
M561 - Noncommutative Algebra
Academic Year 2021/2022

preliminary version

Christian Lomp

Departamento de Matemática
April 8, 2022



Contents

1 Finite dimensional division algebras 2

2 Commutativity of division algebras 11

3 The tensor product of algebras 18

4 The Brauer group of a field 32

5 Maximal Subfields and Crossed products 41

1



1
Finite dimensional
division algebras

Any element d over a finite dimensional central division algebra D over F is algebraic over F,
because the suablgebra F[d] of D generated by F and d is actually a field extension over F as
the elements of F are central and commute with d. Moreover [F(d) : F] | [D : F] is finite and
hence d is algebraic over F. In particular if F is algebraically closed, then D = F. So there
are no finite dimensional division algebras over C. This does not mean that there are no field
extensions over C at all. For instance the field of fractions C(x) of the polynomial ring C[x] is
an infinite field extension over C and one could go on and construct more C(x1, . . . , xn) field
extensions of C.

Note that the quaternions H are a 2-dimensional division algebra over C, generated by 1
and j. However, H is not central over C as Z(H) = R. Over the real numbers R, we will now
prove a Theorem by Frobenius from 1877 (see [2])1 that says that the R and H are the only
finite dimensional central division algebras over R:

Theorem 1.1 (Frobenius) Let D be an algebraic division algebra over R. Then D is iso-
morphic to R, C or H as R-algebra.

Proof: Without loss of generality we can assume that R ≤ Z(D) is a central subfield of D.
If [D : R] = 1, then clearly D = R. Hence suppose [D : R] ≥ 2 and let α ∈ D \ R. Then as
D is an algebraic extension, α is algebraic over R. Since α 6∈ R, the irreducible polynomial
of α must have degree 2 and R(α) ' C. Hence we can suppose that C also embeds into D
and that there are elements 1, ı ∈ D such that ı2 = −1. If [D : R] = 2, then D = C. Hence
assume that [D : R] > 2 and consider the centralizer of ı in D, i.e.

D+ = {d ∈ D | dı = ıd} = CentD(ı).

1Ferdinand Georg Frobenius (1849-1917), Biography: MacTutor

2

https://mathshistory.st-andrews.ac.uk/Biographies/Frobenius/
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Then D+ is a subalgebra of D that contains C. Furthermore, the inverse of any non-zero
element of D+ will also commute with ı, i.e. D+ is a division algebra over C and by hypothesis
algebraic. However, by the comment proceeding this Theorem, C is algebraically closed and
therefore we must have C = D+. Set D− = {d ∈ D : dı = −ıd}. Then D−D− ⊆ D+ = C.
For any d ∈ D,

d =
1

2ı
(ıd+ dı) +

1

2ı
(ıd− dı) (1.1)

where ıd+ dı ∈ D+ = C and ıd− dı ∈ D−. This shows that D = C⊕D− as C-vector spaces.
Since [D : C] > 2, there exists a non-zero element z ∈ D−, which allows us to define the map

µ : D− → C, x 7→ xz ∈ D+ = C. (1.2)

Since z is algebraic over R and does not belong to R, there exist a, b ∈ R such that

z2 = az + b. (1.3)

On the other hand z2 = µ(z) ∈ C. Hence z2 ∈ C ∩ (Rz ⊕ R) = R, because az = z2 − b ⊂
D−∩D+ = {0}. Hence z2 = b. If b ≥ 0, then there exists c ∈ R such that b = c2 and z2 = c2,
which implies z = ±b ∈ R and which contradicts z 6∈ C. Hence b < 0 and z2 = −c2 for some
c ∈ R. Set  := 1

cz. Then 
2 = z2/c2 = −1. Set k = ı and note that

ı =
1

c
ız = −1

c
zı = −ı, (1.4)

because z ∈ D−. Furthermore, as µ is an isomorphism of C-vector spaces,

D = C⊕ Cz = R⊕ Rı⊕ R⊕ Rk ' H. (1.5)

�

Over the rational numbers there are infinitely many finite dimensional central division
algebras. In what follows we will show how to construct so called quaternion algebras.

Definition 1.2 Let A be a unital ring. A function σ : A → A is called an anti-algebra
homomorphism if σ is a group homomorphism of (A,+), such that

σ(1) = 1 and σ(ab) = σ(b)σ(a), ∀a, b ∈ A. (1.6)

An anti-algebra homomorphism σ : A→ A is called an involution if σ2 = id.

A typical examples for an involution is the transposition of matrices. Complex conjugation
is another example of an involution.

Proposition 1.3 Let A be a unital ring with involution σ such that aσ(a) and σ(a)a are
invertible for all a ∈ A \ {0}. Then A is a division ring.

Proof: For a ∈ A \ {0} we have a
(
σ(a)(aσ(a))−1

)
= 1 =

(
(σ(a)a)−1σ(a)

)
a. Hence a has a

left and right inverse and is therefore invertible. �

Actually the Proposition above works for any map σ : A→ A with aσ(a) and σ(a)a being
invertible for a 6= 0.
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Let R be a commutative ring, a, b ∈ R two elements and consider A = R[x]/〈x2 − a〉. We
can identify elements r ∈ R with their coset r+ 〈x2− a〉. Set ı := x+ 〈x2− a〉. Then 1 and ı
form a basis of A as R-module such that

ı2 = a (1.7)

This means for α = r + sı and β = t+ uı in A:

αβ = (r + sı)(t+ uı) = (rt+ sua) + (ru+ st)ı (1.8)

The R-linear map : A → A defined by u+ vı := u − vı, for all u + vı ∈ A is an algebra
homomorphism of order 2, because for α = r + sı, β = t+ uı in A we calculate:

αβ = (rt+ sua)− (ru+ st)ı = rt− stı+ sua− ruı = (r − sı)t− (r − sı)uı = αβ. (1.9)

Clearly, α = α, for all α ∈ A.
Consider the subset of 2× 2-matrizes over A of the form

Q =

{[
α0 α1

bα1 α0

]
| α0, α1 ∈ A

}
⊆M2(A). (1.10)

which is a subring of M2(A), since it is closed under the multiplication:[
α0 α1

bα1 α0

] [
β0 β1

bβ1 β0

]
=

[
α0β0 + bα1β1 α0β1 + α1β0

bα1β0 + bα0β1 bα1β1 + α0β0

]
=

[
α0β0 + bα1β1 α0β1 + α1β0

bα0β1 + α1β0 α0β0 + bα1β1

]
.

As A-module we can identify Q with A⊕A by sending a matrix
[
α0 α1

bα1 α0

]
to the pair(α0, α1).

The multiplication on A⊕A has then the formula:

(α0, α1) · (β0, β1) := (α0β0 + bα1β1, α0β1 + α1β0) (1.11)

for all αi, βi ∈ A and i = 0, 1. We set Q := Q(a, b, R) = A⊕ A with that multiplication. For
any α, β0, β1 ∈ A we have

(α, 0)(β0, β1) = (αβ0, αβ1) and (β0, β1)(α, 0) = (β0α, β1α) (1.12)

which shows that ε : A → Q given by ε(α) := (α, 0) is an injective ring homomorphism.
Moreover the centre of Q is ε(R) = {(r, 0) : r ∈ R} ⊂ Z(Q), since α = α if and only if α ∈ R.
Thus Q is an R-algebra of rank 4, since Q has a basis as R-module consisting of

(1, 0), (ı, 0),  = (0, 1), k = (0, ı). (1.13)

Abusing notation we will simply write 1 for (1, 0) and ı for (ı, 0). In matrix notation, these
elements look like:

1 =

[
1 0
0 1

]
, ı =

[
ı 0
0 −ı

]
,  =

[
0 1
b 0

]
, k =

[
0 ı
−bı 0

]
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Using that ı2 = a we obtain 2 = (b, 0), k2 = (−ab, 0), ı = (0, ı) = k and k = (0, a) = a. In
particular we obtain the following multiplication table:

ı  k

ı a k a
 −k b −bı
k −a bı −ab

(1.14)

The following Theorem shows that over a field F of characteristic different from 2 and for
non-zero parameters a, b, Q(a, b,F) is a central simple F-algebra that is either a division ring
or isomorphic to M2(F).

Theorem 1.4 Let F be a field with char(F) 6= 2, a, b ∈ F and Q = Q(a, b,F).

1. If a 6= 0 or b 6= 0, then F = Z(Q), i.e. Q is a central F-algebra.

2. If ab 6= 0, then Q is either a central division algebra or isomorphic to M2(F).

Proof: As before, let A = F[x]/〈x2−a〉, ı = x+〈x2−a〉 and Q = A×A with the multiplication
as in (1.11). Note that Q has the basis {1, ı, , k} as vector space over F. As an A-module,
Q has the basis {1, }. Moreover, if α = a + bı ∈ A, then α = α, since ı = −k = −ı.
Similarly, kα = ıα = ıα = αk.

Denote by [a, b] := ab− ba the (additive) commutator in a ring R. Let γ = α0 + α1 ∈ Q,
then the commutators with ı,  and k are:

[ı, γ] = ı(α0 + α1)− (α0 + α1)ı = 2α1k (1.15)
[, γ] = (α0 + α1)− (α0 + α1) = b(α1 − α1) + (α0 − α0) (1.16)
[k, γ] = k(α0 + α1)− (α0 + α1)k = bı(α1 + α1) + (α0 − α0)ı (1.17)

(1) Let γ = α0 + α1 ∈ Z(Q). Then [, γ] = 0 = [ı, γ] and hence by (1.15),

2α1k = 0 b(α1 − α1) = 0 and α0 = α0.

Hence α0 ∈ F . If b 6= 0, then α1 = α1 and therefore, α1 ∈ F. But then 2α1ı = 0 and
char(F) 6= 2 imply α1 = 0. If b = 0, then a 6= 0 and ı is invertible, with inverse a−1ı. Hence
the first equation 2α1ı = 0 and char(F) 6= 2 imply α1 = 0. In both cases γ = α0 ∈ F . It is
clear that any element α0 ∈ F is central in Q, which proves F = Z(Q).

