic Theorem that, for A almost every x € [0, 1],

0<j<n:fi(x)eE
#0=J - b€} _ ZXEdoff — [ xe,d = AEd) = 5
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