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1
Numbers

Throughout this text, we will assume the axioms of Zermelo-Fraenkel12 set theory (see [6]).
Some of these axioms are for example the following: the Axiom of extensionality says that
two sets are equal if they have the same elements. In particular a set B is called a subset
of A, denoted by B ⊆ A if any element of B is also an element of A. The Axiom schema
of specification says that if A is a set, and φ is any property which might characterise the
elements a of A, then there exists a subset B of A whose elements are precisely those elements
a ∈ A that satisfy property φ, i.e. the set

B = {a ∈ A | φ(a) is true } (1.1)

exists. In particular this also implies that the empty set exists, namely if A is any set and
φ is a property such that φ(a) is always false, then B formed as above does not contain any
elements and will be denoted by ∅. The Axiom of union: says that for any set (of sets) F
there exists a set A containing every set that is a member of some member of F , i.e.

⋃
B∈F B

exists. The Axiom of power set says that for any set A there exists a set P(A) that consists
of all subsets of A. 3

Formally, the cartesian product A×B of two sets is defined as the subset of P(P(A∪B))
consisting of the elements of the form {{a}, {a, b}} with a ∈ A and b ∈ B, i.e.

A×B = {{{a}, {a, b}} | a ∈ A, b ∈ B}. (1.2)
1Ernst Zermelo (1871-1953), Biography: MacTutor
2Abraham Fraenkel (1891-1965), Biography: MacTutor
3These axioms are necessary to avoid certain paradoxes, like Russel’s paradox, which says that there does

not exist the set of all sets, because if such a set would exist, call it Ω, then it would be an element of itself.
Now this self-reference causes a paradox, because if we consider the subset R = {A ∈ Ω : A 6∈ A}, then this
would be also a set and we would have two options R ∈ R or R 6∈ R. In the first case, i.e. R ∈ R, the defining
proposition of R says that R 6∈ R which is a contradiction. On the other hand the latter condition, R 6∈ R
just means that R satisfies the defining proposition of R, i.e. R ∈ R, which is a contradiction again. Thus
either of these options leads to a contradiction and cannot be fulfilled.

2

https://mathshistory.st-andrews.ac.uk/Biographies/Zermelo/
https://mathshistory.st-andrews.ac.uk/Biographies/Fraenkel/
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This construction exists thanks to our axioms. Of course we will write elements of A×B in
the familiar way (a, b) instead of {{a}, {a, b}}.

A relation R between two sets A and B is a subset of their cartesian product A × B,
i.e. R ⊆ A × B. The interpretation is that two elements a ∈ A and b ∈ B are in relation
if and only if the pair (a, b) belongs to R, i.e. (a, b) ∈ R. Usually we will use a symbol to
denote that two elements are in relation. For instance considering the identity relation on a
set IdX = {(x, x) : x ∈ X}, we would usually use the symbol “=" to indicate this occurrence,
i.e. a = b if and only if (a, b) ∈ IdX . The inverse relation of a relation R ⊆ A × B is the
relation R−1 = {(b, a) ∈ B ×A | (a, b) ∈ R}.

Relations can be composed, i.e. if R ⊆ A × B is a relation and S ⊆ B × C is a relation
between sets, then S ◦R ⊆ A× C is a relation defined as

S ◦R = {(a, c) ∈ A× C | ∃b ∈ B : (a, b) ∈ R, (b, c) ∈ S.}.

In particular R−1 ◦R = IdA and R ◦R−1 = IdB.

A function f : A → B between two sets A and B is defined as a relation R ⊆ A × B
such that for any a ∈ A there exists exactly one element (a, b) ∈ R with b ∈ B. The familiar
notation is that one writes f(a) = b if (a, b) ∈ R. Moreover R is called the graph of f . A
function f is called injective if whenever f(a) = f(a′), then a = a′. Note that the defining
condition of a function, i.e. for any a ∈ A there exists exactly one (a, b) ∈ R does not say
that f is injective. It only says that there is no ambiguity in defining the value of f(a). A
function f is surjective if for every b ∈ B there exists a ∈ A with f(a) = b. In general, there
are functions that are injective, but not surjective and there are functions that are surjective,
but not injective. A bijective function (or bijective map or bijection) is a function that is
injective and surjective. In this case for every b ∈ B there exists one and only one a ∈ A with
f(a) = b. Hence we can define the inverse function of f by f−1(b) = a if and only if f(a) = b.
This means, that if R is the graph of f , then R−1 is the graph of f−1.

Let R ⊆ X ×X be a relation on a set X. Then R is called

• reflexive if (a, a) ∈ R for all a ∈ X;

• symmetric if (a, b) ∈ R implies (b, a) ∈ R;

• anti-symmetric if (a, b) ∈ R and (b, a) ∈ R imply a = b;

• transitive if (a, b) ∈ R and (b, c) ∈ R imply (a, c) ∈ R.

For example the identity relation IdX is a reflexive, transitive and symmetric relation. A
reflexive and transitive relation on a set X is called an equivalence relations if it is symmetric
and it is called a partial order (or partial ordering) if it is anti-symmetric. Such relations are
usually denoted by symbols. We will recall equivalence relations later, but look first to partial
orders.

Let R ⊆ X×X be a partial ordering. We usually use a symbol to denote that two elements
are in relation, for example x ≤ y if and only if (x, y) ∈ R. In this case we say that x an y
are comparable. The partial ordering ≤ is said to be a total ordering if every two elements
are comparable, that means we have x ≤ y or y ≤ x and using the set R this means (x, y) ∈ R
or (y, x) ∈ R. A minimum (with respect to ≤) of a subset U ⊆ X is an element x0 ∈ U such
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that x0 ≤ y for any y ∈ U . A total ordering ≤ on a set X is a well-ordering if and only if
every non-empty subset of X has a least element.

The usual order of the natural numbers is a well-ordering. This is one of the key-features
of the natural numbers and we will revise the construction of the natural numbers in this
section. The reader is of course well aware of the basic properties of the natural numbers and
might skip this section. However, we want to illustrate the foundations of algebra given by set
theory and logic. The following quote is attributed to the mathematician Leopold Kronecker4:

“Die natürlichen Zahlen hat Gott gemacht, alles übrige ist Menschenwerk."

which one could translated freely as “God made the natural numbers. Everything else is the
work of man”. The role of “god" will be played by the axioms of set theory in order to define the
natural numbers N : The Axiom of infinity says that there exists an inductive set, i.e. there
exists a set X such that if x ∈ X, then X contains also the “successor" S(x) := x∪ {x} ∈ X.
This axiom says basically that the natural numbers N exist as there exists a set that contains
all the sets obtained by taking their successors, starting with A = ∅ = {}:

“0” = ∅
“1” = S(∅) = ∅ ∪ {∅} = {∅}
“2” = S(S(∅)) = {∅} ∪ {{∅}} = {∅, {∅}}
“3” = S(S(S(∅))) = {∅, {∅}} ∪ {{∅, {∅}}} = {∅, {∅}, {{∅, {∅}}}}
“4” = · · ·

Another axiomatic (but equivalent) way to define the natural numbers is through the

Definition 1.1 (Peano axioms) There exist a set N, an injective function S : N→ N and
an element 0 ∈ N, such that

1. 0 6∈ Im(S) and

2. if M ⊆ N is a subset containing 0 and [n ∈M ⇒ S(n) ∈M ], then M = N.

Let us denote N+ = Im(S). Then the second property tells us that N = {0} ∪ N+. Hence,
each natural number is either 0 or the successor of another (previous) natural number. With
these axioms we define

1 := S(0), 2 := S(1), 3 := S(2), . . . n+ 1 := S(n), ∀n ∈ N.

The second property implies the usual induction principle: suppose P (n) is a logical propo-
sition for any n ∈ N, then P (n) is true for all n ∈ N if it is true for the first proposition
P (0) and whenever P (n) is true for some n ∈ N, then P (n + 1) is true. Using the second
property of the Peano axioms we can form the set M = {n | P (n) is true}. Thus if P (0) is
true and whenever P (n) is true then P (n + 1) is true means that 0 ∈ M and for all n ∈ M
also S(n) = n+ 1 ∈M .

As we know, the natural numbers come with an addition, a multiplication and a well-
ordering. The addition can be defined recursively, namely if n and m are numbers and m =

4Leopold Kronecker ( 1823-1891), Biography: MacTutor. The citation is taken from a memorial tribute to
Kronecker by H.Weber published in the Mathematische Annalen from 1893; see [13].

https://mathshistory.st-andrews.ac.uk/Biographies/Kronecker/
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m′+1, then n+m = (n+m′)+1, meaning that we only need to add 1 recursively. Taking the
successor of a number should mean “adding 1" to that number. Hence intuitively it is clear
how to proceed, but in order to define the recursion properly, we will prove first the so-called
Recursion Theorem in order to define addition as a function from N to N (see [6, Section
12]):

Theorem 1.2 (Recursion Theorem) Let X be any set, f : X → X a function and a ∈ X
an element. Then there exists a function fa : N→ X that satisfies fa(0) = a and fa(S(n)) =
f(fa(n)), for all n ∈ N+.

Proof: Recall that a function fa : N → X is a subset R ⊆ N × X such that for any n ∈ N
there exists exactly one x ∈ X with (n, x) ∈ R and fa(n) = x. Thus consider the following
set of subsets of N×X:

Ω = {U ⊆ N×X | (0, a) ∈ U and if (n, x) ∈ U then (S(n), f(x)) ∈ U} .

Since N × X ∈ Ω, Ω is not empty. Consider the intersection of all subsets of Ω, i.e. R =⋂
{U | U ∈ Ω}. It is clear that R ∈ Ω and that R is the minimum of Ω. Our aim will be

to prove that R actually defines the function we are looking for. To do so we will use the
induction principle of N and define

M = {n ∈ N | there exists precisely one x ∈ X such that (n, x) ∈ R}.

By definition, (0, a) ∈ R. Suppose there exists x ∈ X with x 6= a and (0, x) ∈ R. We claim
that R′ := R \ {(0, x)} ∈ Ω, which would contradict the minimality of R. Clearly (0, a) ∈ R′
and if (n, y) ∈ R′ ⊆ R, then (S(n), f(y)) ∈ R. Since S(n) 6= 0, (S(n), f(y)) ∈ R′. Hence
R′ ∈ Ω would be properly contained in R, which is a contradiction. Hence a ∈ X is the only
element such that (0, a) ∈ R and therefore, 0 ∈M .

Let n ∈M . Then there exists a unique x ∈ X with (n, x) ∈ R. By definition, (S(n), f(x)) ∈
R. Suppose that there exists y ∈ X with (S(n), y) ∈ R and y 6= f(x). Consider R′ =
R \ {(S(n), y)}. Clearly (0, a) ∈ R′. If (m, z) ∈ R′, then (S(m), f(z)) ∈ R. Suppose
(S(m), f(z)) = (S(n), y), then m = n as S is injective and f(z) = y. But then by the
uniqueness of (n, x) ∈ R also (m, z) = (n, x), z = x and finally y = f(z) = f(x), which is a
contradiction. Thus (S(m), f(z)) ∈ R′ and R′ ∈ Ω, which contradicts the minimality of R.
Hence (S(n), f(x)) ∈ R is unique and S(n) ∈M . By the induction principle, M = N.

Now we can define fa : N→ X by fa(0) = a and fa(n) = x if and only if (n, x) ∈ R. By
construction, if fa(n) = x, then (S(n), f(x)) ∈ R and hence fa(S(n)) = f(x) = f(fa(n)).

�

The constructed function fa has the property that

fa(1) = f(fa(0)) = f(a), fa(2) = f(fa(1)) = f(f(a)), and so on.

Applied to X = N and the function f = S, we obtain for all m ∈ N a function fm : N → N
defined by fm(0) = m and fm(S(n)) = S(fm(n)), for all n ∈ N. Note that f0 = idN, because
if

Me = {n ∈ N | f0(n) = n},
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then 0 ∈ Me and if n ∈ Me, then f0(S(n)) = S(f0(n)) = S(n). Hence S(n) ∈ Me. By the
induction principle, Me = N and f0 = idN. In the same spirit we can show that the set

M1 = {n ∈ N | ∀m ∈ N : fS(m)(n) = fm(S(n))}

is N, because for any m ∈ N: fm(S(0)) = S(fm(0)) = S(m) = fS(m)(0), i.e. 0 ∈ M1.
If n ∈ M1 and m ∈ N, then fm(S(S(n))) = S(fm(S(n))) = S(fS(m)(n)) = fS(m)(S(n)).
Similarly, fm(n) = fn(m), for all n,m ∈ N, by considering

Mc = {n ∈ N | ∀m ∈ N : fn(m) = fm(n)}.

We have f0(m) = m = fm(0) and hence 0 ∈ Mc. If n ∈ Mc then fS(n)(m) = fn(S(m)) =
fS(m)(n) = fm(S(n)), for all m ∈ N. Hence S(n) ∈Mc and we have shown that Mc = N, i.e.
fn(m) = fm(n) for all n,m ∈ N.

This allows us now to define a binary operation on N as

+ : N× N −→ N, (n,m) 7→ fm(n) =: n+m.

In particular, + is commutative, since fn(m) = fm(n) and 0 is the identity element as
f0 = idN, i.e. for all n,m ∈ N:

0 +m = m

S(n) +m := S(n+m)

Note that S(n) = S(n+ 0) = n+S(0) = n+ 1 shows that the successor of n is precisely n+ 1.
The associativity follows again by an application of the induction principle (see exercise 5).

Moreover, for all n,m, k ∈ N: if n+m = n+ k, then m = k. Again this can be proven by
the induction principal, just consider the set

M = {n ∈ N | ∀m, k ∈ N : if n+m = n+ k then m = k}

and note that 0 ∈M as 0 is the neutral element of + and if n ∈M , then S(n)+m = S(n)+k
implies S(n+m) = S(n+ k) and by injectivity of S, n+m = n+ k. Since n ∈ M we must
have m = k. Thus S(n) ∈M . By the induction principle N = M . This means that (N,+, 0)
is what we will call a cancelative commuative monoid.

Definition 1.3 Define an ordering on N as follows:

∀n,m ∈ N : n ≤ m if and only if there exists k ∈ N such that n+ k = m. (1.3)

It is clear that ≤ is reflexive, since n = n+ 0 for all n ∈ N and also transitive, since + is
associative. For the anti-symmetry, let n ≤ m and m ≤ n. Then there are k, l ∈ N such that
m = n+ k and n = m+ l. But then n+ (k + l) = n = n+ 0 and by cancellation, k + l = 0.
If k 6= 0, then k = S(k′), for some k′ ∈ N and hence S(k′ + l) = S(k′) + l = k + l = 0,
contradicting 0 6∈ Im(S). Thus k = 0 and m = n.

To prove that ≤ is a total order we apply again the induction principle to the set M =
{n ∈ N | ∀m ∈ N : n ≤ m or m ≤ n}, where we have to use the fact that if n ≤ m ≤ S(n),
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then n = m or m = S(n). Finally, to prove the well-ordering, let U ⊆ N be a subset of N.
Suppose U does not have a minimum. Then consider the set of all lower bounds of U , i.e.

M = {n ∈ N | ∀x ∈ U : n < x}.

Since by hypothesis U does not have a minimum, 0 ∈ M . Let n ∈ M . Then for all x ∈ U ,
if x ≤ S(n), then n < x ≤ S(n) and hence x = S(n). Thus if S(n) 6∈ M , then S(n) would
be a minimum of U , which is a contradction. Hence S(n) ∈ M . By the induction principle,
M = N. But then U = ∅ and we conclude that any non-empty subset of N must have a
minimum.

Note also that ≤ is monotone with respect to +, i.e. if n ≤ m, then for all k ∈ N also
n + k ≤ m + k. This means that (N,+) is an ordered monoid. We just proved the following
Theorem:

Theorem 1.4 The natural numbers (N,+) with the total ordering ≤ is a commutative can-
cellative well-ordered monoid.

Let P (n) be a logical proposition, for all n ∈ N. In order to prove that all propositions P (n)
are true, the complete induction requires that P (0) is true and that whenever n ≥ 0 and P (m)
is true for all m ≤ n, then also P (n+1) is true. The complete induction is also a consequence
of the second property of the Peano Axioms, by settingM = {n | P (m) is true for all m ≤ n},
because under the hypothesis of complete induction, 0 ∈ M and n ∈ M implies S(n) ∈ M ,
shows M = N.

The idea of a “finite" and “infinite" set can be made precise through the total ordering of
the natural numbers. Intuitively it is clear what a finite set is, namely a set whose elements
can be “enumerated" in “finitely many" steps. More precisely, two sets are called equivalent
(or isomorphic) if there exists a bijection between them. For a number n ∈ N we say that a
set X is a finite set of cardinality n if it is equivalent to the interval

[0, n[= {m ∈ N : m < n}.

A set X that is not equivalent to a set of the form [0, n[ is called an infinite set. Note that
for n = 0, the subset [0, 0[= ∅ is empty and hence a set X has cardinality 0 if and only if
it is empty. We will denote the cardinality of a finite set X by |X| = n. If X is infinite we
will write |X| = ∞. Let n ∈ N. Every proper subset X of [0, n[ is a finite set of cardinality
|X| < n. We can prove this by induction. If n = 0, then [0, 0[ is empty and has no proper
subset, so assume n = 1. Then [0, 1[= {0} and X can only be the empty set, which has
cardinality 0 ≤ 1. Let n ≥ 0 and suppose we have shown that any proper subset of [0, n[ is
finite. If X ⊂ [0, n+ 1[, then either X ⊆ [0, n[ or n+ 1 ∈ X. In the first case, by induction,
X is finite of cardinality at most n. 5 In the latter case, there must exists k ≤ n such that
k 6∈ X. Define a map f : X → [0, n[ by f(x) = x for all x 6= n+ 1 andf(n+ 1) = k. Then X
and the image f(X) are equivalent. Since f(X) ⊆ [0, n[ it is finite of cardinality at most n.

The usual multiplication is again defined by the recursion theorem. For a given n ∈ N let
fn : N→ N as above, defined by fn(m) = n+m. For a = 0, the recursion theorem says that

5if X is not a proper subset of [0, n[, then it is equal to [0, n[ and finite by definition.
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there exists a map gn := (fn)0 : N → N such that gn(0) = 0 and gn(S(m)) = fn(gn(m)) =
n+ gn(m), for all m ∈ N. This allows us now to define a multiplication on N as

· : N× N −→ N, (n,m) 7→ n ·m := gn(m).

In particular, for all n,m ∈ N:

n · 0 = gn(0) = 0

n · S(m) := gn(S(m)) = n+ gn(m) = n+ n ·m

As an exercise, one checks that · is commutative, associative and distributes over +. Then it
follows that 1 · n = n · 1 = n+ n · 0 = n holds for all n ∈ N.

Lemma 1.5 Let n,m ∈ N and k ∈ N+. Then

(i) n ·m = 0 if and only if n = 0 or m = 0.

(ii) n = m if and only if n · k = m · k.

(iii) n < m if and only if n · k < m · k.

(iv) n ·m = 1 if and only if n = m = 1.

Proof: (i) Let n > 0 and m > 0, then n = S(n′) and m = S(m′) for n′,m′ ∈ N. Thus

n ·m = n · S(m′) = n+ S(n′) ·m′ = n+m′ + n′ ·m′ > 0,

because n > 0 and addition preserves the order. If n = 0 o or m = 0, then n ·m = 0.
(ii) Suppose n · k = n · m. Without loss of generality we can assume n ≤ m. Then

m = n + l for some l ∈ N. Hence, by distributivity, n · k = m · k = n · k + l · k and by the
cancellation property of the addition, l · k = 0. Since k 6= 0, by (i), l = 0 and n = m.