(2) Note that if a 6= 0 6= b, then ı,  and k are units with inverses given by a−1ı, b−1 and
−a−1b−1k respectively. Let I be an ideal of Q and assume I 6= Q. Let γ = α0 + α1 ∈ I be
an element of I. From (1.15) we get that

[k, [ı, γ]] = [k, 2α1k] = 2(α1 − α1)k2 = −2ab(α1 − α1) ∈ I ∩ Fı,

which would be invertible if α1 6= α1. Since I 6= Q, we must have α1 = α1 ∈ F. But then
[ı, γ] = 2α1ı ∈ I ∩ Fı would be invertible if α1 6= 0. Thus we must have α1 = 0 and γ = α0.
Then [, γ] = (α0−α0) ∈ I ∩Fk would be an invertible element if α0 6= α0 and we must have
γ = α0 ∈ F. However this implies finally γ = 0, as otherwise I = Q.

We proved that the only proper ideal of Q is the zero ideal, i.e. Q is a central simple
F-algebra. In particular, any non-zero left Q-module M is faithful. This means in particular
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that the canonical ring homomorphism λM : Q → EndF(M) is injective. In particular,
4 = dim(Q) ≤ dim(M)2.

Suppose Q is not a division algebra there exists 0 6= x ∈ Q without inverse element.
Let M = Qx be the left ideal of Q generated by x. Note that M 6= Q.2 By the argument
above, M and Q/M are non-zero faithful Q-modules 4 ≤ min(dim(M)2, (4 − dim(M))2) As
dim(I) ∈ {1, 2, 3}, the only choice is dim(M) = 2. However, since λM : Q → EndF(M) is
injective and EndF(M) ' M2(F) has the same dimension as Q, we must have that λM is an
isomorphism of rings.

�

The last Theorem raises the immediate question as to how to decide whether Q(a, b,F)
is a division algebra or not. For that reason we define the conjugate of an arbitrary element
x = x0 + x1ı+ x2+ x3k ∈ Q as

x := x0 − x1ı− x2− x3k (1.18)

Note that is an involution of Q, because one can easily check that for x, y ∈ Q:

xy = yx and x+ y = x+ y.

These calculations are straightforward and rely on the simple observation that

ı = k = −k = (−)(−ı) = ı.

For an element x = x0 + x1ı+ x2+ x3k ∈ Q we calculate

xx = (x0 + x1ı+ x2+ x3k)(x0 − x1ı− x2− x3k)

= x2
0 − x0x1ı− x0x2− x0x3k

+x1x0ı− ax2
1 − x1x2k − ax1x3

+x2x0+ x2x1k − bx2
2 + bx2x3ı

+x3x0k + ax3x1− bx3x2ı+ abx2
3 = x2

0 − ax2
1 − bx2

2 + abx2
3 ∈ F

The norm on Q is then defined as the map

N : Q→ F, N(x0 + x1ı+ x2+ x3k) := x2
0 − ax2

1 − bx2
2 + abx2

3 (1.19)

Note that N(−) is a multiplicative map, because Z(Q) = F, i.e. for all x, y ∈ Q:

N(xy) = xyxy = xyyx = xN(y)x = N(x)N(y)

Theorem 1.5 Let F be a field with char(F) 6= 2 and a, b ∈ F \ {0}. Then Q = Q(a, b,F) is a
division algebra if and only if N(x) 6= 0, for all 0 6= x ∈ Q.

Proof: If N(x) = xx 6= 0 for all non-zero x ∈ Q, then N(x) is invertible and by Proposition
1.3, Q is a division algebra. The contrary is clear, since if Q is a division ring, then it has no
zero divisors. Thus xx 6= 0 for all x 6= 0. �

Taking F = R and a = b = −1, we obtain Q(−1,−1;R) = H, which we already knew
to be a division ring. We will prove that over Q there are infinitely non-isomorphic division

2Since x is not invertible, either Qx 6= Q or xQ 6= Q. Without loss of generality we can assume Qx 6= Q.
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algebras of the form Q(a, b;Q). To do so we will recall some basic results of elementary number
theory. In particular how to solve polynomial equations modulo an integer m. Suppose given
a, b ∈ Z we want to solve ax ≡ b( mod m), for some x ∈ Z then this is precisely possible if
the Diophantine equation ax + my = b has an integer solution x, y ∈ Z, which is precisely
possible if gcd(a,m) | b. The solution is then of course given by the (extended) Euclidean
Algorithm, as there exist r, s ∈ Z with ra + sm = gcd(a,m) and if b = gcd(a,m)b′, then for
x = −rb′ we have

ax = −arb′ = gcd(a,m)b′ − sb′m ≡ b( modm).

Theorem 1.6 Let m be a positive integer such that U(Z/mZ) is cyclic. Let a ∈ Z be an
integer that is relatively prime to m. Let n ∈ N+ and d = gcd(n, ϕ(m)) Then the following
are equivalent:

(a) xn ≡ a( modm) has a solution.

(b) a
ϕ(m)
d ≡ 1( modm).

A solution a of the equation xn ≡ a( mod m) is called an nth power residue modulo m. In
case n = 2, a is called a quadratic residue modulo m.

Proof: Let g be a generator of G = U(Z/mZ). Then there exists b ≥ 0 with a = gb. Then

∃c ∈ N : (gc)n ≡ a( modm) ⇔ ∃c ∈ N : gcn ≡ gb( modm)

⇔ ∃c ∈ N : cn ≡ b( mod ϕ(m))

⇔ d = gcd(n, ϕ(m)) | b

⇔ d | b and a
ϕ(m)
d = g

ϕ(m)b
d =

(
gϕ(m)

) b
d ≡ 1( modm)

�

As a technical tool we define the Legendre symbol of an integer a and a prime number p
as (

a

p

)
:=


1 a is a quadratic residue modulo p
0 p divides a
−1 a is not a quadratic residue modulo p

By Theorem 1.6 we have in particular
(
a
p

)
= 1 if and only if a

p−1
gcd(2,p−1) ≡ 1( mod p). The

special case a = −1 is important to us:

Corollary 1.7 Let p be a prime number, then the following statements are equivalent:

(a) −1 is not a quadratic residue modulo p, i.e.
(
−1
p

)
= −1

(b) x2 + 1 is an irreducible element in Fp[x].

(c) (−1)
p−1
2 = −1.

(c) p ≡ 3( mod 4).
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Proof: In case p = 2, none of the three conditions is true. Hence we can assume p to be odd.
The equivalence of (a) and (b) is clear. By Theorem 1.6 (a) is equivalent to (−1)

p−1
2 6≡ 1(modp)

and hence to (−1)
p−1
2 = −1, which in turn is equivalent to p−1

2 being odd. This is equivalent
to p− 1 = 2(2n+ 1) = 4n+ 2 for some n ∈ Z and hence to p ≡ 3( mod 4). �

As a consequence of the fact that Z is a unique factorization domain we conclude that
there exist infinitely many prime numbers p that are congruent to 3 modulo 4.

Corollary 1.8 There exist infinitely many prime numbers p with p ≡ 3( mod 4).

Proof: The proof is by contradiction. Suppose that there are only finitely many prime
numbers p of the form p = 3 + 4n, for some n ∈ N. Let P = {p0, p1, . . . , pm} the set of all
such prime numbers, where pi 6= pj , for i 6= j and p0 = 3. Let x = 4p1 · · · pm + 3. Then since
x is odd and must be divisible by some prime number. Since x ≡ 3( mod 4), not all prime
factors of x can be of the form 1 + 4n. Hence there must exist some prime factor of the form
q = 3 + 4n, for some n ∈ N. Hence q ∈ P. If q = p0 = 3, then q = 3 | x implies 3 | pi for some
i ≥ 1, which is impossible. Hence q = pi for some 1 ≤ i ≤ m, but then pi | 3, which is also
impossible. This shows that we are lead to a contradiction and that there must be infinitely
many prime numbers of the form 3 + 4n. �

Now we will return to our construction of four dimensional division algebras over the
rational numbers. Let F = Q and let b = p be a prime number in Z. We will try to decide
whether there exists a ∈ Z such that Q = Q(a, p;Q) is a division algebra over Q. Note that
A = Q[x]/〈x2 − a〉 is either isomorphic to Q × Q precisely in case a is a perfect square or
A ' Q[

√
a] is a field extension of Q of degree 2. In the first case, Q will have zero divisors,

since if a = c2, then (ı− c)(ı+ c) = 0. Hence we might assume that a is not a perfect square
and that A ' Q[

√
a]. Suppose x = x0 +x1ı+x2+x3k ∈ Q is a non-zero element, such that

N(x) = x2
0 − ax2

1 − p
(
x2

2 − ax2
3

)
= 0. (1.20)

Multiplying by a common denominator, we can assume that all xi are integers. Furthermore,
we can also assume that at least one of the xi’s is not divisible by p (not all of them can be
zero as x 6= 0). Hence modulo p, equation (1.20) becomes:

x2
0 ≡ ax2

1 ( mod p) (1.21)

If p - x1, then a ≡ (x0x
−1
1 )2( mod p) and a is a perfect square modulo p, i.e.

(
a
p

)
= 1.

If p | x1, then also p | x0 and we can cancel a multiple of p from equation (1.20) and
obtain p

(
x2

0 − ax2
1

)
−
(
x2

2 − ax2
3

)
= 0. Hence, taking this equation again modulo p, we obtain

x2
2 ≡ ax2

3 ( mod p) and as either x2 or x3 are not divisible by p, none of them is. Hence, again
we obtain

(
a
p

)
= 1 as a ≡ (x2x

−1
3 )2 ( mod p). We have just proved the following Theorem:

Theorem 1.9 For any a ∈ Z and prime number p such that
(
a
p

)
= −1, the quaternion

algebra Q(a, p;Q) is a four dimensional central division algebra over Q. In particular, if p is
a prime number, such that p ≡ 3( mod 4), then Q(−1, p;Q) is a division algebra.
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Proof: By Corollary 1.7, p ≡ 3( mod 4) is equivalent to
(
−1
p

)
= −1. Hence by Theorem 1.9,

Q(−1, p;Q) is a division algebra. �

The question arises when two of such quaternion division algebras are isomorphic. Suppose
there exists an isomorphism f : Q(a, b;F)→ Q(a′, b′;F) of F-algebras. Then the image of f(ı)
satisfies f(ı)2 = a like also the corresponding element ı′ ∈ Q(a′, b′;F). Hence f(ı) and ı′ are
roots of the same (irreducible) polynomial t2 − a. What the next Lemma will show is that
roots in a division ring of an irreducible polynomial of degree 2 are conjugated. The reader
should be aware that if x is a root of t2− a, then −x. However, this might not be all roots of
t2 − a. For instance in H = Q(−1,−1;R) all six elements ±ı,± and ±k are roots of t2 + 1.
Even worse, for any λ ∈ R the element ω = 1√

λ2+1
(λı+ ) is a root of that polynomial as

ω2 + 1 =
1

λ2 + 1

(
λ2ı2 + λı+ λı+ 2

)
= 0.

Hence the “innocent" looking polynomial t2 + 1 has infinitely many roots in H.

Lemma 1.10 Let D be a division ring with F = Z(D) and [D : F] <∞. Then any two roots
in D of an irreducible polynomial of degree 2 over F are conjugated in D.

Proof: We need to show that if x, y ∈ D are roots of some irreducible polynomial f =
t2 + c1t + c0 ∈ F[t], then there exists d ∈ D \ {0} such that y = dxd−1. Note that as f is
irreducible in F[t], it has no roots in F and therefore x, y ∈ D \ F. Clearly, if f(x) = 0, then
(t− x)(t+ x+ c1) = t2 + (x+ c1− x)t− x2− xc1 = t2 + c1t+ c0 = f . Let us consider first the
case y = −x − c1. Then xy = −x2 − c1x = c0 ∈ F = Z(D) is central and xy = yx. Denote
by CentD(x) = {d ∈ D : [d, x] = 0} the centralizer of x in D and define the F-linear map
g : D → D given by g(d) = dx− yd. Then g(D) ⊆ CentD(x), because, for all d ∈ D:

[x, g(d)] = x(dx−yd)−(dx−yd)x = xdx−dxy−dx2+ydx = xdx+dx2+dc1x−dx2−xdx−c1dx = 0.

As x is not central in D, CentD(x) 6= D and hence g is not surjective. Since [D : F] < ∞
and g is F-linear, g can also not be injective and there must exists a non-zero d ∈ D with
dx− yd = g(d) = 0, i.e. dxd−1 = y.

In case y 6= −x− c1. then as f(y) = 0, we have x2 + c1x+ c0 = 0 = y2 + c1y + c0. Hence
(x + c1)x = y(y + c1) and adding yx to both side, we obtain (x + c1 + y)x = y(x + c1 + y).
Since d = x+ c1 + y 6= 0, we obtain y = dxd−1. �

Assume F is a field of characteristic not 2. An element a ∈ F is called a square in F if
there exists c ∈ F with a = c2, or equivalently if x2 − a is not irreducible in F[x].

Theorem 1.11 Let F be a field of characteristic not 2, a, b, b′ ∈ F \ {0}. If a is not a square
in F and Q(a, b;F) ' Q(a, b′;F) as F-algebras then b/b′ ∈ Im(Na), where

Na : F[x]/〈x2 − a〉 → F, Na(c0 + c1ı) = c2
0 − ac2

1.

Proof: Suppose f : Q(a, b;F)→ Q(a, b′;F) is an isomorphism of F-algebras. Denote the basis
of Q(a, b;F) by 1, ı, , k and the basis of D := Q(a, b′,F) by 1, u, v, w. Then

u2 = a, v2 = b′, w = uv = −vu.
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Note also that the subspace of elements that anti-commute with u is

D−u = {d ∈ D | ud = −du} = Fv ⊕ Fw.

Set u0 = f(ı) and v0 = f(). Then

u2
0 = f(ı2) = a, v2

0 = f(2) = b, u0v0 = −v0u0.

In particular u and u0 are elements of D and roots of the irreducible polynomial x2−a ∈ F[x].
By Lemma 1.10, u and u0 are conjugated, i.e. there exists q ∈ D with u = qu0q

−1. Set
ṽ = qv0q

−1 ∈ D. Then
uṽ = qu0v0q

−1 = −qv0u0q
−1 = −ṽu.

Hence ṽ ∈ D−u and there exists c0, c1 ∈ F such that ṽ = c0v + c1w. Then

b = qv2
0q
−1 = ṽ2 = (c0v + c1w)(c0v + c1w)

= c2
0v

2 + c0c1vw + c0c1wv + c2
1w

2

= c2
0b
′ − ab′c2

1

= b′Na(c0 + ıc1)

Hence b/b′ ∈ Im(Na). �

Corollary 1.12 Q(−1, p;Q) 6' Q(−1, q;Q) for all prime numbers p 6= q congruent to 3
modulo 4.

Proof: Clearly, a = −1 is not a square in Q. Hence A = Q[x]/〈x2 + 1〉 ' Q(ı) is a field and
N−1 is the square of the usual norm on C, i.e. N−1(c0 + c1ı) = c2

0 + c2
1. If p/q ∈ Im(N−1) then

there exists c0, c1 ∈ Q with p = q(c2
0 + c2

1). Write c0 =
c′0
d and c1 =

c′1
d , with c

′
0, c
′
1 ∈ Z and d

the common denominator of c0 and c1.Hence d2p = q(c′20 + c′21 ) ∈ Z. Since p ≡ 3( mod 4), we
have

(
−1
p

)
= −1 and therefore, p - c′20 + c′12. Hence p = q. �

Corollary 1.13 There exist infinitely many non-isomorphic division algebras of dimension
4 over Q.

Let us finish this section with a comment on the construction of Q(a, b;K). The two
elements ı and  are algebra generators of Q(a, b;K) and in particular we have a surjective
map from the free algebra ψ : K〈x, y〉 −→ Q(a, b;K) to Q(a, b;K) sending x to ı and y
to . Looking at the kernel of ψ we see that x2 − a, y2 − b and yx + yx belong to it.
On the other hand it is not hard to see that the free algebra modulo the ideal generated
by these three elements is actually 4 dimensional and that therefore Q(a, b;K) is actually
isomorphic to K〈x, y〉/〈x2− a, y2− b, yx− xy〉. The quantum plane at parameter q is defined
as Kq[x, y] = K〈x, y〉/〈yx− qxy〉. Hence for q = −1 we have that

Q(a, b;K) ' K−1[x, y]/〈x2 − a, y2 − b〉

is a factor algebra of the quantum plane at parameter −1. Similarly, if q is a root of unity
of index n and a, b ∈ K are non-zero elements, one can consider Kq[x, y]/〈xn − a, yn − b〉 and
prove its centrality and simplicity.



2
Commutativity of
division algebras

We have seen that there are infinitely many finite dimensional central division algebras over Q,
while there are only finitely many over R. In this section we prove Wedderburn’s theorem that
says that any finite dimensional division algebra over a finite field is actually commutative.
We also present Jacobson’s result that extends Wedderburn’s result to division algebras that
are algebraic extensions over finite fields.

Before we start we need some facts about cyclotomic polynomials. Let n ≥ 1 and consider
the polynomial xn − 1 ∈ Z[x]. A complex primitive root of unity of index n is

ω = e
2πı
n = cos

(
2π

n

)
+ ı sin

(
2π

n

)
and xn − 1 decomposes into linear factors in C[x] as

xn − 1 =
n∏
k=1

(
x− ωk

)
.

Recall that Euler’s ϕ-function1 is defined as

ϕ : N+ → N+, ϕ(n) := |{k : gcd(k, n) = 1, 0 < k < n}|, ∀n ∈ N+ (2.1)

Lemma 2.1 Let n > 1 and Cn = 〈ω〉 ⊂ C× be the multiplicative cyclic group of order n,
where ω = e

2πı
n . Then

ϕ(n) = |{y ∈ Cn : y is a generator for Cn}| (2.2)
1Leonhard Euler (1707-1783), Biography: MacTutor

11

https://mathshistory.st-andrews.ac.uk/Biographies/Euler/
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Proof: Let A = {k : 0 < k < n, gcd(k, n) = 1} and B = {y ∈ Cn : y is a generator for Cn}.
We show that the mapping f : A → B with f(k) = ωk is a bijection. Let k ∈ A and
consider y = f(k) = ωk. By the extended Euclidean Algorithm, there exist s, t ∈ Z such that
1 = sk + tn. Thus

ys = ωsk = ω1−tn = ω(ωn)−t = ω. (2.3)

This shows that ω ∈ 〈y〉 and therefore Cn = 〈y〉. Let k1, k2 ∈ A such that f(k1) = f(k2).
Without loss of generality we can assume k1 ≥ k2, then

ωk1 = f(k1) = f(k2) = ωk2 ⇒ ωk1−k2 = 1. (2.4)

Since ω has order n, n | k1 − k2. However, 0 6= k1 − k2 < n. Thus k1 = k2, showing that f
is injective. To prove surjectivity, let y ∈ B. Then y = ωm for some m ∈ Z. By the division
algorithm we can divide m by n and obtain m = qn+k, for 0 ≤ k < n. Since ωn = 1, ωqn = 1
and hence y = ωm = ωqnωk = ωk. If k = 0, then y = 1 would be a generator, meaning
Cn = 〈1〉 = {1}, which is absurd as n > 1. Thus 0 < k < n. Suppose gcd(k, n) = d. Then
there are a, b ∈ N such that k = ad and n = bd. Hence

(ωk)b = ωadb = ωna = 1 (2.5)

and as the order of y = ωk is n, we must have n | b. But then n = bd and n | b implies 1 | d,
i.e. d = 1. Therefore k ∈ A and y = f(k). �

The primitive roots of unity of index n are of the form ωk for 1 ≤ k ≤ n and gcd(k, n) = 1,
because the generator of the cyclic group of order n, Cn = {ωk : k ∈ Z} are precisely of that
form. The cyclotomic polynomial of index n is defined as

Φn =
∏

gcd(k,n)=1

(
x− ωk

)
,

where it is understood that k runs between 1 and n. Note that if n = de, then ωe is a root of
unity of index d. Hence,

xn − 1 =
∏
e|n

∏
gcd(n,k)=e

(x− ωk) =
∏
n=de

∏
gcd(d,k)=1

(
x− ((ωe)k

)
=
∏
d|n

Φd. (2.6)

By induction we can show that Φn ∈ Z[x], because for n = 1, we have Φ1 = x−1 ∈ Z[x] and
if n ≥ 1 and we have already proven that Φd ∈ Z[x] for all d < n. Then g =

(∏
d|n,d 6=n Φd

)
∈

Z[x] and hence Φn ∈ Z[x] since xn − 1 = Φng ∈ Z[x].