(iii) If n < m, then there exists l > 0 with m = n+ l. Thus, m · k = n · k + l · k. By (i),
l · k 6= 0. Thus n · k < m · k. Conversely, if n · k < m · k and n ≥ m then n = m+ l for some
l > 0 and

m · k + l · k = n · k < m · k,

which implies l · k = 0 and hence by (i), l = 0 as k > 0. But then n = m and n · k = m · k, a
contradiction. Thus n < m.

(iv) Clearly 1 · 1 = 1 + 1 · 0 = 1. Conversely, if n ·m = 1, then n 6= 0 by (i). Hence n ≥ 1
by (iii), 1 = n ·m ≥ m, showint m = 1. �

Division with Rest in N

One of the key features of the numbers is division with rest.

Proposition 1.6 (division with rest in N) For any n,m ∈ N with n > 0 there exist q, r ∈
N such that

m = q · n+ r and r < n. (1.4)

The number q is called the quotient of m divided by n and r is called the rest of the division
of m by n, denoted by r := m ( mod n).
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Proof: Let U = {r ∈ N : ∃q ∈ N : m = q · n + r}. Then U 6= ∅ since m ∈ U . Hence by the
total ordering, U has a minimum, say r ∈ U and there exists q ∈ N such that m = q · n+ r.
If r = 0, then r < n. Assume r > 0. If r 6< n, then n < r ou n = r. If n = r, then
m = q · n + n = S(q) · n + 0 and 0 ∈ U . But as r was the minimum of U , r = 0 which
contradicts our assumption. If n < r, then there exists r′ > 0 with r = n + r′ and r′ ∈ U as
m = q · n+ (n+ r′) = S(q) · n+ r′. This is impossible as r′ < r and r is the minimum of U .
�

Divisibility in N

Let n ∈ N. A divisor of n is a number d ∈ N such that n = d · e for some e ∈ N. We write
d | n in this case. If n = 0, any number d is a divisor of 0, because 0 = d · 0. Thus d | 0 for
any d. On the other hand Lemma 1.5(i) says that if 0 | n then n = 0.

In case n 6= 0 and n = de, then d, e ≥ 1, hence by the monotony of the multiplication
e ≥ 1⇒ n = de ≥ d. This shows that d | n implies 1 ≤ d ≤ n.

Lemma 1.7 The relation | is a partial order relation on N.

Proof: | is reflexive as n = n ·1, i.e n | n. The relation | is transitive, since if d | n and n | m,
then n = de and m = nf for some e and f . Hence (by the associativity), m = (de)f = d(ef),
i.e. d | m. Moreover, | is anti-symmetric, as if d | n and n | d, then n = de and d = nf
for some e, f and thus n = nfe. By Lemma 1.5(ii), 1 = fe and by 1.5(iv) f = e = 1. Thus
n = d. �

Later we will see that the anti-symmetry fails over the integers Z, because in the last step we
might only conclude d = ±1.

The relation | has still another important property, which follows from distributivity.

Lemma 1.8 Let d, n,m ∈ N.

1. If d | n, then d | nm if m 6= 0.

2. If d | n and d | m, then d | n+m.

3. If d | n and d | n+m, then d | m.

4. If d | 1 then d = 1.

Proof: (1) is clear by the associativity of the multiplication.
(2) I If d | n and d | m, then n = de and m = df . Thus n+m = d(e+ f), i.e. d | n+m.
(3) If d | n+m and d | n then there are e, f ∈ N such that de = n+m and n = df . Hence,

de = n+m = df +m implies de ≥ df and therefore e ≥ f by Lemma 1.5(iii). Thus e = f +h
for some h and n+m = de = df + dh = n+ dh implies m = dh, i.e. d | m.

(4) follows from Lemma 1.5.
�

Note that of course d | n+m does not need to imply d | n or d | m. For instance 2 | 2 = 1+1.
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Greatest common divisor in N

A common divisor of two numbers a and b is an elements d ∈ N such that d | a and d | b. Note
that if b = 0, then any divisor of a is also a common divisor of a and 0. The greatest common
divisor of two numbers a and b that are not both zero is a common divisor d such that for all
common divisors e of a and b one also has e | d and in particular e ≤ d. Hence the greatest
common divisor is in deed the largest common divisor with respect to the total ordering of N.
Does the greatest common divisor exist? Clearly if b = 0, then the a is the greatest common
divisor of a and 0 (provided a 6= 0). In general if b 6= 0, then we can recursively calculate the
greatest common divisor using the division algorithm.

Proposition 1.9 Let a, b non-zero numbers. Then the set of common divisors of a and b is
equal to the set of common divisors of b and r, where r is the rest of the division of a by b.

Proof: Let a = qb+ r with 0 ≤ r < b. If d is a common divisor of a and b, then d | a = qb+ r
and d | qb. By Lemma 1.8, d | r. Hence d is a common divisor of b and r. Conversely, if d
is a common divisor of b and r, then d divides a = qb+ r, again by Lemma 1.8. �

Theorem 1.10 Every two non-zero numbers have a greatest common divisor.

Proof: We use complete induction to prove the claim. Let a, b ∈ N non-zero numbers. Set
M = {b ∈ N+ | ∀a ∈ N : the greatest common divisor of a and b exists}. Clearly 1 ∈ M ,
because for any a ∈ N, 1 | a and hence 1 is the greatest common divisor of 1 and a. Let
b ∈ N+ and suppose r ∈ M , for any r < b. Write a = qb + r for q, r ∈ N and 0 ≤ r < b.
If r = 0, then b | a and b is the greatest common divisor of a and b. If r 6= 0, then r ∈ M
by hypothesis and the greatest common divisor of b and r exists, say d. By Proposition 1.9
The set of common divisors of a and b is the same as the set of common divisors of b and r.
Hence d is also the greatest common divisor of a and b. Therefore, b ∈ M and by complete
induction we conclude M = N+. �

After having introduced the integers we will describe the extended Euclidean Algorithm
which let us easily calculate the greatest common divisor of two numbers.

Prime numbers

A number p ∈ N is called a prime number if p ≥ 2 and 1 and p are the only divisors of p. We
denote the set of prime numbers by P. Clearly 2 ∈ P, because the only numbers less than or
equal to 2 are 0, 1, 2 and the only divisors are 1 and 2.

Theorem 1.11 Any number greater than 1 is a product of prime numbers.

Proof: We use again complete induction to prove our claim. Let

M = {n ∈ N>1 | n is a product of prime numbers}.

Then 2 ∈ M . Let n ∈ N>1 and suppose that a ∈ M , for all numbers a < n. If n is not itself
a prime number, then n = ab, for a, b < n. By hypothesis, a and b are products of prime
numbers and so is n. �

The last Theorem and Lemma 1.8 allows us to conclude that the set of prime numbers is
not finite.
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Theorem 1.12 The set P of prime numbers is not finite.

Proof: Suppse P is a finite set. Then we can enumerate P = {p1 = 2, p2, . . . , ps} for some
s ≥ 1. Let m = p1 · · · ps and n = m + 1. Then n > pi for all i, since multipilication is
monotone and therefore n 6∈ P. By Theorem 1.11 , there exists a prime number q | n. Thus
q = pi ∈ P, for some i. Since pi | m and pi | n = m + 1, we have by Lemma 1.8, pi | 1,
which implies pi = 1 by the same Lemma. Since prime numbers are larger than 1, this is a
contradiction. Hence P cannot be finite. �

The Integers

The integers are build from the natural numbers. Intuitively one could just take two copies
of N, “glue" them together at 0 and call one half the positive and the other half the negative
integers. A more formal, but efficient way to define the integers is by introducing them as
equivalent classes of pairs of natural numbers. On the set of pairs of natural numbers, N2,
define the equivalence relation

(a, b) ∼ (c, d)⇔ a+ d = b+ c, ∀(a, b), (c, d) ∈ N2. (1.5)

The reader should verify that ∼ is reflexive, symmetric and transitive (using the commutativity
and associativity of the addition in N). The integers are then defined as the set of equivalence
classes: Z = {[(a, b)]∼ : (a, b) ∈ N2}. An equivalence class [(a, b)] should be thought of as the
difference a − b. The relation (a, b) ∼ (c, d) then simply says that the difference a − b and
c− d are the same, because a+ d = b+ c.

A total order on Z is defined by

[(a, b)] < [(c, d)] if and only if a+ d < b+ c. (1.6)

The arithmetic of Z is induced by the arithmetic of N by setting for (a, b), (c, d) ∈ N2:

[(a, b)] + [(c, d)] := [(a+ c, b+ d)]

[(a, b)] · [(c, d)] := [(ac+ bd, ad+ bc)]

The reader should verify that these definitions are well-defined and independent of the repre-
sentative of the equivalence classes and that the ordinary laws of associativity, commutativity
and distributivity hold. The additive inverse of an integer is obtained by reversing the order
of the pair, i.e. −[(a, b)] := [(b, a)], because [(b, a)] + [(a, b)] = [(a + b, a + b)] = [(0, 0)].
Subtraction is the set to

[(a, b)]− [(c, d)] := [(a, b)] + [(d, c)] = [(a+ d, b+ c)]. (1.7)

It is easily verified that these definitions are independent of the choice of representatives of
the equivalence classes [(a, b)].

We actually have

Z = {[(k, 0)] : k > 0} ∪ {[(0, 0)]} ∪ {[(0, k)] : k > 0} , (1.8)
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because if (a, b) ∈ N2, then either a < b, a = b or a > b. If a > b, then there exist k ∈ N
such that a = b + k. Thus (a, b) ∼ (k, 0) and hence [(a, b)] = [(k, 0)]. Analogously, if a < b,
then [(a, b)] = [(0, k)], for some k ∈ N. If a = b, then (a, b) ∼ (0, 0), i.e. [(a, b)] = [(0, 0)].
Note that (k, 0) ∼ (k′, 0) if and only if k = k′. A natural number a ∈ N can be identified with
the classes [(a, 0)] and the negative numbers are identified with the classes [(0, a)]. Elements
of the form [(k, 0)] are simply written as k, while elements of the form [(0, k)] as −k. Note
that in particular −1 = [(0, 1)], (−1)(−1) = 1, (−1) · k = [(0, 1)] · [(k, 0)] = [(0, k)] = −k and
(−1) · (−k) = k for all k ∈ N+. We set

Z+ = {k | k ∈ N+}, Z− = {−k | k ∈ N+}.

Thus a < 0 < b for any a ∈ Z− and b ∈ Z+. The sign of a ∈ Z \ {0} is then defined as
sign(a) = 1 if a ∈ Z+ and sign(a) = −1 if a ∈ Z−. The absolute value or norm |n| of an
integer n is defined as |n| = n if sign(n) = 1 and |n| = −n if n is represented as [(0, k)]. We
have, a = sign(a)|a| for any a ∈ Z \ {0}.

Division with Rest in Z

We saw in Proposition 1.6 that division with rest holds in N. For a, b ∈ N with b 6= 0, there
exist q, r ∈ N with a = qb + r and 0 ≤ r < b. Hence also −a = (−q)b − r holds and either
r = 0, i.e. −a = (−q)b, or r 6= 0 and then 0 < b− r < b and −a = (−q − 1)b+ (b− r). This
shows that division with rest holds also for negative dividends. If the divisor is negative, then
from a = qb+ r we get a = (−q)(−b) + r and 0 ≤ r < b = | − b|.

Lemma 1.13 (Division with rest in Z) Let a, b ∈ Z with b 6= 0. Then there exist q, r ∈ Z
such that

a = qb+ r with 0 ≤ r < |b|. (1.9)

The rest r of a divided by b shall also be denoted by r = a mod b. The quotient q will be
denoted by a/b.

Divisibility in Z

As in N we say that an integer d divides an integer n ∈ Z if there exists e ∈ Z with de = n.
We write d | n. As before, if d | 0, for any d and 0 | n if and only if n = 0. One of the
differences between N and Z is that we cannot conclude that a divisor is necessarily smaller
than a non-zero number it divides. For instance d = 2 divides n = −6, because −6 = 2 · (−3),
but d > n. However, the divisor is always less than the norm of the non-zero number it
divides.

Lemma 1.14 Let d, n ∈ Z \ {0}.

1. If d | n then −|n| ≤ d ≤ |n|.

2. If d | 1 then d = 1 or d = −1.

3. If d | n and n | d then d = n or d = −n.
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Proof: (1) If d | n, n < 0 and d > 0, then n = de and e < 0. Otherwise, if e > 0, then
n = de > 0. Hence (−n) = d(−e) and we conclude −|n| < 0 < d ≤ | − n| = |n|. The other
cases are easy.

(2) By (1), −1 ≤ d ≤ 1. Since d 6= 0, we are left with d = 1 or d = −1.
(3) If d | n and n | d, then also |d| | |n| and |d| | |n|. By Lemma 1.5, |d| = |n|. Hence, if

sign(d) = sign(n), then d = n and otherwise d = −n. �

While | is an equivalence relation on N, we see from Lemma 1.14(3) that | on Z is not
anti-symmetric and that for each non-zero integer n ∈ Z the equivalence class of n contains
exactly two elements [n]∼ = {n,−n}.

The extended Euclidean Algorithm

A common divisor of two integers a and b is as defined as in N as an elements d ∈ Z such
that d | a and d | b. We can then define a common divisor d of two integers a and b (not both
zero) to be a greatest common divisor of two integers if for any common divisor e of a and b
one has d | e. Since | is not anymore an equivalence relation, there are precisely two greatest
common divisors, namely d and −d. By definition, we define the greatest common divisor
of a and b to be the positive greatest common divisor and denote it by gcd(a, b) The greatest
common divisor of two integers (not both zero) exists and the so-called (extended) Euclidean
Algorithm calculates it.

Proposition 1.15 Let a, b ∈ Z not both zero. Then gcd(a, b) exists and there are r, s ∈ Z
such that gcd(a, b) = ra+ sb.

Proof: Let U = {d ∈ N+ : ∃r, s ∈ Z : d = ra + sb}. Then U ⊂ N+ is non-zero, since
a = 1 ·a+0 ·b belongs to U if a 6= 0. By the well-ordering of N+, U has a minimum, say d ∈ U
with r, s ∈ Z such that d = ra+sb. By the division algorithm, there exist q ∈ Z and t ∈ N such
that a = qd+t and 0 ≤ t < d. If t 6= 0, then t = a−qd = a−qra−qsb = (1−qr)a+(−q)sb ∈ U
contradicts the minimality of d. Thus t = 0 and d | a. Similarly one proves d | b. Suppose e
is a common divisor of a and b with a = ea′ and b = eb′. Then d = rea′ + seb′ = (ra′ + sb′)e
shows e | d. Hence d = gcd(a, b). �

From the proof of Proposition 1.15 we have

Theorem 1.16 Let a, b ∈ Z not both zero. Then d ∈ N+ is the greatest common divisor of
aand b if and only if d is the least positive integer such that there are integers r and s with
d = ra+ sb.

The extended Euclidean Algorithm calculates those elements r, s. We present here a recur-
sive version for the integers, which at its heart uses Proposition 1.9, namely that gcd(a, b) =
gcd(b, amod b) and the following reasoning: suppose

gcd(b, a mod b) = x · b+ y · (amod b)

for some x, y ∈ Z. Since a = (a/b) · b + (a mod b) it follows that a mod b = a − (a/b) · b.
Substituing this expression for amod b in the formula for gcd(b, amod b) yields:

gcd(a, b) = gcd(b, amod b) = x · b+ y · (a− (a/b) · b) = y · a+ (x− (a/b) · y) · b. (1.10)
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Hence on the "way back" from our recursion, we can adjust the coefficients x and y by re-
placing x with y and y with x− (a/b) · y.

Data: a, b ∈ Z
Result: d, x, y where d = gcd(a, b) and d = x · a+ y · b.
if b 6= 0 then

d,x,y = gcd(b, a mod b);
return (d, y, x-(a/b)y);

else
return (|a|,1,0);

end
Algorithm 1: Extended Euclidean Algorithm

Example 1.17 For instance if a = 144 and b = 80, then

144 = 1 · 80 + 64 ⇒ 80 = 80− (144− 80) = (−1) · 144 + 2 · 80

80 = 1 · 64 + 16 ⇒ 16 = 80− 64

64 = 4 · 16 + 0

The following algorithm does not use recursion:

Data: a, b ∈ Z not both zero.
Result: d, x, y where d = gcd(a, b) and d = x · a+ y · b.
x = 1; v = 1; y = 0;u = 0;
while b 6= 0 do

h = x; x = u; u = h− (a/b) · u;
h = y; y = v; v = h− (a/b) · v;
h = a; a = b; b = h mod b;

end
return x e y

As an example, take again the numbers a = 144 e b = 81. The non-recursive algorithm
would then work as follows:

a b x u y u
144 81 1 0 0 1 144 = 1*81 + 63
81 63 0 1 1 -1 81 = 1*63 + 18
63 18 -1 1 -1 2 63 = 3*18 + 9
18 9 -1 4 2 -7 18 = 2*9 + 0
9 0 4 -9 -7 16 algorithm stops

Two integers a, b are called relatively prime if gcd(a, b) = 1. As a Corollary from Theorem
1.16 we conclude:

Corollary 1.18 Let a, b ∈ Z not both zero.

1. If there exist r, s ∈ Z such that 1 = ra+ sb, then a and b are relatively prime.
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2. If a = a′ gcd(a, b) and b = b′ gcd(a, b), then a′ and b′ are relatively prime.

3. If a and b are relatively prime and c ∈ Z such that a | bc then a | c.

Proof: (1) follows directly from Theorem 1.16 as 1 is the minimum of N+.
(2) Since there are r, s ∈ Z such that gcd(a, b) = ra + sb = gcd(a, b)(ra′ + sb′), we have

that 1 = ra′ + sb′ and therefore a′ and b′ relatively prime.
(3) By Proposition 1.15 there exist r, s ∈ Z such that 1 = gcd(a, b) = ra + sb. Hence

c = rac+ sbc. If a | bc, then a | sbc and hence a | sbc+ rac = c. �

Prime integers

An integer p ∈ Z is called a prime integer if |p| > 1 and whenever p | ab, then p | a or p | b,
for any a, b ∈ Z.

Lemma 1.19 An integer p ∈ Z is prime if and only if p 6∈ {−1, 0, 1} and the only divisors
of p are 1,−1, p,−p. In particular any prime number is also a prime integer.

Proof: Let p be a prime integer. Then |p| > 1 means that p 6∈ {−1, 0, 1}. Moreover, if p = ab
for some divisors a, b ∈ Z. Then p | a or p | b. As a | p and b | p, we have that if p | a then
a = p or a = −p by Lemma 1.14. As p = ab = ±pb, we conclude b = ±1. The case p | b is
treated analogously.

On the other hand, suppose that p 6∈ {−1, 0, 1} and that ±1 and ±p are the only divisors
of p. Suppose p | ab. Then either gcd(a, p) = 1 or gcd(a, p) = p. In latter case p | a. Hence
suppose gcd(a, p) = 1. Then a and p are relatively prime and by Corollary 1.18 p | b.

If p is a prime number, then p > 1 and the only divisors (in N) are 1 and p. If d is any
other integer divisor of p, then |d| ∈ {1, p} and hence d ∈ {±1,±p}. Thus p is an integer
prime. �

Theorem 1.20 (Unique factorization) Let n ∈ Z \ {0, 1,−1}. Then there exist prime
integers p1, . . . , ps such that n = p1 · · · · · ps and for any other decomposition n = q1 · · · qt with
qi prime integer one has s = t and there exists a permutation σ such that qi = ±pσ(i), for all
1 ≤ i ≤ s.

Proof: Let n > 1. Then by Theorem 1.11 there exist prime numbers p1, . . . , ps such that
n = p1 · · · · · ps. We will prove the uniqueness of s and the factors pi (up to a sign) by
induction on s. Set M = {n ∈ N>1 | the statement of the Theorem is true for n}.

Any prime number p belongs to M , because p is also a prime integer and if p = q1 · · · qt
for some prime integers qi, then qi ∈ {±p}. But then t = 1, since otherwise if t > 1 we had
p = ±pt and hence 1 = ±pt−1, which would mean p = ±1 by Lemma 1.14. Thus p ∈ M . In
particular 2 ∈M .

Now suppose n > 1 and m ∈ M , for all m < n. If n is a prime number, then n ∈ M . If
n is not a prime number, then n = p1 · · · · · ps. Suppose n = q1 . . . qt for some prime integers
qi. Since ps is also a prime integer and p_smidn = q1 · · · qt, we must have ps | qi for some
i. Without loss of generality we can assume i = t. Since the only divisors of qi are ±1 and
±qi and since ps > 1, we have qt = ±ps. Thus m = p1 · · · ps−1 = n/ps = (±q1)q2 · · · qt−1. By
complete induction hypothesis, s− 1 = t− 1, i.e. s = t and up to a permutation σ, qi = pσ(i),
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for all 1 ≤ i ≤ s, i.e. n ∈ M . By complete induction, M = N>1, i.e. the Theorem is valid
for all n > 1.

For n < −1, we replace n with −n and hence −n = p1 . . . ps for some prime numbers pi
which are unique up to permutation. Hence n = (−p1)p2 · · · ps. �

Unique factorization is a powerful tool. In the language of algebra, Z is an ordered integral
domain. We will extend most of this chapter to the general setting of an Euclidean domain,
but the principal idea is always the same.

The Rational numbers

Rational numbers are defined as equivalence classes of pairs of integers. Define on Z × N+

the following equivalence relation:

(a, b) ∼ (c, d)⇔ ad = bc ∀(a, b), (c, d) ∈ Z× N+. (1.11)

The equivalence class of an element (a, b) ∈ Z × N+ is denoted by a
b and consists of the

following subset of Z× N+:
a

b
:= [(a, b)]∼ = {(c, d) ∈ Z× N+ | ad = bc.} (1.12)

The set of equivalence classes (Z× N+) / ∼ is denoted by Q and called the rational numbers.
Note that a/a = 1/1 for any a > 0 and 0/b = 0/1 for any b > 0. Moreover, any non-zero
fraction a/b, i.e. a/b 6= 0/1, can be represented by a reduced fraction a/b = c/d, with c and
d relatively prime. Because for a/b with a 6= 0 6= b and d = gcd(a, b), we have a = da′ and
b = db′, for some a′ ∈ Z and b′ ∈ N+. Then gcd(a′, b′) = 1 by Corollary 1.18 shows that
a′ and b′ are relatively prime. Thus ab = d(ab′) = d(a′b) implies ab′ = a′b and therefore
a/b = a′/b′.

It is tedious, but straightforward that with the following operations Q becomes a field:

a

b
+
c

d
=
a · d+ b · c

c · d
and

a

b
· c
d

=
a · c
b · d

;

The integers Z embed into Q through the map n 7→ n
1 and form a subring of Q. Note that

0 maps to 0
1 = 0

b for any b ∈ N+. One defines an order relation on Q as follows: Let a
b ∈ Q.

Then
a

b
≥ 0 ⇔ ab ≥ 0. (1.13)

For any a
b ,

c
d ∈ Q one sets

a

b
≤ c

d
⇔ 0 ≤ c

d
+
−a
b
.

The Real numbers

The real numbers are built upon the rational numbers. A sequence of rational numbers Q is
any function f : N→ Q, i.e. f ∈ NQ. We also use the notation (an)n∈N for the function f if
it is understood that an = f(n) for all n ∈ N. A sequence (an) of rational numbers is called
a Cauchy sequence if for any q ∈ Q>0 there exists N ∈ N such that

∀n,m ≥ N : |an − am| < q. (1.14)
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A Cauchy sequence (an) is said to converge against 0 if for every q ∈ Q>0 there exists N ∈ N
such that for all n ≥ N : |an| < q.

The set of Cauchy sequences R is a ring with addition and multiplication as follows for
all (an), (bn) ∈ R:

(an) + (bn) = (an + bn) (an) · (bn) = (an · bn) (1.15)

Defining the equivalence relation (an) ∼ (bn) if and only if (an − bn) converges to 0, we
obtain the set of equivalence classes

R = R/ ∼ (1.16)

called the field of real numbers. Hence each real number is the equivalence class of a Cauchy
sequence of rational numbers. It can be shown that the total order on Q yields a total order
on R.

The complex numbers

The complex numbers are build upon the real numbers as C = R× R. An element (a, b) ∈ C
is denoted by a+ bı and while addition is the same as the componentwise addition on R×R,
its multiplication is defined as

(a+ bı)(c+ dı) := (ac− bd) + (ad+ bc)ı, a, b, c, d ∈ R.

The conjugate of a complex number ω = a+ bı is ω = a− bı. And ωω = a2 + b2 =: ||ω||2 ∈ R
is called the square of the norm of ω. In particular, ω = 0 if and only if a = b = 0 if and
only if ||ω||2 = 0. Thus, if ω 6= 0, then ω−1 = 1

||ω||2ω is the (multiplicative) inverse of ω in C.
Hence C is a field. However, in contrast to R, C is not an ordered field.

Exercises

Ex. 1 — Using the Peano axioms, show that if a, b ∈ N such that ab = 1, then a = b = 1.

Ex. 2 — One can also define a partial subtraction on N as follows. Let n,m ∈ N and define

n .−m =

{
k if n = m+ k
0 else (1.17)

That means that n .−m = k if m ≤ n and n+ k = m, while n .−m = 0 if m 6≤ n. Prove that
for any m ≤ n one has n = m+ (n .−m).

Ex. 3 — Recall the equivalence relation on N2 that defines Z: (a, b) ∼ (c, d) if and only if
a + d = b + c, for all (a, b), (c, d) ∈ N2. Show that addition and multiplication defined on
Z = N2/ ∼ are well-defined:

[(a, b)] + [(c, d)] := [(a+ c, b+ d)]

[(a, b)] · [(c, d)] := [(ac+ bd, ad+ bc)]

Ex. 4 — Let A = N>0 be the set of natural numbers and set a | b if and only if a divides b.
Then | is a partial ordering, but not a total one.
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Ex. 5 — Prove the associativity and distributivity of the arithmetic operations of N.

Ex. 6 — Prove the following statements for n,m, k ∈ N:
1.n 6= S(n).

2.If n+ k = n+m then k = m.

3.If n ≤ m ≤ S(n), then n = m or m = S(n)



2
Some arithmetic

functions

The Euler totient function is counting the positive numbers that are relatively prime to a given
number:

ϕ : N+ → N+ n 7−→ ϕ(n) = |{a ∈ {1, . . . , n} | gcd(a, n) = 1}|.

The Euler function counts not just the numbers between 1 and n that are relatively prime
with n but also how many generators there are in a cyclic group of order n. We recall that
the order of an element x in a group G is the least positive integer n such that xn = 1 is the
identity element of G. In particular if xm = 1 for some m ≥ 1, then the division algorithm
will tell us that m = qn + r, for 0 ≤ r < n. Hence 1 = xm = (xn)qxr = xr and r < n shows
that r = 0. Hence n | m.

Lemma 2.1 Let n > 1 and let Cn = 〈ω〉 be a (multiplicative) cyclic group of order n. Then

ϕ(n) = |{y ∈ Cn : y is a generator for Cn}| (2.1)

Proof: Let A = {k : 0 < k < n, gcd(k, n) = 1} and B = {y ∈ Cn : y is a generator for Cn}.
We show that the mapping f : A → B with f(k) = ωk is a bijection. Let k ∈ A and
consider y = f(k) = ωk. By the extended Euclidean Algorithm, there exist s, t ∈ Z such that
1 = sk + tn. Thus

ys = ωsk = ω1−tn = ω(ωn)−t = ω. (2.2)

This shows that ω ∈ 〈y〉 and therefore Cn = 〈y〉. Let k1, k2 ∈ A such that f(k1) = f(k2).
Without loss of generality we can assume k1 ≥ k2, then

ωk1 = f(k1) = f(k2) = ωk2 ⇒ ωk1−k2 = 1. (2.3)

Since ω has order n, n | k1 − k2. However, 0 ≤ k1 − k2 < n. Thus k1 = k2, showing that f
is injective. To prove surjectivity, let y ∈ B. Then y = ωm for some m ∈ Z. By the division

19
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algorithm we can divide m by n and obtain m = qn + k, for 0 ≤ k < n. Since ωn = 1,
ωqn = 1 and hence y = ωm = ωqnωk = ωk. If k = 0, then y = 1 would be a generator,
meaning Cn = 〈1〉 = {1}, which is absurd as n > 1. Thus 0 < k < n. Suppose gcd(k, n) = d.
Then there are a, b ∈ N such that k = ad and n = bd. Hence

(ωk)b = ωadb = ωna = 1 (2.4)

and as the order of y = ωk is n, we must have n | b. But then n = bd and n | b implies 1 | d,
i.e. d = 1. Therefore k ∈ A and y = f(k). �

How can be calculate ϕ(n)? In case n = p is a prime number, then gcd(a, p) = 1 for any
non-zero element 1 ≤ a < p−1. Hence ϕ(p) = p−1. How to calculate ϕ(n) for an arbitrary n?
In order to answer this question we will first of all look at the set of all arithmetic functions.

Denote by Fun(N+,C) the set of all functions f : N+ → C. The Dirichlet convolution on
Fun(N+,C) is define as follows. For any two functions f, g : N+ → C let f • g be the function
defined by

(f • g)(n) :=
∑
d|n

f(d)g(n/d) =
∑
n=de

f(d)g(e)

where the sum runs over all positive divisors d of n and where n/d denotes the quotient of n
divided by n which is a number.

The product is associative, because for any f, g, h ∈ Fun(N+,C) and n ∈ N+:

((f • g) • h)(n) =
∑
d|n

(f • g)(d) h(n/d)

=
∑
d|n

∑
e|n/d

f(e) g(d/e) h(n/d)

=
∑

e1e2e3=n

f(e1) g(e2) h(e3)

=
∑
e|n

∑
d|n/e

f(e) g(d) h(n/ed) =
∑
e|n

f(e)(g • h)(n/e) = (f • (g • h))(n)

Therefore, (f • g) • h = f • (g • h). The operation is also commutative, because

(f • g)(n) =
∑
de=n

f(d) g(e) =
∑
ed=n

g(e) f(d) = (g • f)(n).

Furthermore, the Dirichlet product has also a neutral element, namely the function

ε(n) =

{
1 if n = 1
0 else

Then (f • ε)(n) =
∑

d|n f(d)ε(n/d) = f(n)ε(1) = f(n), for all n ∈ N+. In other words,
(Fun(N+,C), •, e) is a commutative monoid.

The function 1 : N+ → C with 1(n) = 1 for all n ∈ N+ is invertible in this monoid and
its inverse function is the Möbius function µ, which we will define now. Let us call a number
n ∈ N>1 square free if whenever a prime number p divides n, then p2 does not divide n.
This means that if n = p1 · · · ps is a decompositon of n into prime numbers, all pimes pi are
different. The Möbius function is defined as follows:



CHAPTER 2. SOME ARITHMETIC FUNCTIONS 21

µ(n) :=


1 if n = 1
0 if n is not square free

(−1)s if n = p1 · · · ps with pi 6= pj for i 6= j

Lemma 2.2
∑

d|n µ(d) = 0, for any n > 1.

Proof: If d | n is not square free, then µ(d) = 0. Hence we only need to consider d | n that are
square free. Let {p1, . . . , ps} be all distinct prime divisors of n. Then a square free divisor d
of n is of the form d = pe11 · · · pess , for ei ∈ {0, 1}.

There are precisely
(
s
i

)
choices for square free divisors d of n that are products of i distinct

primes, in which case µ(d) = (−1)i. Hence

∑
d|n

µ(d) =
∑

(e1,...,es)∈{0,1}s
µ(pe11 · · · p

es
s ) =

s∑
i=0

(
s

i

)
(−1)i = (−1 + 1)s = 0.

�

Corollary 2.3 µ is the inverse of 1 in the monoid (Fun(N+,C), •, e).

Proof: For n = 1 we have (µ • 1)(1) = µ(1)1(1) = 1. For n > 1 we get

(µ • 1)(n) =
∑
d|n

µ(d)1(n/d) =
∑
d|n

µ(d) = 0.

Hence µ • 1 = ε. �

As a consequence we obtain the Möbius inversion formula:

Theorem 2.4 (Möbius inversion formula) Let f ∈ Fun(N+,C) and define F ∈ Fun(N+,C)
by F (n) =

∑
d|n f(d), for all n ∈ N+. Then

f(n) =
∑
d|n

µ(d)F (n/d), ∀n ∈ N+.

Proof: We have F = f • 1. Thus f = ε • f = µ • 1 • f = µ • f • 1 = µ • F . �

Returning to the Euler function ϕ, we first prove that ϕ • 1 = id is the identity function
id(n) = n.

Lemma 2.5
∑

d|n ϕ(d) = n, for all n ∈ N+.

Proof: For d | n, ϕ(d) counts the numbers 1 ≤ k ≤ d with gcd(k, d) = 1. Let

A :=
{

(k, d) ∈ N2 | d | n, 1 ≤ k ≤ d, gcd(k, d) = 1
}

=
⋃
d|n

{
(k, d) ∈ N2 : 1 ≤ k ≤ d, gcd(k, d) = 1

}
.
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Then |A| =
∑

d|n ϕ(d). We claim that the map f : A → B :=
{

1
n ,

2
n , . . . ,

n
n

}
⊆ Q with

f(k, d) = k
d is a bijection between A and B and therefore

∑
d|n ϕ(d) = |A| = |B| = n. First of

all f is well-defined, because if d | n, then n = de for some e ∈ N. Hence k
d = ke

n ∈ B, because
1 ≤ k ≤ d implies 1 ≤ ke ≤ n. f is surjective, because any fraction a

n . with 1 ≤ a ≤ n, can be
reduced to k

d with gcd(k, d) = 1, 1 ≤ k ≤ d and d | n. The function f is injective, because if
f(k, d) = f(k′, d′) for (k, d), (k′, d′) ∈ A. Then kd′ = dk′. Since k and d are relatively prime,
k | k′ and analogously k′ | k. Thus k = k′ and d = d′. Thus f is a bijection as claimed. �

Corollary 2.6 Let n = pa11 · · · pass with pi 6= pj for i 6= j, ai ≥ 1 and s ≥ 1. Then

ϕ(n) =

s∏
i=1

(
paii − p

ai−1
i

)
= n

s∏
i=1

(
1− 1

pi

)
.

Proof: Lemma 2.5 says that ϕ • 1 = id and the Möbius inversion formula says that

ϕ(n) =
∑
d|n

µ(d)
n

d
, ∀n ∈ N+.

Let n = pam and p - m. Note that if d | n, then either p - d, in which case d | m or p | d.
In the later case, µ(d) = 0 if p2 | d and if p2 - d, then d = pd′ with p - d′ and d′ | m. Thus
µ(d) = −µ(d′).

ϕ(n) =
∑
d|pam

µ(d)
pam

d
= pa

∑
d|m

µ(d)
m

d
− pa−1

∑
d′|m

µ(d′)
m

d′
=
(
pa − pa−1

)
ϕ(m).

Hence by induction the result follows. �

Example: How many positive numbers less than 712 are relatively prime 712? Since
712 = 23 · 89, we have ϕ(712) = (23 − 22) · (89− 1) = 352.

Arithmetic functions from prime decomposition

Let P denote again the set of positive prime numbers and define the following arithmetic
functions:

νp : N+ → N. νp(n) = max{k : pk | n}, for p ∈ P

Clearly we have νp(ab) = νp(a) + νp(b) and also νp(a/b) = νp(a)− νp(b) if b | a.

Lemma 2.7 For any p ∈ P and n ≥ 1 one has νp(n!) =

νp(n)∑
k=1

⌊
n

pk

⌋
.

Proof: For numbers m, k ∈ N+ set

χ(m, k) :=

{
1 if pk | m
0 else
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Then νp(m) =
∑

k≥1 χ(m, k). Using this technical tool we obtain

νp(n!) =
n∑

m=1

νp(m) =
n∑

m=1

∑
k≥1

χ(m, k) =
∑
k≥1

n∑
m=1

χ(m, k) =

νp(n)∑
k=1

⌊
n

pk

⌋
,

because
∑n

m=1 χ(m, k) counts how many numbers 1 ≤ d ≤ n are multiples of pk. If q =
⌊
n
pk

⌋
,

then pk, 2pk, . . . , qpk are precisely these numbers d and there are
⌊
n
pk

⌋
many of them. �

This means for instance that

ν2(100!) =
100

2
+

100

4
+

⌊
100

8

⌋
+

⌊
100

16

⌋
+

⌊
100

32

⌋
+

⌊
100

64

⌋
= 50 + 25 + 12 + 6 + 3 + 1 = 97

Hence 296 | 100!.

A number n ∈ N>1 is called square-free if for all c > 1 such that c | n, c2 - n. In other
words n is square-free if and only if νp(n) ≤ 1 for all p ∈ P.

Two more important arithmetic functions are the following:

η : N+ → N+, η(n) = |{d ∈ N : d | n}|, número de divisores positivos

σ : N+ → N+, σ(n) =
∑
d|n

d, soma dos divisores positivos

The divisor sum function σ is multiplicative in the following sense. A function f : N+ →
C is a multiplicative function if f(1) = 1 and for all a, b ∈ N+ that are relatively prime
f(ab) = f(a)f(b) holds. For example the identity function id, the constant 1 function and
the neutral element e of Fun(N+,C) are multiplicative. Moreover, given two multiplicative
function, also their Dirichlet product is multiplicative and so is σ, since σ = id • 1. To prove
this claim, let f, g be multiplicative, then clearly f • g(1) = f(1)g(1) = 1 and for a, b ∈ N+

relatively prime, we get

(f • g)(ab) =
∑
d|ab

f(d)g

(
ab

d

)

=
∑

d1|a,d2|b

f(d1d2)g

(
ab

d1d2

)

=
∑
d1|a

∑
d2|b

f(d1)g

(
a

d1

)
f(d2)g

(
b

d2

)

=

∑
d1|a

f(d1)g

(
a

d1

)∑
d2|b

f(d2)g

(
b

d2

) = (f • g)(a)(f • g)(b)

The set of multiplicative function is actually a group.
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Proposition 2.8 Let n ∈ N>1 such that n = pa11 · · · p
at
t , with pi ∈ P, pi 6= pj and ai ≥ 1.

Then the following hold:

1. There exists a square free number a and a number b such that n = ab2.

2. η(n) = (a1 + 1)(a2 + 1) · · · (at + 1) =
∏t
i=1(νpi + 1).