Theorem 2.2 (Wedderburn) Any finite division algebra is commutative.

Proof: Let F = Z(D) be the center ofD. Then F is a finite field and has positive characteristic,
say p > 0. In particular |F| = q = pk for some k ≥ 1. Since D is a finite dimensional vector
space over F, |D| = qn, for some n ≥ 1. We will show n = 1.

Consider the multiplicative group G = D \{0} and a set of representative of its conjugacy
classes C = F× ∪ {x1, . . . , xm}, where the conjugacy classes of each non-zero central element
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z ∈ F× are singletons and the elements xi are non-central representatives of the remaining
conjugacy classes [xi] = {yxiy−1 | y ∈ G}. In particular,

G = F× ∪
m⋃
i=1

[xi] (2.7)

Let x be an element, [x] its conjugacy class and CentD(x) = {y ∈ D : yx = xy} the
centralizer in D. Then Cx := CentD(x)× is a subgroup of G = D× and the map

f : G/Cx −→ [x], yCx 7→ yxy−1

is a bijection. Furthermore, the centralizer CentD(x) is a subdivision ring of D and contains
F = Z(D). Hence |CentD(x)| = qr, for r = dim F(CentD(x)) that divides n. Thus,

|[x]| = |G|
|Cx|

=
qn − 1

qr − 1
.

Applying this identity to (2.7) we obtain:

qn − 1 = |D×| = |F×|+
m∑
i=1

|[xi]| = q − 1 +

m∑
i=1

qn − 1

qri − 1
, (2.8)

where ri = dim F(CentD(xi)). Since Φn | x
n−1

xri−1 , for all i, we obtain

Φn(q) | qn − 1−
m∑
i=1

qn − 1

qri − 1
= q − 1.

Let ω = cos
(

2π
n

)
+ ı sin

(
2π
n

)
, then Φn(q) =

∏
gcd(n,k)=1(q − ωk) and

‖Φn(q)‖2 =
∏

gcd(n,k)=1

‖q − ωk‖2

=
∏

gcd(n,k)=1

((
q − cos

(
2πk

n

))2

+ sin

(
2πk

n

)2
)
.

=
∏

gcd(n,k)=1

(
q2 − 2q cos

(
2πk

n

)
+ 1

)
≤ |q − 1|2 = q2 − 2q + 1.

However, q2 − 2q cos
(

2πk
n

)
+ 1 ≥ 1 and q2 − 2q cos

(
2πk
n

)
+ 1 ≤ q2 − 2q + 1 if and only if

cos
(

2πk
n

)
≥ 1 if and only if k = n. Hence we must have n = k = 1 and D = Z(D) = F. �

Wedderburn’s Theorem has some immediate consequences:

Corollary 2.3 Any finite ring without zero divisors is a (commutative) field.

Proof: In an Artinian ring, any non-zero divisor is invertible. Hence any finite ring without
zero divisors is a division ring and by Wedderburn’s Theorem a field. �

Using Euler’s ϕ-function we will now prove that a finite groups is cyclic if it has for each
divisor d of its order at most one subgroup of order d. This will be a key step to prove that
the multiplicative group of a finite field is cyclic.
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Theorem 2.4 The following statements are equivalent for a finite group G of order n.

(a) G is cyclic;

(b) for every divisor d of n, there exists exactly one subgroup H of G of order d;

(c) for every divisor d of n, there exists at most one subgroup H of G of order d.

Moreover, n =
∑

d|n ϕ(d) holds.

Proof: Let G be a group of order n and denote by ∼ the equivalence relation a ∼ b if and
only if 〈a〉 = 〈b〉, for all a, b ∈ G. Then ∼ yields a partition of G into distinct equivalent
classes, i.e.

G =
⋃̇

a∈Λ
[a]∼ (2.9)

for some set of representatives Λ ⊂ G. Note that if a ∈ Λ, then [a]∼ is precisely the set of
generators of the cyclic subgroup C = 〈a〉. Moreover, |C| = d | n and |[a]∼| = ϕ(d). For any
divisor d | n, let cd be the number of different cyclic subgroups of order d of G. Then the
partition 2.9 yields:

n = |G| =
∑
a∈Λ

|[a]∼| =
∑
d|n

cdϕ(d). (2.10)

(a)⇒ (b): Suppose G is cyclic, then we can assume G = Cn. Let d | n be a divisor of n.
Then there exist at least one subgroup H of order d, which is

H = 〈xn/d〉 = {1, xn/d, x2n/d, . . . , x(d−1)n/d}. (2.11)

Hence cd ≥ 1, for all d | n. Supose there exists another subgroup of order d, say H ′ = 〈xk〉,
which is of course also cyclic, then xkd = 1 = xn. Hence n | dk and (n/d) | k, i.e. H ′ ⊆ H.
But since |H ′| = d = |H|, both subgroups are equal. Hence cd = 1, for all d | n and (b) and
(c) hold. Also from (2.10) we obtain the identity n =

∑
d|n ϕ(d).

(c)⇒ (a): Let G be a group of order n, then by (c), cd ≤ 1, for all d | n. Hence by (2.10)

n = |G| =
∑
d|n

cdϕ(d) ≤
∑
d|n

ϕ(d) = n. (2.12)

This shows cd = 1 for all d | n and in particular also cn = 1, i.e. G is cyclic. �

As an application of Proposition 2.4 we can deduce that the multiplicative group of a
finite field is cyclic. This is an important property and various modern cryptographic systems
rely on this fact.

Theorem 2.5 Let F be a field and G = (F×, ·) its multiplicative group. Then any finite
subgroup of G is cyclic.

Proof: Let H ≤ G be a subgroup of order n. Suppose C1 and C2 are cyclic subgroups of H
of the same cardinality, i.e. |C1| = |C2| = d | n. Any x ∈ C1 ∪ C2 is a root of the polynomial
td − 1, since xd = 1. Since polynomials with coefficients in a field of degree d have at most d
roots, we conclude that C1 ∪C2 has at most d elements. Thus C1 = C2. Therefore, H has at
most one cyclic subgroup for each divisor d | n. By Proposition 2.4, H is cyclic. �
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In particular, if R is a finite subring of a division ring, then it must be a field. This implies
that we can generalize our result that any finite subgroup of the multiplicative group of a
field is cyclic to domains of positive characteristic. Say that a domain D has characteristic
p > 0 if pd = 0 for all d ∈ D. Hence Fp ' Z1D is a central subfield of D.

Corollary 2.6 Let D be a domain of characteristic p > 0. Then any finite subgroup of the
group of units U(D) is cyclic.

Proof: Identify Fp with the subring Z1D. Let G ≤ U(D) be a finite subgroup and consider
the subring R of D generated by G and Fp, i.e.

R =

{
m∑
i=1

aigi | ai ∈ Fp, gi ∈ G

}
.

Then |R| ≤ p|G| is a finite subring of D and by the previous Corollary a field. By Theorem
2.5, U(R) is a cyclic group and so is its subgroup G. �

Our aim is to show Jacobson’s result which extends Wedderburn’s Theorem from finite
to algebraic division algebras over finite fields. In order to do so we will prove first several
sufficient conditions for a division algebra to be commutative.

Lemma 2.7 Let y be an element of a ring D without non-zero nilpotent elements. If y
commutes with all (additive) commutators in D, then y is central.

Proof: Note that for all a, b, c ∈ D one has [ab, c] = a[b, c] + [a, c]b and also [a, ab] = a[a, b] as
it is easily verified. Hence for x, y ∈ D:

[[x, xy], y] = [x[x, y], y] = x[[x, y], y] + [x, y]2.

Thus, if y commutes with all commutators, then [[x, xy], y] = 0 = [[x, y], y] and therefore
[x, y]2 = 0. By hypothesis [x, y] = 0, i.e. y commutes with x.�

Corollary 2.8 Let D be a ring without non-zero nilpotent elements. Then D is commutative
if and only if all additive commutators are central.

Of course, a division ring is a domain and hence has no nilpotent elements. Thus if D is
a non-commutative division ring and x ∈ D \ Z(D), then there exists y ∈ D with [x, y] 6= 0.
Hence x = x[x, y][x, y] = [x, xy][x, y]−1. This shows that any non-commutative division ring
is generated as a Z(D)-division algebra by 1 and all of its non-zero additive commutators.

The next rather technical looking Lemma is a big step towards our goal and was first
proved by I. Herstein.2.

Lemma 2.9 (Herstein’s Lemma) Let D be a division ring of characteristic p > 0. Suppose
a ∈ D \Z(D) is a torsion element in D×. Then there exists an additive commutator y ∈ D×
and some i > 1 such that

yay−1 = ai 6= a.