3. σ(n) =

(
p
a1+1
1 −1
p1−1

)(
p
a2+1
2 −1
p2−1

)
· · ·
(
p
at+1
t −1
pt−1

)
=
∏t
i=1

(
p
νpi+1

i −1
pi−1

)
.

Proof: (1) We have n =
∏t
i=1 p

νpi
i . For any 1 ≤ i ≤ t we have νpi(n) = 2ri + si, onde

si ∈ {0, 1}. Hence, if a =
∏t
i=1 p

si
i and b =

∏t
i=1 p

ri
i , then ab

2 =
∏t
i=1 p

si+2ri
i = n. Clearly a

is square-free.
(2) There is a bijection between the set of positive divisors d of n and the set

U = {(b1, . . . , bt) ∈ Nt | 0 ≤ bi ≤ ai, for 1 ≤ i ≤ t}.

Any (b1, . . . , bt) ∈ U corresponds to a positive divisor d =
∏t
i=1 p

bi
i of n and any positive

divisor of n can be uniquely written in that way by the fact that Z is a unique factorization
domain. Hence η(n) = |U | =

∏t
i=1 (ai + 1).

(3) We calculate:

σ(n) =
∑
d|n

d

=
∑

(b1,...,bt)∈U

pb11 · · · p
bt
t

=

a1∑
b1=0

pb1
∑

(b1,...,bt)∈U

pb22 · · · p
bt
t

= · · ·

=

 a1∑
b1=0

pb1

 · · ·
 at∑
bt=0

pbt

 =

(
pa1+1

1 − 1

p1 − 1

)
· · ·

(
pat+1
t − 1

pt − 1

)

where we usethe property of telescopic sums (p− 1)
(∑a

i=0 p
i
)

= pa+1 − 1. �

Example:

η(3) = η(31) = 1 + 1 = 2

η(6) = η(2131) = (1 + 1)(1 + 1) = 4

η(12) = η(2231) = (2 + 1)(1 + 1) = 6

η(28) = η(2271) = (2 + 1)(1 + 1) = 6
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σ(3) = σ(31) =
31+1 − 1

3− 1
=

8

2
= 4

σ(6) = σ(2131) =

(
21+1 − 1

2− 1

)
·
(

31+1 − 1

3− 1

)
=

3

1
· 8

2
= 12

σ(12) = σ(2231) =

(
22+1 − 1

2− 1

)
·
(

31+1 − 1

3− 1

)
=

7

1
· 8

2
= 28

σ(28) = σ(2271) =

(
22+1 − 1

2− 1

)
·
(

71+1 − 1

7− 1

)
=

7

1
· 48

6
= 56 = 2 · 28.

A positive number n is called perfect if σ(n) = 2n. There are two unsolved question,
namely: Are there odd perfect numbers? Are there infinitely many perfect numbers?

A result by Pascal Ochem and Michael Rao from 2012 says that if there exists an odd
perfect number n, then n > 101500.

Euler proved that any even number is perfect number if and only if it is of the form
2m(2m+1 − 1) with 2m+1 − 1 being a prime number. To see this, let n be an even perfect
number. Then n = 2mx for m = ν2(n) ≥ 1 and x odd. Since n is perfect, σ is multiplicative
and 2m and x are relatively prime, we obtain

2m+1x = 2n = σ(n) = σ(2mx) = σ(2m)σ(x) =
(
2m+1 − 1

)
σ(x).

Since 2m+1 − 1 is an odd integer greater than 1 dividing 2m+1x we must have (2m+1 − 1) | x.
Hence there exists y ∈ Z such that x = (2m+1 − 1)y. Canceling (2m+1 − 1) from the equation
above leads to

2m+1y = σ(x)

Let u =
∑

d|x,d6=x,d6=y d. Then

σ(x) = x+ y + u =
(
2m+1 − 1

)
y + y + u = 2m+1y + u.

Comparing the last two equations, leads to u = 0. Hence y and x are the only two divisors of
x (note that x 6= 1 since 2m is not perfect). Thus y = 1 and x = 2m+1 − 1 is an odd prime
number. An odd prime number p is called a Mersenne prime if it is of the form p = 2m+1−1,
for some m ≥ 1.

The converse of the argument above also holds: Let p = 2m+1 − 1 be a Mersenne prime.
Then n = 2m · p = 2m ·

(
2m+1 − 1

)
is a perfect number, because

σ(n) =

(
2m+1 − 1

2− 1

)
·
(
p2 − 1

p− 1

)
= (2m+1 − 1)

(2m+1 − 1)2 − 1

2m+1 − 2
= (2m+1 − 1)2m+1 = 2n

Thus even perfect numbers and Mersenne prime numbers are in correspondence. The so-
called Great Internet Mersenne Prime Search, see https: // www. mersenne. org , gathers
information about Mersenne primes. As of 2022, only 51 Mersenne prime numbers have been
identified and the largest one is

282589933 − 1

which is a number with 24862048 digits.

https://www.mersenne.org
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Arithmetic function about the prime number distribution

At the end of this chapter we will have a short look at the prime number theorem, that says that
the number of primes in the real interval [0, x] is assymptotic to x/ ln(x). For any x ∈ R≥1

we denote the set of positive prime numbers less than x by

Px := P ∩ [2, x] = {p ∈ P : 2 ≤ p ≤ x}.

Associated to this set we have

π : R≥1 → N, x 7−→ π(x) := |Px|, ∀x ∈ R+

θ : R≥1 → N, x 7−→ θ(x) :=
∑
p∈Px

ln(p) and θ(1) = 0.

If bxc denotes the largest number less or equal to x, then we clearly have Px = Pbxc and
π(x) = π(bxc). Hence we can assume that x is a natural number.

Moreover, since the sum in θ(x) has π(x) summands and p < x implies ln(p) < ln(x) we
have

θ(x) < π(x) ln(x), ∀x ≥ 2.

Proposition 2.9 θ(x) < 4 ln(2)x, For any x ∈ R+

Proof: Let n ≥ 2 and p ∈ P2n \ Pn be a prime number between n and 2n, i.e. n < p < 2n.
Then any p divides

(
2n
n

)
, because p - k for any k ≤ n. Hence

p |
(

2n

n

)
=

(2n)!

(n!)2
=

(2n) · (2n− 1) · · · (n+ 2) · (n+ 1)

n · (n− 1) · · · 2 · 1

ans therefore p <
(

2n
n

)
and since 22n = (1 + 1)2n =

∑2n
k=0

(
2n
n

)
we have also:

∏
p∈P2n\Pn

p <

(
2n

n

)
< 22n.

Taking the logarithm, we conclude:

θ(2n)− θ(n) =
∑

p∈P2n\Pn

ln(p) < 2n ln(2).

The property of the telescopic sum yields:

θ(2m) =
m−1∑
k=1

(
θ(2k+1)− θ(2k)

)
<

m−1∑
k=1

2 · (2k) · ln(2) = 2 ln(2) (2m − 1) < 2m+1 ln(2)

Thus, if m is the least positive number such that 2m−1 < x ≤ 2m, then

θ(x) ≤ θ(2m) < 2m+1 ln(2) = 4 ln(2)2m−1 < 4 ln(2)x.

�
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Corollary 2.10 There exist constants C1, C2 > 0 such that

C1 ln(x) ≤ π(x) < C2
x

ln(x)
,

for all x ≥ 2, where C1 = (2 ln(2))−1 and C2 = 8 ln(2) + 1.

Proof: We shall first determine the upper bound. Clearly, θ(x) >
∑

p∈Px\P√x ln(p) and as this
sum has π(x)− π(

√
x) summands and ln(p) > ln(

√
x), for all p 6∈ P√x, we conclude:

θ(x)) ≥
∑

p∈Px\P√x

ln(p) ≥ ln(
√
x)
(
π(x)− π(

√
x)
)
≥ ln(

√
x)π(x)−

√
x ln(
√
x).

Using Proposition 2.9 and the fact that
√
x < 2x

ln(x) ,
1 for x ≥ 2, we have therefore

π(x) ≤ θ(x)

ln(
√
x)

+
√
x ≤ 8 ln(2)x

ln(x)
+

2x

ln(x)
= C2

x

ln(x)
,

for C2 = 8 ln(2) + 1.

Let us determine the lower bound. Let p(n) ⊆ P be the set of prime divisors of a number
n. For any finite set of positive primes S ⊆ P define

fS : R+ → N, fS(x) = |{n ∈ N+ : n ≤ x and p(n) ⊆ S}|.

That means, fS(x) counts the numbers less than x whose prime divisors belong to S. Let
n ≤ x be a number whose prime divisors belong to S and write n = ab2 with a square-free.
Then we have b ≤

√
(x) and for a we have at most |S| choices. Hence there are at most

|S|
√
x possible numbers n ≤ x such that all prime divisors of n belong to S, i.e.

fS(x) ≤ |S|
√
x.

Now let S = {p1, . . . , pπx} be all prime numbers less or equal to x, then fS(x) = x, because
the prime divisors of any number n ≤ x belong to S. Thus

x = fS(x) ≤ 2π(x)√x⇒
√
x ≤ 2π(x) ⇒ π(x) ≥ ln(x)

2 ln(2)
.

�

The last Corollary implies that π(x)
x → 0 when x→ +∞.

Proposition 2.11 lim
x→+∞

π(x)
x

ln(x)

>
ln(2)

2
.

Proof: Let n ≥ 2. Then by Lemma 2.7, for any p ∈ P:

νp(

(
2n

n

)
) = νp((2n)!)− νp((n!)2) =

νp(2n)∑
k≥1

⌊
2n

pk

⌋
− 2

νp(n)∑
k≥1

⌊
n

pk

⌋
=

νp(2n)∑
k≥1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)
.

1since ln(x)
2

= ln(
√
x) <

√
x and hence

√
x < 2x

ln(x)
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For any x ∈ R>1, we have b2xc − 2bxc ∈ {0, 1}, because if x = m + ε with m ∈ N and
ε ∈ [0, 1/2[, then 2x = 2m + 2ε, with 0 < 2ε < 1. Hence b2xc = 2m = 2bxc. Otherwise,
if x = m + ε and ε ∈ [1/2, 1[, then 2x = 2m + 1 + (2ε − 1) with 0 < 2ε − 1 < 1. Hence
b2xc − 2bxc = 1.

Hence

νp

((
2n

n

))
=

νp(2n)∑
k≥1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)
< νp(2n).

Then

2n <

(
n+ 1

1

)
·
(
n+ 2

2

)
· · ·
(
n+ n

n

)
=

(2n)!

(n!)2
=

(
2n

n

)
=
∏
p∈P2n

pνp((2nn )) ≤
∏
p∈P2n

pνp(2n).

As pνp(2n) ≤ 2n, we have νp(2n) ≤ b ln(2n)
ln(p) c and

n ln(2) ≤
∑
p∈P2n

νp(2n) ln(p) ≤
∑
p∈P2n

⌊
ln(2n)

ln(p)

⌋
ln(p)

If 2n ≥ p >
√

2n, then 1 ≤ ln(2n)
ln(p) < 2. Hence

⌊
ln(2n)
ln(p)

⌋
= 1 and

n ln(2) ≤

 ∑
p∈P√2n

⌊
ln(2n)

ln(p)

⌋
ln(p)

+

 ∑
p∈P2n\P√2n

ln(p)

 ≤ √2n ln(2n) + θ(2n).

We conclude
π(2n) ln(2n) > θ(2n) ≥ n ln(2)−

√
2n ln(2n)

Let n be such that 2n ≤ x < 2n+ 1. Then

π(x) ln(x) > n ln(2)−
√

2n ln(2n) >
(x− 1) ln(2)

2
−
√
x ln(x)

π(x)

x/ ln(x)
>
ln(2)

2
− ln(2)

2x
− ln(x)√

x

x→∞−→ ln(2)

2

�

We have seen that there exist C,C ′ > 0 such that

C >
π(x)

x/ ln(x)
> C ′

for large enough x. The prime number theorem says that the limit of π(x)
x/ ln(x) is actually 1,

this means that asymptotically π(x) is as big as x
ln(x) .

Theorem 2.12 (Prime Number Theorem) π(x) ∼ x
ln(x) .
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x bx/ ln(x)c π(x) π(x)/(x/ ln(x))

101 4 4 0.9210340371976184
102 21 25 1.151292546497023
103 144 168 1.1605028868689988
104 1085 1229 1.131950831715873
105 8685 9592 1.1043198105999443
106 72382 78498 1.0844899477790795
107 620420 664579 1.0711747889618228
108 5428681 5761455 1.0612992317564809
109 48254942 50847534 1.0537269642351712
1010 434294481 455052511 1.047797128358109



3
Primitive roots of unity

modulo n

We have already seen that division with rest is possible in Z (and in N). For all n ≤ 1 the
relation ∼n on Z defined as

a ∼n b ⇔ n | a− b (3.1)

for all a, b ∈ Z is an equivalence relation. The set of equivalence classes Z/∼n is denoted by
Zn. If a ∼n b then one usually writes a ≡ b ( mod n). The case n = 1 is the trivial case in
which every number is related via ∼1. In this case Z1 = {[0]∼}.

For n > 1 there are exactly n different equivalence classes in Zn, because of the division
algorithm: for all a ∈ Z there exist q ∈ Z and 0 ≤ r < n such that a = q · n+ r, i.e. n | a− r
and therefore a ∼n r. Moreover if 0 ≤ r, s < n are in the same equivalence class of ∼n, then
r = s, as −n < r − s < n. Thus {0, 1, . . . , n − 1} is a set of representatives for Zn and one
can identify Zn with this set.

Zn has addition and multiplication as follows: for all a, b ∈ {0, 1, . . . , n− 1} one sets

a+ b = (a+ b)( mod n) a · b = (a · b)( mod n) (3.2)

where x( mod n) denotes the rest of the division of x by n.

The operations + and · turn Zn into a commutative unital ring, which means that the ad-
dition and multiplication is associative and commutative and · distributes over +. Calculating
modulo n is sometimes referred to as modular arithmetic.

Calculating modulo a number simplifies sometimes certain arguments. We can for example
easily prove the following

Lemma 3.1 There are infinitely many prime numbers that are congruent with 3 modulo 4

30
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Proof: Suppose to the contrary that the set of prime numbers that are congruent with 3 modulo
4 is finite, say {p1, . . . , ps} is this set with pi 6= pj if i 6= j. We assume that p1 = 3. Then
form the number

n = 4p2 · · · ps + 3

Since Z is a unique factorization domain, n = q1 · · · qt for some prime numbers qi. Since n
is odd, none of the primes qi is equal to 2.

If qi ≡ 1( mod 4) would hold for all i, i.e. qi = 1 in Z4, then also

n = q1 · · · qt ≡ 1(mod4),

but n ≡ 3( mod 4). Hence there exists a prime qi such that qi ≡ 3( mod 4), i.e. qi = pj for
some 1 ≤ j ≤ s. However, then qi | 4p2 · · · ps and as qi | n, we must have qi | 3, i.e. qi = 3.
But then 3 | 4p2 · · · ps leads to a contradiction, since 3 - 2 and 3 - pl for l 6= 1. Therefore our
initial assumption, that there are only finitely many of such prime numbers is wrong. �

An element a ∈ Zn is said to have a multiplicative inverse if there exists b ∈ Zn such that
ab = 1 in Zn. This means, recalling that the elements of Zn are equivalence classes, that the
class of ab mod n is the same as the class of 1 mod n, i.e. n | ab− 1.

Proposition 3.2 Let n > 1 and a a non-zero element of Zn. Then a has a multiplicative
inverse in Zn if and only if gcd(a, n) = 1. In this case the extended Euclidean algorithm can
be used to calculate its inverse.

Proof: By the Euclidean Algorithm there exist r, s ∈ Z such that gcd(a, n) = ra+sn. In other
words gcd(a, n) ≡ ramodn. If gcd(a, n) = 1, then r is the inverse of a in Zn. If gcd(a, n) 6= 1,
then b = n

gcd(a,n) is a positive number, satisfying

ba =
n

gcd(a, n)
a = n

a

gcd(a, n)
≡ 0 mod n. (3.3)

Thus, if a had a multiplicative inverse, say c ∈ Zn, then b = bac = 0, contradicts b > 0. �

We denote the set of (multiplicative) invertible elements of a ring R by U(R), which is
always a group, since if a and b are invertible, then ab is invertible with inverse (ab)−1 =
b−1a−1. For R = Z we saw that U(Z) = {1,−1}. Hence the map f : U(Z) → Z2 = {0, 1}
with 1 7→ 0 and −1 7→ 1 is an isomorphism of groups. Proposition 3.2 shows that the unit
group of Zn is given by the elements

U(Zn) = {a ∈ Zn | gcd(a, n) = 1}, and |U(Zn)| = ϕ(n).

Corollary 3.3 Zn is a field if and only if n is a prime number.

Proof: Clearly if n is prime, then |U(Zn)| = ϕ(n) = n− 1 = |Zn \ {0}|. Thus every non-zero
element of Zn is invertible. Conversely, if n is not prime, then there exist a, b ∈ Z such that
ab = n and 1 < a, b < n. Hence in Zn we have ab = 0( mod n). Thus neither a nor b can be
invertible. Therefore, Zn is not a field. �

What is the structure of U(Zn)? When is it cyclic? A first step to describe U(Zn) is the
following Theorem of Euler, which is basically an application of Lagrange’s Theorem.
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Theorem 3.4 (Euler) Let n ∈ N>1 and a ∈ Z. If gcd(a, n) = 1, then aϕ(n) = 1 in Zn.

Proof: By hypothesis a ∈ U(Zn). Hence Lagrange Theorem says that the order of a divides
the order of U(Zn) and therfore aϕ(n) = 1 in Zn. �

As a consequence we obtain

Theorem 3.5 (Fermat) If p is a prime number and a ∈ Z, then ap = a( mod p).

Proof: Since ϕ(p) = p− 1 and a( mod p) ∈ U(Zp), for all a ∈ Z with gcd(a, p) = 1, we obtain
by Euler’s ap−1 = 1( mod p) and therefore, multiplying by a, also ap = a( mod p). In case
gcd(a, p) 6= 1, then p | a and a = 0( mod p) and therefore also ap = 0 = a( mod p). �

When is U(Zn) a cyclic group ? Using Lemma 2.5 we can also give a nice criteria to show
that a finite group G is cyclic, namely precisely if for each divisor d of |G ther exists at most
one subgroup of order d. This will be a key step to prove that the multiplicative group of a
finite field is cyclic.

Theorem 3.6 The following statements are equivalent for a finite group G of order n.

(a) G is cyclic;

(b) for every divisor d of n, there exists exactly one subgroup H of G of order d;

(c) for every divisor d of n, there exists at most one subgroup H of G of order d.

Proof: Let G be a group of order n and denote by ∼ the equivalence relation a ∼ b if and only
if 〈a〉 = 〈b〉, for all a, b ∈ G. Then ∼ yields a partition of G into distinct equivalent classes,
i.e.

G =
⋃̇

a∈Λ
[a]∼ (3.4)

for some set of representatives Λ ⊂ G. Note that if a ∈ Λ, then [a]∼ is precisely the set of
generators of the cyclic subgroup C = 〈a〉. Moreover, |C| = d | n and |[a]∼| = ϕ(d). For any
divisor d | n, let cd be the number of different cyclic subgroups of order d of G. Then the
partition 3.4 yields:

n = |G| =
∑
a∈Λ

|[a]∼| =
∑
d|n

cdϕ(d). (3.5)

(a) ⇒ (b): Suppose G is cyclic, then we can assume G = 〈x〉. Any subgroup of H is
generated by a power of x. To see this, let H be a subgroup of G. If H = {1}, then H = 〈x0〉.
If H 6= {1}, then choose k > 0 minimal such that xk ∈ H. For any element h ∈ H, there
exists m ≥ 1 such that h = xm. By the minimality of k, k ≤ m and by the division algorithm,
there exist q, r ∈ Z such that m = qk + r and 0 ≤ r < k. Hence xr = xm−qk = h

(
xk
)−q ∈ H.

However since k > 0 was the least positive integer exponent of x such that xk ∈ H and xr ∈ H
with 0 ≤ r < k, we must have r = 0, i.e. h = xk

q, which shows H = 〈xk〉. Therefore, any
subgroup of G is cyclic.

Let d | n be a divisor of n. Then there exist at least one subgroup H of order d, which is

H = 〈xn/d〉 = {1, xn/d, x2n/d, . . . , x(d−1)n/d}. (3.6)
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Hence cd ≥ 1, for all d | n. Supose there exists another subgroup of order d, say H ′ = 〈xk〉,
which is of course also cyclic, then xkd = 1 = xn. Hence n | dk and (n/d) | k, i.e. H ′ ⊆ H.
But since |H ′| = d = |H|, both subgroups are equal. Hence cd = 1, for all d | n and (b) hold.

(b)⇒ (c) holds trivially.
(c)⇒ (a): Let G be a group of order n, then by (c), cd ≤ 1, for all d | n. Hence by (3.5)

n = |G| =
∑
d|n

cdϕ(d) ≤
∑
d|n

ϕ(d) = n. (3.7)

This shows cd = 1 for all d | n and in particular also cn = 1, i.e. G is cyclic. �

Let F be a field. Then we know that any polynomial f ∈ F [x] of degree n ≥ 1 has no more
than n roots. Using this simple fact and Theorem 3.6 we obtain that

Corollary 3.7 The multiplicative group U(F ) = F \ {0} of a finite field is a cyclic group.

Proof: Let G = F \ {0} be the multiplicative group of a finite field F . For any divisor d | |G|,
consider two subgroups H,K of G of order d, i.e. |H| = d = |K|. Then for any element
a ∈ H ∪K, we obtain that the order of a in the H (or K) divides d, i.e. ad = 1. Hence any
a ∈ H ∪K is a root of the polynomial xd− 1 ∈ F [x]. Since there are at most d roots, we have
d = |H| = |K| ≤ |H ∪K| ≤ d and therefore H = H ∪K = K, i.e. H = K. By Theorem 3.6,
G is a cyclic group. �

Since for any prime number p, Zp is a finite field we conclude:

Corollary 3.8 For any prime number p, U(Zp) is a cyclic group.

We should note, that if U(Zn) is a cyclic group, then n need not be a prime number. The
smallest example is U(Z4) = {1, 3} ' Z2. We will show now that U(Zpn) is always cyclic if
p 6= 2 and n ≥ 1. The case n = 1 has been just proven. Note that if p is a prime number,
then

p |
(
p

k

)
, for all 1 < k < p, (3.8)

because in this case p - k! and p - (p− k)! since all factors of k! and (p− k)! are less than p.
Therefore p | p (p−1)!

k!(p−k)! =
(
p
k

)
.

Lemma 3.9 Let p be a prime number, n ≥ 1 and a, b ∈ Z then

1. if a = b( mod pn) then ap = bp( mod pn+1).

2. a = 1 ( mod pn) if and only if ap = 1 ( mod pn+1).

Proof: (1) If a = b( mod pn), then a = b+ cpn, for some c ∈ Z. Hence

ap = (b+ cpn)p =

p∑
i=0

(
p

i

)
bi(cpn)p−i = bp + (cpn)p = bp( mod pn+1),

since p |
(
p
i

)
for 1 < i < p, i.e. pn+1 |

(
p
i

)
pn(p−i).

(2) By (1) we have proven already the only if part. We will use induction on n. Let n = 1
and ap = 1( mod p2), then by Fermat’s Theorem a = ap = 1( mod p). Suppose n ≥ 1 and
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suppose that we have already shown that if ap = 1( mod pn+1), then a = 1( mod pn). Suppose
ap = 1( mod pn+2), then we also have ap = 1( mod pn+1). By assumption, a = 1( mod pn) and
a = 1 + cpn for some c ∈ Z. Thus

ap = (1 + cpn)p =

p∑
i=0

(
p

i

)
(cpn)p−i = 1 + p(cpn)( mod pn+2)

since
(
p
i

)
(cpn)i will be divisible by pn+2 for i ≥ 2. However, by assumption ap = 1(modpn+2),

hence 1 = ap = 1+ cpn+1(modpn+2) shows that pn+2 | cpn+1 and therefore p | c. This implies
that a− 1 = cpn is divisible by pn+1, i.e. ap = 1( mod pn+1). By induction the result follows.
�

Theorem 3.10 Let p be an odd prime. Then U(Zpn) is a cyclic group for any n ≥ 1.

Proof: We know from Corollary 3.8 that U(Zp) is a cyclic group, which shows that the Theorem
holds for n = 1.

Let n = 2 and choose any generator g ∈ U(Zp). Let m be the order of g in U(Zp2). Then
m | ϕ(p2) = p(p − 1). On the other hand gm = 1( mod p2) implies gm = 1( mod p) and
therefore ϕ(p) = p−1 | m. Hence m ∈ {p−1, p(p−1)}. If m = p(p−1), then g is a generator
in U(Zp2). Suppose m = p − 1, i.e. gp−1 = 1( mod p2). Since p + g is also a generator in
U(Zp), the same reasoning as above shows that the order of p+ g is either p− 1 or p(p− 1).
However,

(p+g)p−1 =

p−1∑
i=0

(
p− 1

i

)
pigp−1−i = gp−1+(p−1)pgp−2 = 1+(p−1)pgp−2(modp2) 6= 1(modp2),

because p - (p− 1)gp−2 as g has order p− 1 and p - p− 1. This shows that the order of p+ g
in U(Zp2) cannot be p− 1 and therefore p+ g must be a generator in U(Z2

p).

Let n ≥ 2 and suppose g is a generator of U(Zpn). Then the order of g in U(Zpn) is
ϕ(pn) = pn−1(p− 1). Let m be the order of g in U(Zpn+1). Then gm = 1( mod pn+1) implies
m | ϕ(pn+1) = pn(p − 1) and also gm = 1( mod pn). Since the order of g in U(Zpn) is
pn−1(p − 1), we obtain pn−1(p − 1) | m. If m = pn−1(p − 1), then

(
gp

n−2(p−1)
)p

= gm =

1(modpn+1) would imply by Lemma 3.9, gpn−2(p−1) = 1(modpn), contradicting that the order
of g in U(Zpn) is pn−1(p− 1). Hence m 6= pn−1(p− 1) and as pn−1(p− 1) | m | pn(p− 1), we
obtain m = pn(p− 1), i.e. g is a generator of U(Zpn+1).

�

Generators of U(Zn) are called primitive roots of unity modulo n. The above Theorem
says that primitive roots of unity modulo pn always exist for p an odd prime and moreover,
if g is a primitive root of unity modulo p, then either g or p + g is a primitive root of unity
modulo pn for any n ≥ 1.

For example, if p = 5, then 2 is a generator of U(Z5), since 22 = 4 6= 1( mod 5) and
24 = 1(mod5). Note that since |U(Z25)| = 5(5−1) = 20, the only orders of elements of U(Z25)
are 1, 2, 4, 10, 20 since 22 = 4 6= 0(mod25), 24 = 16 6= 0(mod25) and 210 = 1024 = 24(mod25),
2 must have order 20 and is a generator in U(Z25), hence a primitive root of unity modulo
5n for any n ≥ 1.
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If p = 29 then 14 is a primitive root of unity modulo 29, because p − 1 = 28 = 22 × 7
and the only possible orders are 1, 2, 4, 7, 14, 28. One checks that 14k 6= 1( mod 29) for k ∈
{1, 2, 4, 7, 14}. Hence 14 has order 28 in U(Z29). On the other hand 14 is not a primitive root
of unity modulo 292 = 841, because 1428 = 1( mod 841), while ϕ(841) = 29 × 28 = 812. By
the proof of the last Theorem, 14 + 29 = 43 is a primitive root of unity modulo 29n, for any
n ≥ 1.

The case for p = 2 is different, while U(Z2) = {1} is the trivial group and U(Z4) =
{1, 3} ' Z2 is cyclic, U(Z2n) is never cyclic for n ≥ 3.

Theorem 3.11 Let n ≥ 3. Then U(Z2n) ' Z2 × Z2n−2 is never cyclic. More precisely,

U(Z2n) = {(−1)a5b : a ∈ {0, 1}, 0 ≤ b ≤ 2n−2}.

Proof: We will first prove that the order of 5 in Z2n is 2n−2. To do so we first prove the
following equation by induction

52n−3
= 1 + 2n−1( mod 2n) (3.9)

For n = 3 this is clear, since 523−3
= 5 = 1 + 4( mod 23). Suppose equation (3.9) has been

proved for some n ≥ 3. Then 52n−3
= 1 + 2n−1( mod 2n) implies

(52n−3
)2 =

(
1 + 2n−1

)2
( mod 2n+1).

by Lemma 3.9. Since n ≥ 3, 2(n− 1) ≥ n+ 1, we have 22(n−1) = 0( mod 2n+1) and therefore,
52n−2

= 1 + 2n( mod 2n+1). Thus by induction, equation (3.9) holds for all n ≥ 3.
In particular, there exists c ∈ Z such that

52n−2
= 1 + 2n + c2n+1 = 1 + 2n(1 + 2c)

and therefore 52n−2
= 1( mod 2n), which means that the order of 5 divides 2n−2. On the other

hand
52n−3

= 1 + 2n−1( mod 2n) 6= 1( mod 2n)

shows that the order is larger than 2n−3 and therefore must be 2n−2.
We claim that

U(Z2n) = {(−1)a5b : a ∈ {0, 1}, b ∈ {0, 1, . . . , 2n−2 − 1}}. (3.10)

To show this it is enough to verify that the cardinality of the right side is 2n−1 = ϕ(2n). Let
a, a′ ∈ {0, 1} and b, b′ ∈ {0, 1, . . . , 2n−2 − 1}, such that

(−1)a5b = (−1)a
′
5b
′
( mod 2n)

Then in particular (−1)a5b = (−1)a
′
5b
′
( mod 4) and as 5 = 1( mod 4) we get (−1)a =

(−1)a
′
( mod 4) which means a = a′( mod 2). Since a, a′ ∈ {0, 1} we get a = a′.Therefore,

5b = 5b
′
( mod 2n) and hence b = b′( mod 2n−2) as we have shown that 2n−2 is the order of 5

in U(Z2n). Since b, b′ < 2n−2 we obtain equality, i.e. b = b′. Therefore the set on the right
side of (3.10) has cardinality, 2n−1 = ϕ(2n).

Consider the function

f : Z2 × Z2n−2 → U(Z2n), (a, b) 7→ (−1)a5b
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then it is easily seen that f is a surjective homomorphism of groups, as

f((a, b) + (a′, b′)) = f(a+ a′, b+ b′) = (−1)a+a′5b+b
′

= (−1)a5b(−1)a
′
5b
′

= f(a, b)f(a′, b′).

As |Z2 × Z2n−2 | = 2n−1 = |U(Z2n)|, f is an isomorphism of groups. �

In order to understand the structure of U(Zn) for any n we need to decompose this group
using the prime decomposition of n. The so-called Chinese Remainder Theorem will be the
important tool and we present version of it for arbitrary rings and ideals.

Recall that a (two-sided) ideal of a ring R is an additive subgroup I ⊆ R such that ax ∈ I
and xa ∈ I for all x ∈ I and a ∈ R. The ideals of the ring R = Z are precisely the subgroups
nZ = {na : a ∈ Z} for any n ∈ Z.

Given two ideals I and J of a ring R one can form their sum, i.e.

I + J = {a+ b : a ∈ I, b ∈ J}

which is again an ideal of R. For the case of integers, if I = nZ and J = mZ, then

nZ +mZ = gcd(n,m)Z, (3.11)

because by the Euclidean algorithm, there exist x, y ∈ Z such that gcd(n,m) = xn+ym; hence

gcd(n,m)Z = {z gcd(n,m) : z ∈ Z} = {(zx)n+ (zy)m : z ∈ Z} ⊆ nZ +mZ.

On the other hand, n and m are multiples of gcd(n,m) and therefore any sum of multiples of
n and m is also a multiple of gcd(n,m), i.e. nZ +mZ ⊆ gcd(n,m)Z. This shows (3.11).

Two proper ideals I and J of a ring R are called comaximal ideals if I + J = R. For the
integers, this means that nZ and mZ are comaximal if and only if gcd(n,m) = 1, i.e. n and
m are relatively prime.

The direct product of rings R1, . . . , Rk is the cartesian product

k∏
i=1

Ri := R1 × · · · ×Rk := {(a1, . . . , ak) : ai ∈ Ri}

with operations defined by

(a1, . . . , ak) + (b1, . . . , bk) := (a1 + b1, . . . , ak + bk)

(a1, . . . , ak) · (b1, . . . , bk) := (a1b1, . . . , akbk),

for all (a1, . . . , ak), (b1, . . . , bk) ∈
∏k
i=1Ri. Its zero element is (0R1 , . . . , 0Rk) and its identity

is (1R1 , . . . , 1Rk), where 0Ri and 1Ri are the zero element and identity of the ring Ri.

Theorem 3.12 (Chinese Remainder Theorem) Let {M1, . . . ,Mk} be a family of proper
ideals of a unital ring R and I = M1 ∩ . . . ∩Mk. Then the canonical ring homomorphism

Φ : R/I → R/M1 × · · · ×R/Mk, with Φ(a+ I) := (a+M1, . . . , a+Mk) (3.12)

is an isomorphism of rings if and only if the ideals M1, . . . ,Mk are pairwise comaximal.
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Proof: Note that Φ is well-defined, because if x+ I = x′+ I, then x− x′ ∈ I = M1 ∩ · · · ∩Mk

and x+Mi = x′ +Mi for all 1 ≤ i ≤ k. Hence Φ(x+ I) = Φ(x′ + I). Furthermore, it is not
difficult to see that Φ is a ring homomorphism, by the way how addition and multiplication
is defined on R/I and R/M1 × · · · × R/Mk. Moreover, Φ is always injective, because if
Φ(x+ I) = (x+M1, . . . , x+Mk) = (0 +M1, . . . , 0 +Mk), then x ∈Mi for all 1 ≤ i ≤ k and
hence x ∈M1 ∩ · · · ∩Mk = I and x+ I = 0 + I.

So the question is to prove the surjectivity of Φ. If Φ is surjective, then for any 1 ≤ i ≤ k
and a ∈ R \Mi there exists a′ ∈ R \ I such that Φ(a′ + I) = (0 + M1, . . . , 0 + Mi−1, a +
Mi, 0 + Mi+1, . . . , 0 + Mk). Hence a′ − a ∈ Mi and a′ ∈ Mj for all j 6= i. This shows
a = a′ − (a′ − a) ∈ Mj + Mi and thus Mj + Mi = R for any i 6= j. Hence the ideals
M1, . . . ,Mk are pairwise comaximal.

On the contrary, suppose that the ideals Mi are pairwise comaximal. Then for any 1 <
i ≤ k there exist ai ∈M1 and bi ∈Mi such that 1 = ai + bi ∈M1 +Mi. Hence

1 = (a2 + b2)(a3 + b3) · · · (ak + bk) = a+ b2b3 · · · bk (3.13)

for some a ∈ M1 and b2b3 · · · bk ∈ M2M3 · · ·Mk ⊆ M2 ∩ · · · ∩Mk. This shows that M1 and⋂
j 6=1Mj are comaximal. Analogously, one shows that Mi and

⋂
j 6=iMj are comaximal, for

any 1 ≤ i ≤ k.
Given any element γ = (r1 +M1, . . . , rk +Mk) ∈

∏k
i=1R/Mi, there exist elements bi ∈Mi

and ci ∈
⋂
j 6=iMj, for each 1 ≤ i ≤ k, such that ri = bi + ci. Let x = c1 + · · ·+ ck, then

Φ(x+ I) = (x+M1, . . . , x+Mk) = (c1 +M1, . . . , ck +Mk) = (r1 +M1, . . . , rk +Mk) = γ,

because cj ∈Ml for any l 6= j and since ci − ri = bi ∈Mi. This shows that Φ is surjective. �

In the case of R = Z we have that the intersection of nZ and mZ is given by the least
common multiple of n and m, which is defined as lcm(n,m) = n

gcd(n,m)m = n m
gcd(n,m) , i.e.

nZ ∩mZ = lcm(n,m)Z. (3.14)

To see this, note first that lcm(n,m) is a multiple of n and m, hence an element of nZ∩mZ.
Therefore, lcm(n,m)Z ⊆ nZ ∩mZ. Conversely, if x ∈ nZ ∩mZ, then x = na = mb for some
a, b ∈ Z. In particular,

n

gcd(n,m)
a =

x

gcd(n,m)
=

m

gcd(n,m)
b ⇒ n

gcd(n,m)
| m

gcd(n,m)
b.

Since n
gcd(n,m) and m

gcd(n,m) are relatively prime, we conclude n
gcd(n,m) | b. Hence

lcd(n,m) = m
nm

gcd(n,m)
| mb = x,

i.e. nZ ∩mZ ⊆ lcd(n,m)Z, proving equation (3.14). This means for ideals nZ and mZ of Z
the following are equivalent:

n and m are relatively prime;

⇔ nZ and mZ are comaximal ideals

⇔ nZ +mZ = Z
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⇔ nZ ∩mZ = (nm)Z.

Identifying Zn with Z/nZ, the Chinese Remainder Theorem says now the following:

Theorem 3.13 (Chinese Remainder theorem for integers) Let m1, . . . ,ms be positive
numbers that are pairwise relatively prime and n = m1 · · ·ms. Then

Φ : Zn → Zm1 × · · · × Zms with Φ(xmod n) = (xmodm1, . . . , xmodms) (3.15)

is an isomorphism of rings. In particular, for any integers b1, . . . , bs the system
x = b1( modm1)

...
x = bs( modms)

has a unique solution modulo n.

Proof: Taking R = Z and Mi = miZ, we first note that
⋂s
i=1Mi =

⋂s
i=1miZ = nZ since the

mi are pairwise relatively prime. Applying the Chines Remainder Theorem 3.12 we obtain
the desired isomorphism Φ between
ZZn and Zm1 × · · · × Zms. The surjectivity of Φ yields that the given system has a solution
and the injectivity of Φ shows that the solution is unique. �

Note that if there exists an isomorphism of rings Φ : R → S, then it restricts to an
isomorphism of their unit group Φ : U(R) → U(S), because if x ∈ U(R) is invertible in R
with inverse x−1. Then

Φ(x)Φ(x−1) = Φ(xx−1) = Φ(1R) = 1S = Φ(1R) = Φ(x−1x) = Φ(x−1)Φ(x).

This show that Φ(x)−1 = Φ(x−1) and therefore Φ(x) ∈ U(S).
Since Φ is an isomorphism, there exists an isomorphism Φ−1 : S → R that is the inverse

function of Φ. Hence for any y ∈ U(S), Φ−1(y) ∈ U(R), with y = Φ(Φ−1(y)). Showing that
Φ : U(R)→ U(S) is actually bijective. As it is multiplicative, it is also a group homomorphism
between U(R) and U(S).1

Now let R1 × · · · ×Rk be a product of rings, then it is not difficult to see (and left to the
reader) that U(R1 ×R2) = U(R1)× · · · × U(Rk).