2Israel Nathan Herstein, 1925-1988, Biography: MacTutor

https://mathshistory.st-andrews.ac.uk/Biographies/Herstein/


CHAPTER 2. COMMUTATIVITY OF DIVISION ALGEBRAS 16

Proof: Let Fp be the prime subfield of Z(D) and consider the field extension K = Fp[a]. Since
a is a torsion element in D×, the field extension K is finite over Fp and there exists n ≥ 1
such that |K| = pn. In particular, apn = a. Consider the inner derivation δ = [a,−] : D → D
given by δ(x) = [a, x] = ax − xa. Since a 6∈ Z(D), δ 6= 0. However, since K is commutative,
δ(K) = 0. Thus δ is a K-linear map, because δ(zx) = [a, zx] = [a, z]x + z[a, x] = zδ(x), for
all z ∈ K and x ∈ D. Our aim is now to show that δ has an eigenvector y in D. For this
purpose, let λ : D → D denote the left multiplication by a, i.e. λ(x) = ax and let ρ : D → D
denote the right multiplication by a, i.e. ρ(x) = xa, for x ∈ D. Then δ = λ − ρ. Note that
λ and ρ are K-linear and that the associativity of the multiplication implies that both maps
commute, i.e. ρλ = λρ. Furthermore, since apn = a, we have that λpn = λ and ρpn = ρ and
in particular,

δp
n

= (λ− ρ)p
n

=

pn∑
i=0

(
pn

i

)
(−1)iλn−iρi = λp

n
+ (−1)p

n
ρp

n
= λ− ρ = δ,

because p |
(
pn

i

)
for all 0 < i < pn and (−1)p

n
= −1 if p is odd. Thus δ is a root of the

polynomial tpn − t ∈ K[t]. As |K| = pn, we know that K is the splitting field of tpn − t and
therefore, tpn − t =

∏
b∈K×(t− b)t. Since for any ϕ ∈ EndK(D), the evaluation map

Ψϕ : K[t]→ EndK(D) with f 7→ Ψϕ(f) := f(ϕ)

is a ring homomorphism (with 1 ∈ K being send to the identity map Id) we obtain

0 = δp
n − δ = Ψδ

(
tp
n − t

)
= Ψδ

 ∏
b∈K×

(t− b)t

 =
∏
b∈K×

(δ − bId)δ.

Note that the last “product" is actually a product of compositions of maps whose order is not
relevant since the functions δ−bId mutually commute. As δ 6= 0 and the

∏
b∈K×(δ−bId)δ = 0,

there must exists some b0 ∈ K× such that δ−b0Id is not injective. Hence, there exists x ∈ D×
such that δ(x) = b0x. Spelled out, this means (a − b0)x = xa. Since b0 6= 0, a − b0 6= a and
xax−1 = a−b0 6= a. The multiplicative order of xax−1 and the order of a are the same. Since
K× is cyclic by Theorem 2.5, the elements xax−1 and a generate the same cyclic subgroup, as
for each divisor there exists precisely one subgroup of that order. Hence xax−1 = ai for some
i. In particular, xa = aix. As said before, xax−1 = a−b0 6= a as b0 6= 0. Let y = δ(x) = [a, x].
Then ya = axa− xa2 = ai+1x− aixa = ai[a, x] = aiy and as y = [a, x] 6= 0, ai = yay−1. �

Theorem 2.10 A division ring is commutative if and only if all non-zero additive commu-
tators have finite order.

Proof: Clearly, if a division ring D is a field, then there are no non-zero additive commutators
and the necessity holds vacuously. On the other hand, suppose that all non-zero additive
commutators in D have finite order. Let F = Z(D) and suppose that D is non-commutative.
Then there exists a non-zero non-central additive commutator, say [x, y] in D \ F. For any
z ∈ F× we also have that z[x, y] = [x, zy] is a non-zero non-central additive commutator.
Hence by hypothesis, [x, y] and z[x, y] have finite order and there exists k > 1 such that
[x, y]k = 1 = (z[x, y])k. But then zk = (z[x, y])k = 1 shows that all non-zero elements of
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F have finite order. Thus F has a prime subfield of positive characteristic, say p > 0. By
Herstein’s Lemma, there exists a commutator [u, v] ∈ D× such that

[u, v][x, y][u, v]−1 = [x, y]i 6= [x, y] (2.13)

for some i > 0. The multiplicative subgroup G of D× generated by [u, v] and [x, y] is therefore
finite, since both generators have finite order and [u, v][x, y] = [x, y]i[u, v] holds. Hence every
element of G can be written as [u, v]a[x, y]b for some a, b that are bound by the order of [u, v]
and the order of [x, y] respectively. By Corollary 2.6, G is cyclic and hence Abelian. But then
[x, y] and [u, v] would commute and equation (2.13) would imply [x, y] = [x, y]i, contradicting
Herstein’s Lemma. Hence there cannot exists a non-zero non-central additive commutator.
Thus all commutators are central and the commutativity of D follows by Corollary 2.8. �

Theorem 2.11 (Jacobson) Any division algebra that is algebraic over a finite field is com-
mutative.

Proof: If Fp is the prime subfield of an algebraic division algebra D. Then by hypothesis any
element a ∈ D is algebraic over Fp. The field extension Fp[a] is finite and hence a has finite
order. By Theorem 2.10, D is commutative. �



3
The tensor product of

algebras

Let R be a ring, UR a right R-module, RV a left R-module and T an Abelian group.
A map β : U × V → T is called Z-bilinear (or bilinear) if β(u,−) : V → T and β(−, v) :

U → T are additive, i.e. Z-linear, for all u ∈ U and v ∈ V . The set of bilinear maps from
U × V to an Abelian group T is denoted by Bil(U × V, T ).

A Z-bilinear map β : U × V → T is called R-balanced if

β(ur, v) = β(u, rv), ∀u ∈ U, v ∈ V, r ∈ R.

A pair (T, τ) of an Abelian group T and an R-balanced map τ : U × V → T is called a
tensor product of U and V if it satisfies the universal property that for any R-balance map
β : U × V → G to some Abelian group G, there exist a unique Z-linear map γ : T → G such
that β = γ ◦ τ , i.e. the following diagram commutes:

U × V

τ
##

β // G

T
∃γ

?? .

Obviously, if a tensor product (T, τ) exists, then it is unique up to isomorphisms since for
two pairs (T, τ) and (T ′, τ ′), there are unique linear maps γ : T → T ′ and γ′ : T ′ → T such
that τ ′ = γ ◦ τ and τ = γ′ ◦ τ ′. Thus τ = (γ′ ◦ γ) ◦ τ and τ ′ = (γ ◦ γ′) ◦ τ ′. By the uniqueness
part of the definition of a tensor product, we have idT = γ′ ◦ γ and idT ′ = γ ◦ γ′. Hence,
γ : T → T ′ is an isomorphism and τ ′ = γ ◦ τ .

Tensor products exists: let F = Z(U×V ) be the free Abelian group with basis {eu,v |
(u, v) ∈ U × V }. Let N be the subgroup of F generated by all elements of the form

eu+u′,v − eu,v − eu′,v, eu,v+v′ − eu,v − eu,v′ , eur,v − eu,rv

18
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for all u, u′ ∈ U, v, v′ ∈ V, r ∈ R. Set T := F/N . Then the map

τ : U × V → T, with (u, v) 7→ eu,v +N

is R-balanced, by the way N is generated, i.e. for instance

τ(u+ u′, v) = eu+u′,v +N = eu,v + eu′,v +N = τ(u, v) + τ(u′, v).

for all u, u′ ∈ U, v ∈ V and moreover, for all r ∈ R:

τ(ur, v) = eur,v +N = eu,rv +N = τ(u, rv).

Let β : U × V → G be any other R-balanced map with Abelian group G. Then since
homomorphisms on free objects are defined on their basis elements, we define a map γ′ :
F → G by setting γ′(eu,v) := β(u, v), for all (u, v) ∈ U × V . Since β is R-balanced, the
generators of the subgroup N belong to the kernel of γ′ and we can lift γ′ to a Z-linear map
γ : T = F/N → G given by

γ(eu,v +K) := β(u, v), ∀(u, v) ∈ U × V.

Thus, β = γ ◦ τ and (T, τ) is indeed a tensor product of U and V .
Suppose there exists an R-balanced map β : U×V → T ′ to some Abelian group T ′. Then,

as F is free, there exists a unique homomorphism of Abelian groups γ′ : F → T such that

γ′(eu,v) = β(u, v), ∀(u, v) ∈ U × V.

As β is R-balanced, all generators of N , i.e. the elements of the form eu+u′,v − eu,v − eu′,v,
eu,v+v′ − eu,v − eu,v′ and eur,v − eu,rv, belong to the kernel of γ′. Thus γ′ can be lifted to a
group homomorphism γ : T = F/N → T ′ and the following diagram comute:

U × V β //

i
��

T ′

F

∃!γ′
77

πN
// T

γ

OO

where i : U × V → F denotes the map i(u, v) = eu,v. Then clearly β = γ′i and γ′ = γπN .
Thus β = γπN i = γτ . Since γ′ is unique and πN is surjective, also γ is unique.

Since tensor products are unique up to isomorphism, we denote by (U ⊗R V, τ) a tensor
product of U and V and set u ⊗ v := τ(u, v), for any (u, v) ∈ U × V . An element of this
form is called a pure tensor. Note that the elements of U ⊗R V are generated by pure tensors
u⊗ v, but that linear combinations of the form

∑n
i=1 ui ⊗ vi are in general not unique. From

the construction of the tensor product we can also deduce that

(u+ u′)⊗ v = u⊗ v + u′ ⊗ v, u⊗ (v + v′) = u⊗ v + u⊗ v′, ur ⊗ v = u⊗ rv

holds, for all u, u′ ∈ U, v, v′ ∈ V and r ∈ R.

Lemma 3.1 Let R be a ring, f : U → U ′ a homomorphism of right R-modules and g : V →
V ′ a homomorphism of left R-modules. Then there exists a unique homomorphism of Abelian
groups

f⊗g : U ⊗R V → U ′ ⊗R V ′

with (f⊗g)(u ⊗ v) = f(u) ⊗ g(v). Moreover, for f, f1, f2 : U → U ′ and g, g1, g2 : V → V ′,
(f1 + f2)⊗g = f1⊗g + f2⊗g as well as f⊗(g1 + g2) = f⊗g1 + f⊗g2 hold.
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Proof: Define β : U × V → U ′ ⊗ V ′ by (u, v) 7→ β(u, v) = f(u)⊗ g(v), which is R-balanced,
because for example for u, u1, u2 ∈ U , v, v1, v2 ∈ V and r ∈ R we have

β(u1 + u2, v) = f(u1 + u2)⊗ g(v) = (f(u1) + f(u2)⊗ g(v) = f(u1)⊗ g(v) + f(u2)⊗ g(v)

= β(u1, v) + β(u2, v)

and
β(ur, v) = f(ur)⊗ g(v) = f(u)r ⊗ g(v) = f(u)⊗ rg(v) = β(u, rv)

By the universal property of the tensor product, there exists a unique group homomorphism
γ : U ⊗R V → U ′ ⊗R V ′, such that

f(u)⊗ g(v) = β(u, v) = γ ◦ τ(u, v) = γ(u⊗ v), ∀(u, v) ∈ U × V.