This means that if a ring R is isomorphic to a direct product R1× · · · ×Rk, then the unit
groups U(R) is isomorphic to the direct product of unit groups U(R1)×· · ·×U(Rk). Applying
the Chinese Remainder Theorem yields:

Corollary 3.14 Let n = pa11 · · · pass a positive number with s ≥ 1, primes pi 6= pj for i 6= j
and ai ≥ 1. Then

U(Zn) ' U(Zpa11 )× · · · × U(Zpass )

In particular U(Zn) is cyclic if and only if
1Be aware that if Φ is not an isomorphism, the unit groups might be different. Consider for example the

inclusion Φ : Z → Q. Then it is true that Φ(x) is invertible, for any invertible element x ∈ Z, but there
exist elements x ∈ Z such that Φ(x) is invertible in Q, but x is not invertible in Z as U(Z) = {±1} and
U(Q) = Q \ {0}.
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1. n = pa, for some odd prime p and a ≥ 1 or

2. n = 2pa, for some off prime p and a ≥ 1 or

3. n = 2 or n = 4.

Proof: By the Chinese Remainder Theorem there exists an isomorphism of rings

Zn ' Zpa11 × · · · × Zpass

which induces an isomorphism of groups U(Zn) ' U(Zpa11 )× · · · × U(Zpass ).

Theorem 3.10 shows that U(Zpa) is cyclic for p an odd prime. Clearly U(Z2) = {1} and
U(Z4) = {1, 3} ' Z2 are cyclic groups and for n = 2pa, with p an odd prime we have

U(Z2pa) ' U(Z2)× U(Zpa) = {1} × U(Zpa) ' U(Zpa)

is also a cyclic group.
Conversely, note that iany subgroup of a cyclic group is cyclic. Hence a group that contains

a non-cyclic subgroup, like the Klein group Z2 × Z2 cannot be a cyclic group.
Recall that if p is an odd prime, then U(Zpa) is a cyclic group by Theorem 3.10. Since the

group is cyclic and 2 divides its even order pa−1(p− 1), it has exactly one subgroup of order
2 by 3.6.

Hence if n has two odd prime divisors, say pi and pj, i 6= j. Then U(Zn) has a subgroup
isomorphic to U(Zpaii )×U(Z

p
aj
j

) which each containing a subgroup of order 2 and hence their
direct product contains a subgroup isomorphic to the Klein group Z2×Z2, which is not cyclic.
Therefore, U(Zn) cannot be cyclic.

If n = 2a for a ≥ 3, then U(Z2a is not cyclic by Theorem 3.11.
Also if n has an odd prime divisor pb and is divisble by 4, then U(Zn) contains a subgroup

isomorphic to U(Z2a)× U(Zpb) with a ≥ 2. If a = 2, U(Z4) = Z2 and if a ≥ 3, then U(Z2a)
also contains a subgroup of order 2. Hence in either case U(Zn) contains again a copy of the
Klein group and cannot be cyclic.

This shows that if U(Zn) is cyclic, then the only possibilities for n are n = pa or n = 2pa,
for p an odd prime, n = 2 or n = 4, which are precisely the cases in the statement of the
Theorem.�

Whether a number a is a primitive root of unity modulo a prime number p, i.e. whether
a is a generator of U(Zp) is not always easy to answer. The following example connects the
order of the number 10 modulo a prime number p with the period of the decimal expression of
1/p. Consider the fraction 1/7 and express it in decimal form:

1

7
= 0. 142857︸ ︷︷ ︸

6

142857︸ ︷︷ ︸
6

142857︸ ︷︷ ︸
6

· · · = 0.142857

1

11
= 0. 09︸︷︷︸

2

09︸︷︷︸
2

09︸︷︷︸
2

· · · = 0.09

Why does 1/7 has periodicity 6 and 1/11 periodicity 2? How is the periodicity related to the
prime number and how large can the periodicity be? Let p be a prime different from 2 and 5,
then 1/p has some periodicity n:

1

p
=
(a1

10
+ · · ·+ an

10n

)
+ 10−n

(a1

10
+ · · ·+ an

10n

)
+ 10−2n

(a1

10
+ · · ·+ an

10n

)
+ · · ·
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For M = a1
10 + · · ·+ an

10n we have, using the geometric series
∑∞

n=0 q
n = 1

1−q , for 0 < q < 1:

1

p
=

∞∑
i=0

(10−n)iM =
1

1− 10−n
M =

10nM

10n − 1
.

Equivalently this means 10n − 1 = pM10n or in other words

10n = 1( mod p)

Therefore, n is divisible by the order of 10 in U(Zp). The order of 10 modulo p is maximal
(and equal to p − 1) if and only if 10 is a primitive root of unity modulo p. For instance in
the case p = 7, 10 has order 6, while 10 has order 2 modulo 11. What would be the periodicity
of 1/29? 2

Emil Artin asked in 1927 whether for a given square free number a > 1 there are infinitely
many primes p such that a is a primitive root of unity modulo p. This is called the Artin
Conjecture which up to today has not been solved.

How to calculate quickly powers modulo a number

In some cryptographic algorithm it is necessary to calculate rapidly expressions like ab(modn).
Before addressing this problem we will first have a look at the representation of natural num-
bers with respect to some basis. Any integer can be written as a linear combination of powers
of a given positive base number. We will show this using the Peano axioms.

Proposition 3.15 Let b ∈ N with b > 1. For any natural number a ∈ N there exists a
number n ≥ 0 and numbers a1, . . . , ak ∈ {0, 1, . . . , b− 1} such that

a = a0 + a1 · b+ a2 · b2 + · · ·+ an · bn =
n∑
k=0

ak · bk. (3.16)

In this case we will write a = (a0, . . . , an)b to indicate the b-ary representation of a.

Proof: We will show this statement by induction on a. Let b > 1 be fixed and consider the set

M =

{
a ∈ N | ∃n ≥ 0, a1, . . . , ak ∈ {0, 1, . . . , b− 1} : a =

n∑
k=0

ak · bk
}
. (3.17)

Clearly 0 ∈ M setting n = 0 and a0 = 0. Hence suppose a ∈ M . We have to show that
S(a) = a + 1 ∈ M . As a ∈ M , there exist n ≥ 0, a1, . . . , ak ∈ {0, 1, . . . , b − 1} such that
a =

∑n
k=0 ak · bk. If a0 < b − 1, then set a′0 = a0 + 1 and a′k = bk for all k > 0. Thus

a+1 =
∑n

k=0 a
′
k · bk. If a0 = b−1, then choose the least index 0 ≤ m ≤ n such that ak = b−1

for all k ≤ m. Note that

m∑
k=0

(b− 1)bk + 1 = (b− 1)

(
m∑
k=0

bk

)
+ 1 = bm+1 − 1 + 1 = bm+1. (3.18)

2answer 28
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If m = n, then a+ 1 = bn+1 ∈M . If m < n, then set a′k =


0 if k ≤ m
am+1 + 1 if k = m+ 1
ak if k > m

and

we have a+ 1 =
∑n

k=0 a
′
k · bk ∈M . By the principle of induction M = N. �

Only a finitely many numbers can be represented by a computer, since its memory is
finite. The smallest information unit is a bit which can have the values 0 or 1. Using
binary representation (b = 2) any number can be expressed as a list of bits. For example
one byte consists of 8 bits and can therefore represent the (positive) numbers between 0 and
255 = 28 − 1. One kilo-, mega-, giga- and terabyte consist of 210, 220, 230 and 240 bytes.
For instance with one kilobyte consists of 8 · 210 = 8192 bits. Hence one can represent the
positive numbers from 0 to 28192 − 1 with the memory of one kilobyte. A gigabyte consists of
8 ·230 = 233 = 8589934592 bits and hence can represent the numbers from 0 to 28589934592−1.
These numbers are extremely large. However they are still (finite) numbers.

How to calculate ab(mod n) quickly for large b? Multiplication by 2, division by 2 and
calculating the rests mod 2 is easy in binary representation. Given a = (a0, a1, . . . , an)2 one
has

2a = (0, a0, a1, . . . , an)2 a/2 = (a1, . . . , an)2 amod 2 = a0. (3.19)

Notice that multiplication and division by 2 correspond to a shift to the right resp. to the left
of the string (a0, . . . , an). There are hardware solutions that can do this operation quickly.
The idea of the following algorithm to calculate ab(modn) is that if the binary representation
of b is (b0, . . . , bn)2, then b =

∑n
k=0 bk2

k and

ab = a
∑n
k=0 bk2k =

n∏
k=0

abk2k =
∏
bk 6=0

a2k . (3.20)

For k < l and bk 6= 0 6= bl we can use a2k in order to calculate a2l, which is going to be the
advantage of the following algorithm whose runtime is n = log2(b).

Data: a, b, n ∈ N with n, b > 1.
Result: ab(mod n).
r = 1
while b > 0 do

if b%2 == 1 then
r = (r · a)%n;

end
a = (a · a)%n;
b = b/2;

end
return r;

Algorithm 2: Fast modular power algorithm

Example 3.16 Let us try to calculate 141000(mod 71). The algorithm will perform the fol-
lowing steps:
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b%2 == 1? r a b
1 14 1000

no 1 142 ≡ 54 mod 71 500

no 1 542 ≡ 5 mod 71 250

no 1 52 = 25 125

yes 25 252 ≡ 57 mod 71 62

no 25 572 ≡ 54 mod 71 31

yes 25 · 54 ≡ 1 mod 71 542 ≡ 5 mod 71 15

yes 1 · 5 = 5 52 = 25 7

yes 5 · 25 ≡ 54 mod 71 252 ≡ 57 3

yes 54 · 57 ≡ 25 mod 71 572 ≡ 54 1

yes 25 · 54 ≡ 1 mod 71 542 ≡ 5 0

Hence 141000 mod 71 = 1.

Exercises

Ex. 7 — Write a program that given a number b > 1 and a number a ≥ 0 yields the list of
coefficients a0, . . . , an such that a =

∑n
k=0 akb

k.

Ex. 8 — Show that the representation of a positive number a =
∑n

k=0 akb
k as a linear

combination of powers of b is unique with respect to all such representations where the highest
term an is non-zero.



4
Euclidean domains

Let R be a commutative unital non-trivial ring and a, b ∈ R elements. Like for numbers,
we say that a divides b, in symbol a | b, if and only if there exists c ∈ R with b = ac.

Note that 1 | a holds for any a ∈ R and a | 1 holds if and only if a ∈ U(R).

Moreover, any element a ∈ R divides (trivially) 0, because 0 = a · 0, i.e. a | 0. However,
we will call an element a a zero divisor in R, if there exists a non-zero b ∈ R such that ab = 0.
A (non-trivial)1 commutative ring R is called an integral domain if 0 is the only zero divisor
of R. This means that whenever ab = 0, then a = 0 or b = 0. Clearly any field is an integral
domain, because if ab = 0 and b 6= 0, then a = abb−1 = 0, i.e. 0 is the only zero divisor. We
have already seen that for n ≥ 2, R = Zn is a field if and only if n is a prime number. It is
not difficult to check and left as an exercise that Zn is an integral domain if and only if Zn is
a field. Clearly this is not true for an arbitrary integral domain like for example Z.

The set of multiples of a, aR = {ac : c ∈ R} is an ideal and called the ideal generated by a
in R. By definition, if a | b, then b = ac for some c ∈ R. Therefore, for any r ∈ R, br = acr,
i.e. bR ≤ aR. Conversely, if bR ≤ aR, then b ∈ aR and hence there exists c ∈ R with b = ac,
i.e. a | b. This shows that for any a, b ∈ R:

a | b if and only if bR ≤ aR (4.1)

Thus, the divisibility relation is reflexive and transitive, but not necessarily anti-symmetric
and therefore not an equivalence relation. For instance 2 | (−2) and (−2) | 2, but 2 6= −2
or more generally, if u ∈ U(R) \ {1} is an invertible element in R and a ∈ R is a non-zero
element, then a | ua and ua | a, but a 6= ua. This motivates the following definition:

Definition 4.1 Let R be a commutative unital non-trivial ring. Then two non-zero elements
a, b ∈ R are said to be associated in R if and only if a | b and b | a.

10 6= 1

43



CHAPTER 4. EUCLIDEAN DOMAINS 44

From (4.1) we deduce immediately that two elements a, b ∈ R \ {0} are associated if and
only if they generate the same ideal, i.e. aR = bR. The relation of being associated is an
equivalence relation and its equivalence classes [a] form a partition of R\{0}. The divisibility
relation defines then a partial ordering on the set of equivalence classes.

It is also clear by the previous comments that a and ua are associated, for any unit u ∈ R
and element a ∈ R, i.e. {au : u ∈ U(R)} ⊆ [a]. The converse is true for non-zero associated
elements in an integral domain R, because if a and b are associated and non-zero, then there
exist c, d ∈ R such that b = ac and a = bd. Thus b = ac = bdc implies b(1 − dc) = 0. Since
b is non-zero and R is an integral domain, we must have 1 − dc = 0, i.e. dc = 1. Hence
c, d ∈ U(R), which shows [a] = {au : u ∈ U(R)}.

For any ring R we can define the power series ring R[[x]] with coefficient in R. Each
series can be thought of as a sequence (an)n∈N of elements of R and is usually represented as
a power series:

f =
∞∑
n=0

anx
n.

Given f =
∑
anx

n and g =
∑
bnx

n in R[[x]], addition and multiplication are defined as

f + g =

∞∑
n=0

(an + bn)xn f · g =

∞∑
n=0

(
n∑
i=0

aibn−i

)
xn.

The zero element of R[[x]] is the polynomial with all coefficients 0, while the identity of R[[x]]
is defined as the polynomial

∑∞
n=0 anx

n with a0 = 1 and an = 0, for all n ≥ 1. The support
of f ∈ R[[x]] is defined as

sup(f) = {n ∈ N : an 6= 0}.

Note that sup(f) = ∅ if and only if f = 0 is the zero element. In general power series might
have infinite support. The polynomial ring R[x] is defined as the set of series that have finite
support, i.e.

R[x] = {f ∈ R[[x]] : sup(f) is finite }.

It is not difficult to check that R[x] is closed under addition and multiplication and forms a
ring. Moreover, f

∑∞
n=0 anx

n ∈ R[x] if and only if there exists some number n ∈ N such that
am = 0 for all m ≥ n. The degree deg(f) of a non-zero polynomial f =

∑
aix

i ∈ R[x] is set
to be the maximum of the supremum, i.e. deg(f) = max(sup(f)) = N if and only if aN 6= 0
and an = 0 for all n > N . The leading coefficient of f is then aN . The degree of the zero
polynomial is set to be deg(0) = −∞, which is merely a symbol to extend the natural numbers
by an element that satisfies (−∞) + n = n + (−∞) = −∞ for any n 6= 0.2 The leading
coefficient of the zero polynomial is not defined.

Lemma 4.2 Let R be an integral domain. Then the polynomial ring R[x] is an integral
domain.

Proof: Let f =
∑
anx

n and g =
∑
bnx

n be non-zero polynomials with deg(f) = N and
deg(g) = M and leading coefficients aN and bM . Then

fg =

( ∞∑
n=0

anx
n

)( ∞∑
m=0

bmx
m

)
=
∑
n=0

(
n∑
i=0

aibn−i

)
xn.

2In semigroup theory, the symbol −∞ would be called an absorbing element in (N ∪ {−∞},+)
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Examining the coefficient of xn with n > N +M yields:

n∑
i=0

aibn−i =
N∑
i=0

aibn−i = 0,

because ai = 0 for i > N and bn−i = 0 for i ≤ N , because then n− i > N +M − i ≥M . This
shows that deg(fg) ≤ N + M = deg(f) + deg(g). Similarly if we examine the coefficient of
xN+M yields:

N+M∑
i=0

aibN+M−i =

N∑
i=0

aibN+M−i = aNbM .

Therefore, deg(fg) = N + M = deg(f) + deg(g) if and only if aNbM 6= 0. In particular,
if R is an integral domain, then for any non-zero polynomials f, g we obtain deg(fg) =
deg(f) + deg(g) ≥ 0, which shows that fg 6= 0. �

Like the integers, the ring of polynomials K[x] over a field K has a division algorithm.
More concretely, for any f, g ∈ K[x] with g 6= 0, there exist q, r ∈ K[x] such that

f = qg + r and deg(r) < deg(g).

Here we are making use of our convention that deg(r) = −∞ if r = 0.

Definition 4.3 An integral domain R is called an Euclidean domain if there exists a function
λ : R \ {0} → N such that for any a, b ∈ R with b 6= 0 there exist q, r ∈ R with a = qb+ r and
r = 0 or λ(r) < λ(b).

The importance of Euclidean Domains is that the Euclidean algorithm holds for them.
Define the following degree function on Z: for all a ∈ Z \ {0} set deg(a) =| a | . With this
function Z becomes an Euclidean domain with the ordinary division algorithm for Z.

Another example stems from the ring of polynomials over a field, R = K[x]. Here the
ordinary polynomial division and the degree function deg : K[x] \ {0} → N are the ingredients
to turn K[x] into an Euclidean domain.

A common divisor of two elements a and b is an elements d ∈ D such that d | a and d | b.
A greatest common divisor of a and b is a common divisor d of a and b such that if d′ is
another common divisor of a and b, then d′ | d. The greatest common divisor of a and b, if
exists, is denoted by gcd(a, b). Let D be an Euclidean domain with degree function deg. If
d is a greatest common divisor of a and b in D, then for any other common divisor d′ of a
and b one has deg(d′) ≤ deg(d) (see exercises). Note that for any greatest common divisor
d of a and b and invertible element u, one also has that ud is a greatest common divisor.
Thus a greatest common divisor is defined up to an invertible factor and in certain classes
of rings one requires further conditions. For example in the ring of integers one defines the
greatest common divisor to be a positive greatest common divisor, while the greatest common
divisor of two polynomials over a field is usually defined as the unique monic greatest common
divisor.

Assume that D is an Euclidean domain. If a, b ∈ D with b 6= 0 there exist q, r ∈ D with

a = q · b+ r and r = 0 or deg(r) < deg(b). (4.2)

Call q the quotient of a by b, denoted by q = a/b and r the remainder of a divided by b,
denoted by r = a( mod b).
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Proposition 4.4 Let D be an Euclidean domain and a, b ∈ D. The set of common divisors
of a and b is equal to the set of common divisors of b and a( mod b).

Proof: By the division algorithm, there exist q, r ∈ D such that a = q · b+ r. If d | a and d | b,
then d | a − q · b = r = a( mod b). Hence d is a common divisor of b and a( mod b). On the
contrary, if d | b and d | a( mod b), then d | q · b+ a( mod b) = a. �

Proposition 4.4 allows us to replace the pair (a, b) by (b, a( mod b)) if we want to calculate
the greatest common divisor. Applying the Proposition again leads to (a(modb), b(moda(modb))).
Each time we apply the Proposition the degree of the second component goes down, i.e.

deg(b) > deg(a( mod b)) > deg(b( mod a( mod b))) > · · · . (4.3)

Thus, this procedure leads to the following Algorithm which terminates since deg takes values
into N which is a well-ordered set.