�

Since f ⊗ g is determined by f and g we have in particular idU⊗V = idU ⊗ idV .

Lemma 3.2 Let R be a ring UR a right R-module and RV a left R-module. Then

λV : R⊗R V → V, λV (r ⊗ v) = r · v, ∀r ∈ R, v ∈ V

ρU : U ⊗R R→ U, ρU (u⊗ r) = u · r, ∀r ∈ R, u ∈ U.

are isomorphisms of Abelian groups.

A bimodule over R is a left R-module U such that U is also a right R-module and both
scalar multiplications are compatible, i.e. r · (u · r′) = (r · u) · r′, for all r, r′ ∈ R and u ∈ U .
The most common examples we will consider stem from ring extensions: if R and S are
associative untial rings and f : R → S is a ring homomorphism. Then S is an R-bimodule
with scalar multiplication r · s = f(r)s and s · r = sf(r), for all r ∈ R and s ∈ S. For instance
if S = Mn(R) is the n × n matrix ring with entries in R and f : R → Mn(R) is defined
by f(r) = rIn, with In being the identity matrix of Mn(R), then Mn(R) is an R-bimodule.
We denote an R-bimodule by RUR. In case R is commutative, any left R-module becomes
naturally a right R-module with the same scalar multiplication and vice versa.

Given two R-bimodules RUR and RVR, the tensor product U ⊗R V becomes naturally an
R-bimodule by defining r · (u⊗ v) = ru⊗ v and (u⊗ v) · r = u⊗ vr.

Proposition 3.3 Let U, V,W be R-bimodules and (Ui)i∈I and (Vi)i∈I be families of R-bimodules.

1. HomR(U ⊗R V,W ) ' HomR(U,HomR(V,W )) by f 7→ [u 7→ [v 7→ f(u⊗ v)]].

2. (U ⊗R V )⊗RW ' U ⊗R (V ⊗RW ) with (u⊗ v)⊗ w 7→ u⊗ (v ⊗ w).

3. τU,V : U ⊗R V ' V ⊗R U with u⊗ v 7→ v ⊗ u.

4.
(⊕

i∈I Ui
)
⊗R V '

⊕
i∈I (Ui ⊗R V ) with (ui)i∈I ⊗ v 7→ (ui ⊗ v)i∈I

5. If R is commutative, X resp. Y are bases for U resp. V as R-modules, then {x ⊗ y |
(x, y) ∈ X × Y } is a basis for U ⊗R V as R-module. In particular if R = F is a field,
then dimF(U ⊗F V ) = dimF(U) dimF(V ).
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Proof: We leave (1-3) to the reader.
(4) For all j ∈ I consider the inclusion respectively projection εj : Uj →

⊕
i∈I Ui and

πj :
⊕

i∈I Ui → Uj . Then idUj = πjεj as well as id⊕
i∈I Ui

=
∑

i∈I εiπi.
By Lemma 3.1,

(πj ⊗ idV ) :

(⊕
i∈I

Ui

)
⊗ V → Uj ⊗ V and (εj ⊗ idV ) : Uj ⊗ V →

(⊕
i∈I

Ui

)
⊗ V

are homomorphisms. Similarly, let ej : Uj⊗V →
⊕

i∈I Ui⊗V and pj :
⊕

i∈I (Ui ⊗ V )→ Uj⊗V
be the embedding and projection. Then there are homomorphisms

α =
∑
i∈I

ei(πi ⊗ idV ) :

(⊕
i∈I

Ui

)
⊗ V →

⊕
i∈I

(Ui ⊗ V )

and

β =
∑
i∈I

(εi ⊗ idV )pi :
⊕
i∈I

(Ui ⊗ V )→

(⊕
i∈I

Ui

)
⊗ V.

Using that πjεi = 0 = pjei for i 6= j we calculate:

βα =
∑
i,j∈I

(εj ⊗ idV )pjei(πi ⊗ idV ) =
∑
i∈I

(εi ⊗ idV )(πi ⊗ idV ) =

(∑
i∈I

πiεi

)
⊗ idV = id(

⊕
i∈I Ui)⊗V

.

Similarly one shows αβ = id⊕
i∈I(Ui⊗V ).

(5) follows from (4), because if U and V are free, then U '
⊕

x∈X Rx and V '
⊕

y∈Y Ry.
Hence

U ⊗ V '

(⊕
x∈X

Rx

)
⊗ V '

⊕
x∈X

(Rx⊗ V ) '
⊕
x∈X

⊕
y∈Y

(Rx⊗Ry) =
⊕

(x,y)∈X×Y

R (x⊗ y)

Since Rx ' R ' Ry, we conclude by Lemma 3.2 that

R(x⊗ y) = Rx⊗Ry ' R⊗Ry ' Ry ' R.

Hence {x⊗ y : (x, y) ∈ X × Y } is a basis for the R-module U ⊗R V . �

In the sequel R will always denote a commutative, associative, unital and non-trivial ring.
Recall that an R-algebra A is a ring with a ring homomorphism iA : R → Z(A). As said
before, A is naturally an R-bimodule. We usually will identify elements of R with their
image in A under iA. The multiplication µ : A × A → A of A is R-balanced and leads to
a homomorphism µ : A ⊗R A → A. The identity element of A is the image of the identity
element of R under iA. Hence iA(1) · a = a = a · iA(1), or in a more diagrammatic language:

A⊗A⊗A
idA⊗µA

��

µA⊗idA // A⊗A
µA
��

A⊗A µA
// A

R⊗A

λA
((

iA⊗idA // A⊗A
µA
��

A⊗R

ρA
vv

idR⊗ηAoo

A



CHAPTER 3. THE TENSOR PRODUCT OF ALGEBRAS 22

A homomorphism f : A → B of R-algebras is a ring homomorphism that satisfies iB =
fiA. Equivalently this means that the following diagram commutes:

A⊗A f⊗f //

µA
��

B ⊗B
µB
��

A
f

// B

R

iB ��

iA // A

f
��
B

Or in other words, that f is an R-linear ring homomorphism, where A and B are considered
R-modules using iA and iB respectively. The set of R-algebra homomorphisms from A to B
is denoted by AlgR(A,B).

The opposite algebra of A is denoted by Aop with A = Aop as sets and

µAop = µAτA,A

where τA,A : A ⊗ A → A ⊗ A sending a ⊗ b to b ⊗ a is the flip map. We clearly have
Z(A) = Z(Aop).

Proposition 3.4 Let A and B be R-algebras. Then A ⊗R B is an R-algebra with multipli-
cation defined by

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′, ∀a, a′ ∈ A, b, b′ ∈ B.

The R-algebra A⊗R B is called the tensor product of algebras A and B.

Proof: All unadorned tensor products are taken over R, i.e. ⊗ = ⊗R. Let µA : A⊗A→ A and
µB : B ⊗B → B denote the multiplications of A and B respectively. Let τ : B ⊗A→ A⊗B
be the flip map, sending b⊗ a to a⊗ b. Then we define

µA⊗B : (A⊗B)⊗ (A⊗B)→ A⊗B, µA⊗B := (µA ⊗ µB) τ

Then for any a, a′ ∈ A and b, b′ ∈ B we have

(a⊗ b)(a′ ⊗ b′) = µA⊗B((a⊗ b)⊗ (a′ ⊗ b′)) = (µA ⊗ µB)(a⊗ a′ ⊗ b⊗ b′) = aa′ ⊗ bb′.

The associativity condition hold because A and B are associative. The identity of A ⊗ B
is given by 1A ⊗ 1B and A ⊗ B becomes an R-algebra via iA⊗B : R → A ⊗ B given by
iA⊗B(r) = iA(r)⊗ iB(r), for all r ∈ R. �

Some comments are in place. First of all, if B = R, then A ⊗R R ' A as R-algebras, by
the isomorphism A ⊗R R → A with a ⊗ r 7→ aiA(r). Similarly R ⊗R A ' A as R-algebras.
Moreover if a ∈ Z(A) and b ∈ Z(B), then a⊗ b ∈ Z(A⊗B).

The tensor product of algebras has also the following universal property:

Proposition 3.5 Let A,B,C be R-algebras, f : A → C and g : B → C be R-algebra
homomorphisms. If f(a)g(b) = g(b)f(a) for all a ∈ A and b ∈ B, then there exists a unique
R-algebra homomorphism

f⊗g : A⊗B → C, such that f⊗g(a⊗ b) = f(a)g(b), ∀a ∈ A, b ∈ B.
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Proof: By Lemma 3.1, there exists an R-linear map f ⊗ g : A ⊗ B → C ⊗ C, such that
f ⊗ g(a⊗ b) = f(a)⊗ g(b). Let µC denote the multiplication of C, then f⊗g := µC(f ⊗ g) is
the homomorphism we are looking for. since f(a) and g(b) commute in C, we obtain for any
a, a′ ∈ A and b, b′ ∈ B:

f⊗g(aa′ ⊗ bb′) = f(aa′)g(bb′) = f(a)g(b)f(a′)g(b′) = (f⊗g(a⊗ b))
(
f⊗g(a′ ⊗ b′)

)
�

One important case is when we tensor an R-algebra A with a matrix ring Mn(R), which
will produce the matrix ring Mn(A) over A.

Lemma 3.6 Let A be any R-algebra and n ≥ 1. Then A⊗Mn(R) 'Mn(A) as R-algebras.

Proof: The map f : A → Mn(A) with f(a) = aIn, for all a ∈ A is an R-algebra ho-
momorphism. Denote by Eij the matrix unit of Mn(A), which is a basis of Mn(A) as
(left) A-module. Then there exists an R-algebra homomorphism g : Mn(R) → Mn(A)
sending rEij to iA(r)Eij , for any r ∈ R and 1 ≤ i, j ≤ n. In order to simplify nota-
tion, we will identify r with iA(r).1 Note that the images of f and g commute, because
f(a)g(rEij) = arEij = rEija = g(rEij)f(a). By Proposition 3.5, there exists an R-algebra
homomorphism such that f⊗g : A⊗Mn(R)→Mn(A) with

f⊗g

∑
i,j

a⊗ rijEij

 =
∑
i,j

arijEij .

Similarly, we can define an R-algebra homomorphism h : Mn(A)→ A⊗Mn(R) by

h

∑
i,j

aijEij

 =
∑
i,j

aij ⊗ Eij .

Then h(f⊗g)
(∑

i,j a⊗ rijEij
)

=
∑

i,j arij⊗Eij =
∑

i,j a⊗rijEij and (f⊗g)h
(∑

i,j aijEij

)
=∑

i,j aijEij shows that h is the inverse of f⊗g. �

Note that the consequence of the last Lemma is that for any n,m ≥ 1:

Mn(R)⊗Mm(R) 'Mn(Mm(R)) = Mnm(R).

Note that for any R-algebra A and R-module M the tensor product M ⊗R A becomes an
A-bimodule, by setting a(m⊗ a′) := m⊗ aa′ and (m⊗ a′)a = m⊗ a′a, for all a, a′ ∈ A and
m ∈M .

Proposition 3.7 Let R be a commutative ring and S a commutative R-algebra.

1. A⊗R S is an S-algebra, for any R-algebra A.

2. Any S-algebra A is also an R-algebra.
1If R is not a field and iA is not injective, then there might exist some non-zero element r in the kernel of

iA and iA(r) = 0 while r 6= 0.
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3. For any R-algebra A and S-algebras B we have a group isomorphism:

AlgS(A⊗R S,B) ' AlgR(A,B), f 7→ f̃(a) = f(a⊗ 1),∀a ∈ A.

4. For any R-algebras A,B we have an isomorphism of S-algebras

(A⊗R B)⊗R S ' (A⊗R S)⊗S (B ⊗R S), (a⊗ b)⊗ s 7→ (a⊗ s)⊗ (b⊗ 1S)

Proof: 1. If iS : R → S and iA : R → Z(A) are the ring homomorphisms, turning S and A
into R-algebras, then iA⊗S = iA⊗iS : R→ Z(A⊗ S) turns A⊗ S into an R-algebra.

2. Clearly, if A is an S-algebra with iA : S → Z(A), then iA◦iS turns A into an R-algebra.
3. If f : A ⊗R S → B is an S-algebra homomorphism and f̃(a) = f(a ⊗ 1), then f̃ is

clearly additive and for any a, a′ ∈ A and r ∈ R we have

f̃(aa′) = f(aa′ ⊗ 1) = f(a⊗ 1)f(a′ ⊗ 1) = f̃(a)f̃(a′)

as well as
f̃(ra) = f(ra⊗ 1) = f(a⊗ r) = rf(a⊗ 1) = rf̃(a)

where we use that the tensor product is taken over R and that the R-module action on A
and S is determined by iA and iS respectively.

The inverse map associates to an R-algebra homomorphism g : A → B the R-algebra
homomorphism g⊗iS : A⊗R S → B. Then for all f ∈ AlgS(A⊗R S,B) and a ∈ A, s ∈ S:

(f̃ ⊗ iS)(a⊗ s) = f(a⊗ 1)iS(s) = sf(a⊗ 1) = f(a⊗ s),

where the last equation uses that f is S-linear and acts on the last tensorand. Conversely if
g ∈ AlgR(A,B), then for any a ∈ A:

g̃ ⊗ iS(a) = (g⊗iS)(a⊗ 1) = g(a).

4. The map (A⊗RB)×S → (A⊗R S)⊗S (B⊗R S) given by (a⊗ b, s) 7→ (a⊗ s)⊗ (b⊗ 1)
is S-balanced and shows that there exists a unique group homomorphism

ψ : (A⊗R B)⊗R S → (A⊗R S)⊗S (B ⊗R S), ψ((a⊗ b)⊗ s) = (a⊗ s)⊗ (b⊗ 1).

For elements a, a′ ∈ A, b, b′ ∈ B and s, s′ ∈ S we calculate:

ψ((a⊗ b)⊗ s)((a′ ⊗ b′)⊗ s′)) = ψ((aa′ ⊗ bb′)⊗ ss′)
= (aa′ ⊗ ss′)⊗S (bb′ ⊗ 1)

= ((a⊗ s)⊗S (b⊗ 1))((a′ ⊗ s′)⊗S (b′ ⊗ 1))

= ψ((a⊗ b)⊗ s)ψ((a′ ⊗ b′)⊗ s′).

It is also not difficult to see that ψ is R-linear. Hence ψ is an R-algebra homomorphism.
The inverse of ψ is given by

ψ−1((a⊗ s)⊗S (b⊗ s′)) = (a⊗ b)⊗ ss′.

Its existence can be shown again by the universal property of the tensor product. �

By passing from A to A ⊗R S, one speaks of extension of scalars, while restricting the
scalar multiplication and viewing an S-algebra as an R-algebra is called restriction of scalars.
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Central Algebras

From now on we will reduce to algebras over a field K and all unadorned tensor products are
taken over K, i.e. ⊗ = ⊗K . Recall that a K-algebra A is called central if Z(A) = K, where
we now stop mentioning the homomorphism iA : K → Z(A) and identify elements of K with
elements of A. We have seen already that Q(a, b;K) if a 6= 0 or b 6= 0 is a central K-algebra.
Similarly, Z(Mn(K)) = KIn ' K shows that Mn(K) is a central K-algebra.

We want to show that for any central K-algebras A and B, also A ⊗ B is a central
K-algebra. In order to do so, recall that CentA(M) = {a ∈ A : am = ma,∀m ∈ M} is the
centralizer subalgebra of a subsetM ⊆ A. The centralizer is easily seen to be an F-subalgebra
of A.

Lemma 3.8 Let A and B be K-algebras with subsets M ⊆ A and N ⊆ B.

1. CentA⊗B(M ⊗N) = CentA(M)⊗ CentB(N).

2. Z(A⊗B) = Z(A)⊗ Z(B)

3. If A and B are central K-algebras, then A⊗B is a central K-algebra.

Proof: Clearly (3) follows from (2) and (2) follows from (1) for M = A and N = B. Hence
we only need to prove (1). Without loss of generality we can assume that M and N are F-
subspaces of A and B respectively, since the centralizer of a subset is equal to the centralizer
of the subspace generated by that subset. HenceM⊗N is a subspace of A⊗B. Furhtermore,
we can assume that 1A ∈ M and 1B ∈ N , since both elements are central and will not
change the centralizers. Clearly CentA(M) ⊗ CentB(N) ⊆ CentA⊗B(M ⊗ N). Let 0 6= z =∑n

i=1 xi ⊗ yi ∈ CentA⊗B(M ⊗ N). If the x1, . . . , xn were linearly dependent, then we could
write some xi as linear combination of the others, say xn =

∑n−1
i=1 λixi and λi ∈ F. Hence

z =
∑n−1

i=1 xi⊗(yi−λiyn) is a representation of z with fewer summands. Hence we can assume
that n is minimal and that the elements {x1, . . . , xn} are linearly independent.

For any v ∈ N we have 1⊗ v ∈M ⊗N and z(1⊗ v) = (1⊗ v)z. But then

0 = z(1⊗ v)− (1⊗ v)z =

n∑
i=1

xi ⊗ (yiv − vyi).

As the xi were linearly independent we deduce, for instance by extending {x1, . . . , xn} to
a basis of A and projecting onto the xi-component, that yiv = vyi, for all i. Thus yi ∈
CentB(N).

Without loss of generality, we might assume that {y1, . . . , ym} is a maximal linearly in-
dependent subset of {y1, . . . , yn} and z can be represented as z =

∑m
i=1 x

′
i ⊗ yi for some

x′i. A similar argument as the one above, forces now the x′i to belong to the centralizer of
M in A, while the y1, . . . , ym are still in the centralizer of N in B. Hence we have shown
z ∈ CentA(M)⊗ CentB(N) and have proven (1). �

Corollary 3.9 Let K ≤ L be a field extension. If A is a central K-algebra, then A⊗K L is
a central L-algebra.
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Simple Algebras

Recall that a ring is simple if the only ideals are the trivial ones. We know already thatMn(A)
is a simple ring whenever A is simple. Hence we conclude that A ⊗Mn(K) ' Mn(A) is a
simple K-algebra whenever A is a simple K-algebra. We will show under which conditions
the tensor product of two simple algebras is simple. Note that this need not be true in general
and for tensor products of fields, there is a connection with inseparable field extensions.

Let F2 be the finite field with 2 elements and consider the polynomial ring R = F2[t]. The
polynomials in x = t2 form a subring of R denoted by S = F2[x]. Consider their fraction
fields L = Frac(R) = F2(t) and K = Frac(S) = F2(x). Then L is a finite field extension of K
and L = K(t) with t2 = x. The element t⊗ 1− 1⊗ t ∈ L⊗K L is nilpotent, because

(t⊗ 1− 1⊗ t)2 = t2 ⊗ 1− 2t⊗ t+ 1⊗ t2 = 2x⊗ 1 = 0.

Thus the ideal I = 〈t⊗ 1− 1⊗ t〉 ≤ L⊗K L is a proper non-zero nilpotent ideal and L⊗L is
not simple. The problem with this example is that L/K is not a separable field extension.

Let us denote the algebraic closure of a field K by K. Let K ⊆ L be a field extension. An
element a ∈ L is called a separable element over K if its minimal polynomial minpolyK(a) has
only simple roots, i.e. it is irreducible in K[x]. A field extension K ⊆ L is called a separable
extension if every element of L is separable over K.

Theorem 3.10 Let K be a field with algebraic closure K and L a finite dimensional simple
field extension of K. Then L is separable over K if and only if K ⊗K L is a semisimple
K-algebra.