Data: a, b ∈ D an Euclidean domain
Result: a greatest common divisor of a and b.
if b 6= 0 then

return gcd(b, a( mod b))
else

return a;
end

Algorithm 3: Euclidean Algorithm

Proposition 4.4 secures that a greatest common divisor of a and b is the same as a greatest
common divisor of b and a%b. It is clear that a greatest common divisor of a and 0 is a. The
algorithm terminates because the set of degrees of remainders is a non-empty subset of N and
must have a least element. In the exercises you are invited to write a computer program to
find the greatest common divisor of two integers.

Proposition 4.5 Let D be an Euclidean domain and a, b ∈ D not both zero. Then there
exist r, s ∈ D such that gcd(a, b) = ra+ sb.

Proof: Consider I = {deg(ra+sb) ∈ N : ra+sb 6= 0 and r, s ∈ D} ⊆ N. As not both elements
a, b are zero, I 6=. As N is well-ordered, I has a minimum, say n = deg(ra + sb) for some
r, s ∈ D. We claim that d = ra+ sb is a greatest common divisor of a and b. By the division
algorithm for Euclidean domains, there exist q, t ∈ D such that a = qd + t and either t = 0
or t 6= 0 and deg(t) < deg(d) = n. However, since t = a − qd = (1 − r)a − sb, we have that
either t = 0 or deg(t) ∈ I. The second option is impossible, as n = deg(d) is the minimum
of I and deg(t) is smaller than n. Hence t = 0 and a = qd, i.e. d | a. Similarly one shows
d | b. If d′ is another common divisor of a and b, then d′ | d = ra+ sb. Thus d is a greatest
common divisor of a and b and can be written as d = ra+ sb. �

As in the case of the integers, we have the extended Euclidean Algorithm to calculate
gcd(a, b) of two elements a, b ∈ D in an Euclidean domain as well as the elements r, s ∈ D that
satisfy gcd(a, b) = ra+sb. This is crucial for many applications. As in the case of the integers,
the algorithm uses the following reasoning: suppose gcd(b, a(modb)) = x·b+y ·(a%b) for some
x, y ∈ D, where a%b denotes the rest of the division of a by b. Since a = (a/b)b+ a( mod b)
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it follows that a( mod b) = a− (a/b) · b, where a/b denotes the quotient of the division of a by
b. Substituting this expression for a( mod b) in the formula for gcd(b, a( mod b)) yields:

gcd(a, b) = gcd(b, a( mod b)) = x · b+ y · (a− (a/b) · b) = y · a+ (x− (a/b) · y) · b. (4.4)

Hence on the "way back" from our recursion, we can adjust the coefficients x and y by re-
placing x with y and y with x− (a/b) · y.

Data: a, b ∈ D an Euclidean domain
Result: d, x, y where d = gcd(a, b) and d = x · a+ y · b.
if b 6= 0 then

d, x, y = gcd(b, a( mod b));
return (d, y, x− (a/b)y);

else
return (a,1,0);

end
Algorithm 4: Extended Euclidean Algorithm

An integral domain all whose ideals are principal is called a principal ideal domain.

Lemma 4.6 Any Euclidean domain is a principal ideal domain.

Proof: Given a non-zero ideal I of an Euclidean domain R. Consider Λ = {λ(r) : r ∈ I} ⊆ N.
Since N is well ordered, there exists a non-zero element b ∈ I with λ(b) minimal. Hence, for
any a ∈ I, there are q, r ∈ R with a = qb + r and r = 0 or λ(r) < λ(b). If r 6= 0, then
r = a − qb ∈ I has lower λ-value than b which contradicts its minimality. Therefore r = 0
and a = qb, i.e. I = 〈b〉. �

Recall the notion of irreducible and prime elements in an integral domain R. Let p be a
non-zero, non-invertible element of R. Then p is called an irreducible element if and only if
for any a, b ∈ R if p = ab, then a ∈ U(R) or b ∈ U(R).

The element p is called a prime element if and only if for any a, b ∈ R such that p | ab,
then p | a or p | b. In general, prime and irreducible elements might be different. For principal
ideal domains however the notions coincide.

Lemma 4.7 Let R be a PID and p ∈ R \ U(R) ∪ {0}. Then p is irreducible if and only if p
is prime if and only if R/pR is a field.

Proof: Let P = pR. Suppose p is an irreducible element and let a ∈ R such that p - a or
equivalently a+ P 6= 0 + P 〉 in R/P . Consider the ideal I = pR + aR generated by p and a.
Since R is a PID, I = cR for some c ∈ R. Hence p = cd for some d ∈ R. As p is irreducible,
d ∈ U(R) or c ∈ U(R). If d ∈ U(R), then c = d−1p and as a ∈ I = cR there exists e ∈ R with
a = ec = ed−1p, i.e. p | a, which contradicts p - a. Hence c ∈ U(R) and R = I = pR + aR.
Thus there exist x, y ∈ R with 1 = xa+yp, i.e. 1+P = (x+P )(a+P ), i.e. a+P ∈ U(R/P ).
This shows that any non-zero element of R/pR is invertible, i.e. R/pR is a field.

If R/P is a field, then p is certainly prime, because if p | ab for some a, b ∈ R, then
(a+ P )(b+ P ) = 0 + P in R/P and as R/P is a field, a ∈ P or b ∈ P , i.e. p | a or p | b.

If p is a prime element, then it is always irreducible. �
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A (commutative) ring R is called Noetherian if any ascending chain of ideals

I1 ⊆ I2 ≤ I3 ⊆ · · ·

becomes stationary, i.e. if there exists n ≥ 1 such that In = Im, for all m ≥ n.

Lemma 4.8 A principal ideal domain is Noetherian.

Proof: If Ij are ideals of a principal ideal domain R that form a chain I1 ⊆ I2 ⊆ · · · then the
union I =

⋃
i≥1 Ii is an ideal of R (why?). Since R is a principal ideal domain, I = aR for

some a ∈ I. But then there exists an index n ≥ 1 such that a ∈ In. As for all m ≥ n,

Im ⊆
⋃
i≥1

Ii = I = aR ⊆ In ⊆ Im

we conclude In = Im. �

Lemma 4.9 Let R be a (commutative) Noetherian integral domain. Then any non-zero,
non-invertible element is a product of irreducible elements.

Proof: Set

P = {a ∈ R : a is non-zero, non-invertible and not a product of irreducible elements}

Suppose P 6= ∅. Then there exists an element a1 ∈ P which is non-zero, non-invertible
and not a product of irreducible, thus not irreducible itself. Hence there exist non-invertible
elements a2, b2 ∈ R with a1 = a2b2. Both a2, b2 are non-zero and cannot be both products of
irreducibles, as otherwise a1 would be a product of irreducibles. Thus one of them must belong
to P. Without loss of generality we can assume a2 and in particular we have a1R ( a2R.
Note that if a1R = a2R, then a2 = a1c = a2b2c, for some c ∈ R, implies b2 invertible, which
is a contradiction. Hence the inclusion a1R ⊂ a2R is proper. By the same argument, there
must exist a3 ∈ P such that a1R ( a2R ( a3R. Continuing in this way we obtain an infinite
(properly) ascending chain of ideals which would not become stationary and would contradict
R to be Noetherian. Hence P must be empty, i.e. any element is either 0, invertible or a
product of irreducibles. �

Note that the proof only needs that the ascending chain of principal ideals holds. For a
principal ideal domain (and in particualar for an Euclidean domain) we have just proven that
any non-zero, non-invertible element is a product of irreducible (=prime) elements. However,
in general a product of irreducible elements might not be unique and we make the following
definition.

Definition 4.10 An integral domain R is called a unique factorisation domain if every non-
zero, non-invertible element a of R has a unique factorisation in irreducible elements, i.e.

1. every non-zero, non-invertible element is a product of irreducible elements.

2. for any two sets {p1, . . . , pk} and {q1, . . . , qn} of irreducible elements, such that p1 · · · pk =
q1 · · · qn one has n = k and a permutation σ ∈ Sn such that pi and qσ(i) are associated,
for any 1 ≤ i ≤ n.
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Lemma 4.11 Any Noetherian integral domain such that irreducible elements are prime is
a unique factorisation domain. In particular any principal ideal domain and any Euclidean
domain is a unique factorization domain.

Proof: By Lemma 4.9, any non-zero, non-invertible element is a product of irreducible el-
ements, which are prime by hypothesis. The uniqueness follows now by induction on the
number of prime factors: if p1 · · · pn = q1 · · · qm, with pi and qi prime, then p1 | q1 . . . qm im-
plies p1 | qi for some i and hence p1 and qi are associated. After rearranging we might assume
i = 1 and can factor out p1 to obtain a shorter product. Continuing this process yields n = m
and pi ' qσ(i), for some permutation σ ∈ Sn. �

The Gaussian Integers

One particular example of Euclidean domains is the ring of Gaussian integers3, this is the
subring

Z[i] = {a+ bi ∈ C : a, b ∈ Z}

of C consisting the complex numbers with integer coefficients.
Clearly the multiplication rule

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

shows that if a, b, c, d ∈ Z, then (a+ bi)(c+ di) ∈ Z[i]. Since complex conjugation

a+ bi 7→ a+ bi := a− bi

is a ring isomorphism of C, it is multiplicative, i.e. αβ = αβ, for all α, β ∈ C. The norm of
a complex number α = a+ bi ∈ C is defined to be N(α) = αα = a2 + b2 ∈ R≥0. In particular,
N(α) ∈ N for all α ∈ Z[i]. Moreover, the norm is multiplicative, i.e.

N(αβ) = αβαβ = αβαβ = ααββ = N(α)N(β).

The multiplicative group of invertible elements of Z[i] is U(Z[i]) = {1,−1, i,−i}. It is easy
to see that 1,−1, i,−i are invertible. Let α ∈ U(Z[i]) and β ∈ Z[i] such that αβ = 1, then

1 = N(1) = N(αβ) = N(α)N(β).

Hence N(α) = 1 = N(β) as we have seen U(Z) = {1,−1} and N(α) ≥ 0. But if α = a + bi
and a2 + b2 = N(α) = 1, then a = ±1 and b = 0 or a = 0 and b = ±1, since otherwise
N(α) ≥ 2. This shows

U(Z[i]) = {1,−1, i,−i}. (4.5)

As a group U(Z[i]) ' Z2 × Z2 is the Klein group.
In contrast to Z[i], the subring Q[i] = {a + bi ∈ C : a, b ∈ Q} is a subfield of C, because

for any non-zero α ∈ Q[i], also N(α) 6= 0 and hence invertible in Q and hence α−1 = 1
N(α)α

is the inverse of α.
We will show that Z[i] has a division algorithm and that Z[i] is an Euclidean domain and

therefore a principal ideal domain and a unique factorization domain. But first wee need an
elementary Lemma about Z and Q.

3Johann Carl Friederich Gauss (1777-1855), Biography: MacTutor

https://mathshistory.st-andrews.ac.uk/Biographies/Gauss/
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Lemma 4.12 For any x ∈ Q there exists an integer n ∈ Z such that |x− n| ≤ 1
2 .

Note that n might not be uniquely determined, if for instance x = 1
2 , then n = 0 or n = 1

both satisfy |x− n| = 1
2 .

Proof: If x = 0, then we can choose n = 0. Hence assume x = a
b 6= 0 such that a and b

are relatively prime and b > 0. By the division algorithm in Z, there exist q, r ∈ Z such that
a = qb+ r and 0 ≤ r < b. If 2r ≤ b, then we set n = q and obtain

|x− n| = a− qb
b

=
r

b
≤ 1

2

If b < 2r, then 2(b− r) < b and we set n = q + 1 and obtain

|x− n| =
∣∣∣∣a− (q + 1)b

b

∣∣∣∣ =

∣∣∣∣r − bb
∣∣∣∣ =

b− r
b

<
1

2
.

�

We can prove now the division algorithm for Z[i].

Theorem 4.13 Let α, β ∈ Z[i] be two elements with β 6= 0. Then there exists γ, r ∈ Z[i]
such that

α = γβ + r with N(r) < N(β).

In particular, Z[i] is an Euclidean domain, hence a principal ideal domain and a unique
factorization domain.

Proof: Lemma 4.12 shows that for any ρ = x + yi ∈ Q[i], there exist a, b ∈ Z such that
|x− a| < 1

2 and |y − b| < 1
2 . Hence for γ = a+ bi we obtain

N(ρ− γ) = (x− a)2 + (y − b)2 = |x− a|2 + |y − b|2 ≤ 1

4
+

1

4
=

1

2
.

Let α = a+ bi, β = c+ di ∈ Z[i] with β 6= 0 and consider

α

β
=

1

N(β)
αβ ∈ Q[i].

Then by the previous argument, there exists γ ∈ Z[i] such that N
(
α
β − γ

)
≤ 1

2 . Therefore,
for r = α− γβ ∈ Z[i] we have α = γβ + r and

N(r) = N(α− γβ) = N

(
α

β
− γ
)
N(β) ≤ 1

2
N(β) < N(β).

As a subring of the field C, Z[i] is an integral domain, which has division algorithm as we
have seen with respect to the norm N : Z[i]→ N. Hence Z[i] is an Euclidean domain. �

For example if we want to divide α = 12+3i por β = 2+2i, then we can form the fraction
in Q[i]:

12 + 3i

2 + 2i
=

(12 + 3i)(2− 2i)

(2 + 2i)(2− 2i)
=

30

8
− 18

8
i = 4− 2i+ (

1

4
− 1

4
i)
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where N(−1
4 + 1

4 i) = 1
8 <

1
2 . Choosing γ = 4− 2i and

r = α− γβ = 12 + 3i− (2 + 2i)(4− 2i) = 12 + 3i− (12 + 4i) = −i

we obtain α = γβ + r and 1 = N(r) < N(β) = 8. Note that −i is invertible, hence α and β
are relatively prime in Z[i]. A greatest common divisor of two elements of Z[i] is unique up
to an invertible element, this is up to a multiple of 1,−1, i or −i. In particular we have

1 = iα− iγβ = iα− (2 + 4i)β.

Here is a second example: Let α = 11 + 3i and β = 1 + 8i. Then

11 + 3i = (1− i)(1 + 8i) + 2− 4i

1 + 8i = (−1 + i)(2− 4i)− 1 + 2i

2− 4i = (−2)(−1 + 2i) + 0

Hence −1 + 2i is a greatest common divisor of α and β and we can write

−1 + 2i = (1 + 8i)− (−1 + i)(2− 4i) = β + (1− i)(α− (1− i)β) = (1− i)α+ (1 + 2i)β

as linear combination of α and β.

Applications

Since Z[i] is a unique factorization domain, the notion of prime and irreducible elements
coincide.

Lemma 4.14 Let α ∈ Z[i] be an element such that N(α) is a prime number. Then α is a
prime element in Z[i].

Proof: It is enough to show that α cannot be factorized into the product of two non-invertible
elements. Hence suppose α = βγ. Then N(α) = N(β)N(γ) since the norm is multiplicative.
But since N(α) is a (positive) prime number, N(β) = 1 or N(γ) = 1. If N(β) = 1, then
β is invertible with inverse β, i.e. β ∈ {1,−1, i,−i}. Analogously, if N(γ) = 1, then γ is
invertible. Thus α is an irreducible element and hence a prime element as Z[i] is a unique
factorization domain. �

Not all prime elements in Z[i] have a norm that is a prime number (in Z). For example,
the prime number 3 is a prime element in Z[i], because if 3 = αβ, with α, β ∈ Z[i], then
9 = N(3) = N(α)N(β). However, there does not exists α ∈ Z[i] with N(α) = 3, because if
α = a+ bi, then N(α) = a2 + b2 = 3, which has no solution on Z4

The prime number 2 is however not a prime element in Z[i] since 2 = (1 + i)(1− i) has a
factorisation in two non-invertible elements. Note that 2 = 12 + 12 is the sum of two squares
and we will prove that a prime number is precisely not a prime element in Z[i] if it is the sum
of two squares. We will actually prove that a prime number p is not a prime element in Z[i]
if and only if it can be written as the sum of two squares.

We need the following technical result before we continue.
4if a = 0, b2 = 3 is impossible and if a = ±1, then b2 = 2 is impossible.
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Theorem 4.15 Let m be a positive integer such that U(Zm) is cyclic. Let a ∈ Z be an
integer that is relatively prime to m. Let n ∈ N+ and d = gcd(n, ϕ(m)) Then the following
are equivalent:

(a) xn = a( modm) has a solution.

(b) a
ϕ(m)
d = 1( modm).

A solution a of the equation xn = a( mod m) is called an nth power residue modulo m. In
case n = 2, a is called a quadratic residue modulo m.

Proof: Let g be a generator of G = U(Zm). Then there exists b ≥ 0 with a = gb. Then

∃c ∈ N : (gc)n = a( modm) ⇔ ∃c ∈ N : gcn = gb( modm)

⇔ ∃c ∈ N : cn = b( mod ϕ(m))

⇔ d = gcd(n, ϕ(m)) | b

⇔ d | b and a
ϕ(m)
d = g

ϕ(m)b
d =

(
gϕ(m)

) b
d

= 1( modm)

�

By Theorem 4.15 we have in particular for an odd prime p, that a is a quadratic residue
modulo p, i.e. x2 = a( mod p) has a solution5, if and only if a

p−1
2 = 1( mod p). The special

case a = −1 is important to us:

Theorem 4.16 Let p be a positive odd prime number, then the following statements are
equivalent:

(a) p can be written as the sum of two squares;

(b) p is not a prime element in Z[i];

(c) −1 is a quadratic residue modulo p;

(d) (−1)
p−1
2 = 1;

(e) p = 1( mod 4).

In the case p = a2 + b2, the numbers a and b are uniquely determined up to sign and order.

Proof: (a)⇔ (b) if p = a2 + b2, then p = (a+ bi)(a− bi) and N(a+ bi) = a2 + b2 = p shows
that a ± bi is a prime element in Z[i], in particular not invertible, hence p is not prime in
Z[i]. On the other hand, if p = αβ, with α, β ∈ Z[i] not invertible, then N(α) 6= 1 6= N(β)
and p2 = N(a+ bi)N(c+ di) shows N(α) = p. Thus if α = a+ bi, then a2 + b2 = N(α) = p.

(a) ⇒ (c): If p = a2 + b2, then p - b otherwise if p | b, then also p | a and hence p2 | p
which is impossible. Thus p = a2 + b2 is equivalent to a2 = −b2( mod p) and as b is invertible
modulo p, (ab−1)2 = −1( mod p), i.e. −1 is a quadratic residue modulo p.

5 or if you like a has a square root in Zp
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(c)⇒ (b) if −1 = a2( mod p) for some a ∈ Z means that p | (a2 + 1) in Z. But then also
p | (a2 + 1) = (a+ i)(a− i) in Z[i]. If p would be a prime element in Z[i], then since Z[i] is a
unique factorization domain, p | a+ i or p | a− i. If p | a+ i, then there exists c+ di ∈ Z[i]
such that a + i = p(c + di) = pc + pdi. Comparing the imaginary part, we see 1 = pd which
is impossible, since the only invertible integers are 1 and −1. Hence p cannot be a prime
element in Z[i], which shows (b).

(c) ⇔ (d) ⇔ (e) follows easily from Theorem 4.15 with a = −1 and n = ϕ(2, p − 1) = 2.
It is clear that (−1)

p−1
2 = 1 holds if and only if (p− 1)/2 is even if and only if p = 1( mod 4).

(Uniqueness): If p = a2 + b2 then p = (a + bi)(a − bi) in Z[i]. For any other numbers
c, d ∈ Z such that p = c2 + d2 we would also have p = (c + di)(c − di). Since Z[i] is a
unique factorization domain, a+ bi must be associated to c+ di or c− di. Hence there exists
u ∈ U(Z[i]) such that a+bi = u(c±di). Substituting the four choices u ∈ {±1,±i}, we obtain
that a = ±c and b = ±d or a = ±d and b = ±c. �

Remarks: Note that the uniqueness of Theorem 4.16 does not say that for any number n that
can be written as n = a2 + b2, the numbers a and b are uniquely determined. For instance
50 = 52 + 52 = 12 + 72.

Fermat had thought that his so-called 5th Fermat number n = 2(25) +1 = 4294967297 was
a prime number. This number is a sum of two squares as

n =
(
216
)2

+ 12 = 655362 + 12.

Euler found a different way to write this number as the sum of two squares, namely

n = 622642 + 204492.

Hence Proposition 4.16 shows that n cannot be a prime number, as the squares are different.
We have proven that n is not a prime number without having to decompose it.

Condition 4.16(e) is easy to verify. Hence odd primes p that are not primes in Z[i] are
precisely the primes p such that p = 1 + 4n for some n ∈ Z, like 5, 13, 17, . . .. The set of such
primes is infinite:

Corollary 4.17 There are infinitely many prime numbers that can be written as the sum of
two squares and there are infinitely many prime numbers that cannot be written as the sum
of two squares.

Proof: The proof goes by contradiction. Suppose there are only finitely many positive prime
numbers of the form 1 + 4n. Say, {p1, . . . , ps} are all distinct positive prime numbers pi ∈ N
such that pi = 1( mod 4). Form the number

n = (2p1 · · · ps)2 + 1.

Let p be any prime number that divides n. Then p = 1( mod 4) holds and there must exists
1 ≤ i ≤ s such that p = pi. However, then p | (2p1 · · · ps)2 and as p | n, we conclude p | 1 and
p = 1 a contradiction. Thus the set of prime numbers of the form 1 + 4n must be infinite. By
Theorem 4.16 there are infinitely many prime numbers that can be written as the sum of two
squares.
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Suppose that the set of prime numbers that are of the form 3+4n is finite. Say, {p1, . . . , ps}
are all distinct positive prime numbers pi ∈ N such that pi = 3( mod 4). Let p1 = 3 and form
the number

n = 4p2 · · · ps + 3.

Since n = 3( mod 4), there must exist a prime number p of the form 3 + 4n dividing n
(otherwise if all prime divisors p of n satisfy p = 1( mod 4), then also n = 1( mod 4) - a
contradiction). By assumption p = pi for some 1 ≤ i ≤ s. If p = 3, then 3 | n = 4p2 · · · ps + 3
and therefore 3 | 4p2 · · · ps which is a contradiction, since 3 - 4 and 3 - pi for i ≥ 2. Hence
p = pi for some 2 ≤ i ≤ s. But then pi | n = 4p2 · · · ps + 3 implies pi | 3, which is also a
contradiction. Therefore the set of positive prime numbers of the form 3 + 4n must be infinite
and by Theorem 4.16 there are infinitely many primes that are not the sum of two squares. �

Theorem 4.16 allows us now to somehow characterise the prime elements of Z[i]. Recall
that two elements α and β are called associated if α = uβ for u an invertible element, i.e. in
the case of Z[i], u ∈ {±1,±i}.

Corollary 4.18 Any prime element in Z[i] is associated to one of the following primes:

• i+ i

• a positive prime number p ∈ Z with p = 3( mod 4) or

• a prime element π ∈ Z[i] such that p = N(π) is an odd prime with p = 1( mod 4)

Proof: Suppose α ∈ Z[i] is a prime element. Then αα = N(α) ∈ N, i.e. α | n divides a
number. Since n = pa11 · · · pass is a product of prime numbers in N and since α is a prime
element, α | p, for some prime number p.

If p = 2, then α | 2 = (1 + i)(1 − i) = (−i)(1 + i)2. Hence α is associated to the prime
element 1 + i.

If p = 3( mod 4), then by Theorem 4.16 p is a prime element in Z[i] and α | p shows that
α is associated to p.

If p = 1( mod 4), then p = a2 + b2, for some a, b ∈ Z. Hence p = (a + bi)(a − bi) with
N(a±bi) = p. By Lemma 4.14, π = a+bi and π are prime elements in Z[i]. Since α | p = ππ,
either α | π or α | π. �

Pythagorean triple

As a second application of the unique factorization of Gaussian integers we will classify
Pythagorean triples. A triple (a, b, c) ∈ Z of integers is called a Pythagorean triple if

a2 + b2 = c2 (4.6)

holds. For instance (3, 4, 5) is such a triple, since 9 + 16 = 25 or for instance (5, 12, 13).
A general formula to produce Pythagorean triples is given as follows: For any x, y ∈ Z2 we
define

(a, b, c) = (x2 − y2, 2xy, x2 + y2)

and verify that

a2 + b2 = (x2 − y2)2 + (2xy)2 = x4 + 2x2y2 + y4 = (x2 + y2)2 = c2.
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However, some of these triples will be equal. In order to classify these triples we will re-
strict Pythagorean triples to primitive ones, because if (a, b, c) is a Pythagorean triple, then
also (±a,±b,±c) and (da, db, dc) are Pythagorean triples for all d ∈ Z. Hence we call a
Pythagorean triple (a, b, c) a primitive triple if a, b, c are positive and relatively prime, i.e.

a, b, c > 0 and gcd(a, b, c) = 1.

Note that if (a, b, c) is a primitive Pythagorean triple, then gcd(a, b) = gcd(b, c) = gcd(a, c) =
1, because whenever a number divides two of the three numbers a, b, c it will divide the third
of them due to the equation a2 + b2 = c2. In particular, at most one of the three numbers can
be even.

Lemma 4.19 For each (x, y) ∈ N2, such x and y are relatively prime, have different parity
and 0 < y < x, the Pythagorean triple (x2 − y2, 2xy, x2 + y2) is primitive.

Proof: Since 0 < y < x, each component of the constructed triple is positive.
Since x and y have different parity, x2 + y2 is odd. Hence if there exists a positive prime

number p that divides x2 − y2, 2xy and x2 + y2, then p 6= 2 and

p | x2 − y2 + (x2 + y2) = 2x2

and
p | x2 − y2 − (x2 + y2) = −2y2

shows that p is a common divisor of x and y, contradicting that x and y are relatively prime.
Hence the components are relatively prime and the triple is primitive. �

Using factorzation in Z[i] we are going to show that any primitive Pythagorean triple
(a, b, c) is constructed as in Lemma 4.19.

Let (a, b, c) be a primitive Pythagorean triple. If c would be even, then a and b have to
be odd. But then a2 = 1( mod 4) and b2 = 1( mod 4) shows c2 = a2 + b2 = 2( mod 4),
which is impossible. Hence c must be odd and a and b have different parity. Without loss of
generality we may assume that b is even and a is odd. Of course it is clear that if (a, b, c) is
a Pythagorean triple, then so is (b, a, c).

Proposition 4.20 Every primitive Pythagorean triple (a, b, c) with b even is of the form

(a, b, c) = (x2 − y2, 2xy, x2 + y2)

with x and y relatively prime, x and y have different parity and 0 < y < x.

Proof: Let (a, b, c) be a primitive Pythagorean triple with b even. By the previous remark, we
may assume that a and c are odd. We will write the condition a2 + b2 = c2 as an equation in
Z[i], namely as

(a+ bi)(a− bi) = c2.

Let γ = gcd(a+ bi, a− bi). Then γ | 2a and γ | 2b and therefore

γ | 2 gcd(a, b) = 2 = (1 + i)(1− i).
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By unique factorization in Z[i], if γ is not a unit, then 1± i | γ. But then 2 | N(γ) | c2, which
contradicts c to be odd. Hence γ is a unit and a+ bi and a− bi are relatively prime in Z[i].

By unique factorization, we have that c = pa11 · · · pass as a product of prime elements in
Z[i]. Since a + bi and a − bi are relatively prime and their product is c2 = p2a1

1 · · · p2as
s , we

must have that there exists a subset J ⊆ {1, . . . s} and a unit u such that

a+ bi = u
∏
j∈J

p
2aj
j = u

∏
j∈J

p
aj
j

2

= u(x+ yi)2,

for some x, y ∈ Z. If u = −1, then one can write −1 = i2 and hence a + bi = −(x + yi)2 =
(−y + xi)2. Hence we have actually only two options

a+ bi = (x+ yi)2 or a+ bi = i(x+ yi)2,

for some x, y ∈ Z. Expanding the square yields

a+ bi = (x2 − y2) + 2xyi or a+ bi = −2xy + (x2 − y2)i.

Since we assume b to be even and a to be odd, we can only have the first option, i.e. a = x2−y2

and b = 2xy. Hence
c2 = (x2 − y2)2 + 4x2y2 = (x2 + y2)2

and as c > 0, we have c = x2 + y2. Moreover, as b > 0, x and y have the same sign and we
can choose them to be positive. Furthermore x2 − y2 = a > 0 shows x > y. Any common
factor of x and y would be a common factor of a, b, c. Hence x and y are relatively prime.�



5
Law of quadratic

residues

We return to our discussion on solving equations in Zm. We have already seen when U(Zm) is
cyclic. In case it is, we can try to discuss the existence of nth roots of elements in U(Zm) and
Theorem 4.15 tells us that for a positive integer m such that U(Zm) is cyclic, a ∈ Z an integer
that is relatively prime to m; n ∈ N+ and d = gcd(n, ϕ(m)) we have that xn = a( modm) has
a solution if and only if a

ϕ(m)
d = 1( modm).

For example if we want to solve

x4 = 2( mod 7), (5.1)

here m = 7, a = 2 and n = 4. In this case d = gcd(n, ϕ(m)) = gcd(4, 6) = 2 and aϕ(m)/d =
26/2 = 8 = 1( mod 7). Thus the equation x4 = 2( mod 7) has a solution. To obtain a solution,
we need to find a generator of U(Z7). Note that 2 is not a generator, since 23 = 1( mod 7)
shows that 2 has order 3 in in U(Z7) and not 6 = ϕ(7). However, g = 3 is a generator, since
32 = 9 = 2( mod 7) 6= 1( mod 7) and 33 = 27 = −1( mod 7) 6= 1( mod 7). Thus 36 = 1( mod 7).

Write 2 as a power of g = 3 modulo 7. We have already seen that 32 = 2( mod 7). For
x = 3k for some k ∈ Z we calculate:

x4 = 2( mod 7) ⇔ 34k = 32( mod 7)

⇔ 4k = 2( mod 6)

⇔ 2k = 1( mod 3)

⇔ k = 2( mod 3)

Therefore x = 32+3l = 3233l = 2× (−1)l( mod 7), for l ∈ Z are solutions for (5.1). Hence we
have two different solutions, x ∈ {2,−2}. We verify that (±2)4 = 16 = 2( mod 7). And by
our reasoning, 2 and −2 are the only two solutions of the equation (5.1) modulo 7.

57
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How can we use the solutions we just found to obtain the solutions for

x4 = 2( mod 7n) (5.2)

where n ≥ 2? The idea is to start with one of the solutions, say 2 and try whether or when
x = 2 + 7y is a solution of (5.2), where y has to be determined. For example let n = 2 and
we would like to obtain the solutions of x4 = 2( mod 49). Then we can calculate:

2 = (2 + 7y)4( mod 49)

⇔ 2 = 24 +

(
4

1

)
23 × (7y) +

(
4

2

)
22 × (7y)2 +

(
4

3

)
2× (7y)3 +

(
4

4

)
(7y)4( mod 49)

⇔ 2 = 24 + 4× 23 × 7y( mod 49)

⇔ 2− 24 = 4× 23 × 7× y( mod 49) note that 7 | 2− 24

⇔ −2 = 4× 8× y( mod 7)

⇔ 5 = 4y( mod 7)

⇔ 3 = y( mod 7)

Hence y = 3 + 7l, for some l ∈ Z and

x = 2 + 7y = 2 + 7(3 + 7l) = 23 + 49l = 23( mod 49)

is a solution for (5.2). A similar calculation for the solution −2 and the attempt x = −2 + 7y
yields the solution y = 4( mod 7) and therefore, x = −2 + 7(4 + 7l) = 26( mod 49).

This procedure works in general and for each solution of (5.1) we obtain a solution of
(5.2).

Proposition 5.1 Let p be an odd prime number and a ∈ Z, n ∈ N+ such that p - a, p - n.
Then xn = a( mod p) has a solution if and only if xn = a( mod pm) has a solution for any
m ≥ 1. Moreover, the solution sets of each equation have the same number of solutions.

Proof: Let m ≥ 1 and let x0 be a solution of xn = a( mod pm) and let u ∈ Z be such that
a − xn0 = upm. Since p - a, we have p - xn−1

0 , as otherwise if p | xn−1
0 then also p | a. Recall

that p - n. Then the equation
(nxn−1

0 )y = u( mod p)

has a unique solution, say y ∈ Z. Write nxn0y = u+ pl for some l ∈ Z. We calculate:

(x0 + ypm)n =

n∑
i=0

(
n

i

)
xn−i0 (ypm)i( mod pm+1)

= xn0 +

(
n

1

)
xn−1

0 ypm( mod pm+1)

= xn0 + (u+ pl)pm( mod pm+1)

= xn0 + upm( mod pm+1) = xn0 + a− xm0 ( mod pm+1) = a( mod pm+1)

Hence x0 + ypm is a solution of the equation xn = a( mod pm+1). Since n and ϕ(pm) are
relatively prime, the solution for y is unique and each solution of xn = a(modpm) corresponds
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to a unique solution of xn = a( mod pm+1). Note that any solution of xn = a( mod pm+1)
is also a solution of xn = a( mod pm). Hence the solution sets of both equations are in
correspondence. By induction, we obtain solutions for any m ≥ 1, starting from m = 1. �

Let us specialize to the case of nth power residues module p with n = 2. These residues
are called quadratic residues, i.e. an integer a ∈ Z is called a quadratic residue modulo n if
gcd(a, n) = 1 and x2 = a( mod n) has a solution.

From Theorem 4.15 we have seen for any odd prime p and a ∈ Z with p - a:

x2 = a( mod p) has a solution if and only if a
p−1
2 = 1( mod p).

What can we say about quadratic residues modulo some number n?

Proposition 5.2 Let n = 2bpa11 · · · pass be a positive number and pi 6= pj, i 6= j odd prime
numbers with b ≥ 0 and ai ≥ 1. Let a ∈ Z with gcd(a, n) = 1. then a is a quadratic residue
modulo n, i.e.

x2 = a( mod n)

has a solution if and only if

(i) a
pi−12

= 1( mod pi), for all 1 ≤ i ≤ s

(ii) if b = 2 then a = 1( mod 4) and if b ≥ 3 then a = 1( mod 8).

Proof: By the Chinese Remainder Theorem, x2 = a( modm) has a solution if and only if the
system 

x2 = a( mod 2b)
x2 = a( mod pi

ai)
...

x2 = a( mod ps
as)

has a solution. If b = 1, x2 = a( mod 2) has always a solution. If b = 2, then x2 = a( mod 4)
has only a solution of a = 1( mod 4). If b ≥ 3, then x2 = a( mod 2b) has a solution implies
that x2 = a( mod 8) has a solution. But the only squares modulo 8 are 0, 1, 4 and 2 | 4. Hence
a = 1( mod 8). �

As a technical tool we define the Legendre symbol of an integer a and a prime number p
as (

a

p

)
:=


1 a is a quadratic residue modulo p
0 p divides a
−1 a is not a quadratic residue modulo p

Proposition 5.3 Let p be a positive odd prime number and a, b ∈ Z:

1. a
p−1
2 =

(
a
p

)
( mod p).

2. If a = b( mod p) then
(
a
p

)
=
(
b
p

)
;

3.
(
ab
p

)
=
(
a
p

)(
b
p

)
.
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Proof: If p | a or p | b, then all of the statements (1-3) are true. Hence assume p - a, b.
(1) By Fermat’s Theorem ?? we have that ap−1 = 1( mod p). Hence(

a
p−1
2 + 1

)(
a
p−1
2 − 1

)
= 0( mod p).

Thus a
p−1
2 = ±1( mod p). By Theorem 4.15,

(
a
p

)
= 1 if and only if a

p−1
2 = 1( mod p) and by

the same Theorem,
(
a
p

)
= −1 if and only if a

p−1
2 6= 1( mod p). Hence

(
a
p

)
= a

p−1
2 ( mod p).

(2) is clear.
(3) Using (1) we calculate:(

ab

p

)
= (ab)

p−1
2 ( mod p) = a

p−1
2 b

p−1
2 ( mod p) =

(
a

p

)(
b

p

)
( mod p)

Hence p |
(
ab
p

)
−
(
a
p

)(
b
p

)
. But as the latter difference is between −2 and 2 and p ≥ 3 we

must have equality. �

For a ∈ U(Zp) we have p - a, hence
(
a
p

)
∈ {−1, 1} = U(Z). By Proposition 5.3,

(
ab
p

)
=(

a
p

)(
b
p

)
for all a, b ∈ Z. Therefore this means that the Legendre symbol(

?

p

)
: U(Zp)→ U(Z) is a group homomorphism.

Therefore we have that:

• The product of two quadratic residues or two nonquadratic residues modulo p is a
quadratic residue module p.

• The product of a quadratic residue and a nonquadratic residue modulo p is a non-
quadratic residue modulo p.

• There are as many quadratic residues as nonquadratic residues.

The last item is true, since
(

?
p

)
: U(Zp) → U(Z) is a group homomorphism and the kernel

Q = Ker(
(
−
p

)
) is the set of all quadratic residues modulo p. By Lagrange’s Theorem,

p− 1 = |U(Zp)| = |Q| × |U(Z)| = 2|Q|.

Hence |Q| = p−1
2 and the set of nonquadratic residues module p must have the same cardinal-

ity.

Theorem 5.4 For any positive odd prime number p we have
(
−1
p

)
= (−1)

p−1
2 .

Proof: Apply Theorem 4.15 with a = −1 and n = 2 and m = p as d = gcd(2, p− 1) = 2. �

This means that −1 is a quadratic residue modulo p if and only if p = 1( mod 4).
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Lemma 5.5 (Gauss) Let p be a positive odd prime number and a ∈ Z relatively prime with
p. For any 1 ≤ k ≤ p−1

2 let mk ∈ {1, . . . , p− 1} such that mk = ka( mod p). Then(
a

p

)
= (−1)n( mod p), for n =

∣∣∣∣{mk : mk >
p− 1

2

}∣∣∣∣ .
Proof: . �

Theorem 5.6 For any positive odd prime number p we have
(

2
p

)
= (−1)

p2−1
8 .

Proof: Consider the multiples of 2:

S = {2, 4, 6, . . . , 2× p− 1

2
}

which are all of them less than p. Consider m such that

2m ≤ p− 1

2
< 2(m+ 1).

Then n = |{2k > p−1
2 : k ∈ {1, . . . , p−1

2 }}| =
p−1

2 −m and by Gauss Lemma,
(
a
p

)
= (−1)n.

Consider l ∈ {1, 3, 5, 7} such that p = l + 8k for some k ∈ Z. Then

2m ≤ p− 1

2
=
l − 1 + 8k

2
= 4k +

l − 1

2
< 2(m+ 1)

If l = 1, then m = 4k, and
(
a
p

)
= (−1)2k = 1.

If l = 7, then m = 2k + 1 and
(
a
p

)
= (−1)2k = 1.

�

This means that 2 is a quadratic residue modulo p if and only if p = 1(mod8) or p = 7(mod8).
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