Proof: Let L = K(a), for some algebraic element a and minimal polynomial f = minpolyK(a)
with n = deg(f). Then 1, a, · · · , an−1 form a basis of L ' K[x]/〈f〉. Consider the homomor-
phism

φ : K ⊗K L −→ K[x]/〈f〉 with φ

(
n−1∑
i=0

αi ⊗ ai
)

=

n−1∑
i=0

αix
i

where x = x + 〈f〉 denotes the image of x under the canonical projection. Since the pow-
ers 1, a, a2, · · · , an−1 form a basis of L, φ is well-defined. Since 1, x, · · · , xn−1 are linearly
independent, φ is injective and hence an isomorphism of K-algebras as

dimK(K ⊗ L) = dimK(K[x]/〈f〉) = n.

Over K, f decomposes into linear factors, let’s say

f = pm1
1 · · · p

mk
k

where deg(pi) = 1 and mi ≥ 1. By the Chinese remainder theorem we have an isomorphism
of algebras:

K ⊗K L ' K[x]/〈f〉 '
k∏
i=1

K[x]/〈pmii 〉

Note that K[x]/〈pmii 〉 contains a nilpotent element if and only if mi > 1 if and only if a is
separable over K. �
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A K-algebra A is called a separable algebra if A⊗L is semisimple, for any field extension
L of K. In particular, any separable algebra is semisimple itself.

Let us recall that if A is an K-algebra, its dual algebra Aop is also an K-algebra, since
iA : K → Z(A) = Z(Aop). Hence A⊗Aop is an K-algebra as well.

Let λa and ρb denote the left and right action of a ∈ A on A respectively. Then the map
A×Aop → End(KA) with (a, b) 7→ λa◦ρb is K-balanced and yields the existence of an algebra
homomorphism

A⊗Aop → End(KA), a⊗ b 7→ λa ◦ ρa.

This shows that A becomes naturally a (left) A⊗Aφ-module by setting

(a⊗ b) · x = λa ◦ ρb(x) = axb, ∀a, b, x ∈ A.

Hence (twosided) ideals of A corresponds to A ⊗ Aop-submodules of A and A is a simple
algebra if and only if A is a simple A⊗Aop-module.

Let B ≤ A be a subalgebra of A. Then A is also an A ⊗ Bop-module, B ⊗ Aop-module
and B ⊗ Bop-module. The ring of endomorphisms End(B⊗AopA) is a K-algebra where each
λ ∈ K is identified with λidA.

Recall that the centralizer of B in A is defined as CentA(B) = {a ∈ A | ab = ba,∀b ∈ B}.

Lemma 3.11 Let B ≤ A be a subalgebra of A. Then

Φ : End(B⊗AopA) −→ CentA(B), f 7→ Φ(f) := f(1)

is an isomorphism of K-algebras with inverse given by Φ−1(x) = λx, for all x ∈ CentA(B).

Proof: Let f ∈ End(B⊗AopA) and b ∈ B. Then

bf(1) = (b⊗ 1)f(1) = f(λb(1)) = f(b) = f(ρb(1)) = (1⊗ b)f(1) = f(1)b.

This means Φ(f) = f(1) ∈ CentA(B).
Furthermore, for f, g ∈ End(B⊗AopA) we calculate:

Φ(f ◦ g) = (f ◦ g)(1) = f(g(1)) = f(ρg(1)(1)) = (1⊗ g(1))f(1) = f(1)g(1)

Since Φ is clearly an K-linear map it is a K-algebra homomorphism.
For any f ∈ End(B⊗AopA) and a ∈ A we have

λΦ(f)(a) = Φ(f)a = (1⊗ a)f(1) = f(ρa(1)) = f(a).

Thus λΦ(f) = f .
Furthermore, if x ∈ CentA(B), we have first of all that λa ∈ End(B⊗AopA), because for

any a ∈ A and b⊗ a′ ∈ B ⊗Aop:

λx((b⊗ a′)a) = xbaa′ = bxaa′ = (b⊗ a′)λx(a)

shows that λx ∈ End(B⊗AopA). The associativity of A shows also that λx′ ◦ λx = λx′x, for
all x, x′ ∈ CentA(B) and therefore λ : CentA(B) → End(B⊗AopA) is a homomorphism of
K-algebras, that satisfies Φ(λx) = x, i.e. Φ−1 = λ|CentA(B)

. �
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Analogously one proves the isomorphisms of K-algebras

End(A⊗BopA) ' CentA(B)op, and End(A⊗AopA) ' CentA(A) = Z(A),

where an endomorphism f is send to f(1).
Furthermore, A is also naturally a left Be-module and there exists an isomorphism of

K-vector spaces given in the same way, namely by evaluating f at 1:

HomB⊗Bop(B,A) ' CentA(B).

Lemma 3.12 Let B ≤ A be a subalgebra of a K-algebra A. If B is a central simple K-algebra,
then the linear map

m : CentA(B)⊗B −→ A, x⊗ b 7→ xb

is an injective homomorphism of K-algebras.

Proof: To ease the notation, let us write Be := B ⊗Bop.
The linear map m exists, because the images of λ : CentA(B)→ A and the embedding of

B into A commute. As K-vector spaces we have

CentA(B) ' Hom(BeB,A)

by sending x ∈ CentA(B) to λx. Hence we get a linear map

m′ : HomBe(B,A)⊗B ' CentA(B)⊗B −→ A, f ⊗ b 7→ f(1)⊗ b 7→ f(1)b = f(b),

which is the evaluation map. In particular m is injective if and only if m′ is injective.
By hypothesis B is a simple algebra, hence B is a simple Be-module and we consider the

Be-submodule of A:

M =
∑
{U ≤ A | U ' B as Be-submodule }.

Since a sum of isomorphic simple modules is semisimple and a direct sum of some of these
simples:

M =
⊕
i∈I

Ei, with Ei ' B as Be −module.

Since B is a central K-algebra, we have for all i ∈ I:

HomBe(B,Ei) ' End(BeB) ' Z(B) = K

Moreover, the image of any non-zero f ∈ HomBe(B,A) is isomorphic to B as Be-module.
Hence Im(f) ⊆M and

HomBe(B,A) = HomBe(B,M) = HomBe

(
B,
⊕
i∈I

Ei

)
=
⊕
i∈I

HomBe(B,Ei) ' K(I).

For each i ∈ I choose an isomorphism ϕi ∈ HomBe(B,Ei). Then HomBe(B,Ei) = Kϕi and
{ϕi | i ∈ I} forms a basis of HomBe(B,A). In particular, any element of HomBe(B,A) ⊗ B
can be uniquely written as γ =

∑
i∈I ϕi ⊗ bi for some bi ∈ B. Thus if m′(γ) = 0, then

0 = m′(γ) =
∑
i∈I

ϕi(bi) ∈
⊕
i∈I

Ei ⇒ ϕi(bi) = 0,∀i ∈ I
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As the ϕi were isomorphisms, bi = 0 for all i ∈ I and hence γ = 0. This shows that m′ and
thus m is injective. �

The following technical Lemma is also needed for the next Theorem:

Lemma 3.13 Let f : U → U ′ and g : V → V ′ be linear maps of vector spaces. If f and g
are surjective, then f⊗g : U ⊗ V → U ′ ⊗ V ′ is surjective and

Ker(f⊗g) = Ker(f)⊗ V + U ⊗Ker(g).

Proof: Clearly, if f and g are surjective, then so is f⊗g. For u ∈ Ker(f), v ∈ Ker(g) and
a ∈ V, b ∈ U one has

(f⊗g)(u⊗ a+ b⊗ v) = 0 · g(a) + g(b) · 0 = 0U ′⊗V ′ .

Hence J := Ker(f) ⊗ V + U ⊗ Ker(g) ⊆ Ker(f⊗g) and f⊗g factors through J , i.e. there
exists a (surjective) linear map φ : (U ⊗ V )/J → U ′ ⊗ V ′ such that f⊗g = φπJ , where πJ is
the canonical projection. Define a map from U ′ ⊗ V ′ → (U ⊗ V )/J as follows: For each pair
(x, y) ∈ U ′ × V ′ choose a pair (u, v) ∈ U × V such that f(u) = x and g(v) = y and define the
map ψ : U ′×V ′ → (U ⊗V )/J by ψ(x, y) = u⊗ v+ J . This map is independent of the choice
we made, because if (u2, v2) is another pair such that f(u2) = x and g(v2) = y, then

u⊗ v − u2 ⊗ v2 = (u− u2)⊗ v + u2 ⊗ (v − v2) ∈ Ker(f)⊗ V + U ⊗Ker(g) = J.

Since this map is balanced, by the universal property of the tensor product, there exists a
(unique) map ψ : U ′ ⊗ V ′ → (U ⊗ V )/J , such that ψ(x⊗ y) = u⊗ v if and only if f(u) = x
and g(v) = y. This map satisfies πJ = ψ(f⊗g). Thus Ker(f ⊗ g) = Ker(πJ) = J . �

Theorem 3.14 Let A and B be K-algebras. If B is central simple then the following function
is a bijection

{ ideals of A} −→ {ideals of A⊗B} I 7→ I ⊗B

whose inverse function is given by

{ ideals of A⊗B} −→ {ideals of A} J 7→ {a ∈ A | a⊗ 1 ∈ J}.

Proof: If I is an ideal of A, then it is easy to see that I ⊗B is also an ideal of A⊗B. And if
J ≤ A⊗B is an ideal and I = {a ∈ A | a⊗ 1 ∈ J}, then I is a subspace of A, because for any
a, a′ ∈ I also (a+ a′)⊗ 1 = a⊗ 1 + a′ ⊗ 1 ∈ J , thus a+ a′ ∈ I. And for x ∈ I and a, a′ ∈ A
one has axa′ ⊗ 1 = (a⊗ 1)(x⊗ 1)(a′ ⊗ 1) ∈ J , i.e. axa′ ∈ I.

Starting with an ideal I of A, forming I ⊗B and looking at I ′ = {a ∈ A | a⊗ 1 ∈ I ⊗B},
we see I ⊆ I ′ and choosing a basis of B that contains 1, we can easily also conclude I = I ′.

Let J be an ideal of A ⊗ B and I = {a ∈ A : a ⊗ 1 ∈ J . If J = A ⊗ B, then 1 ⊗ 1 ∈ J
and hence 1 ∈ I and I = A. Suppose J 6= A⊗B, consider T = (A⊗B)/J and the following
homomorphisms of K-algebras:

π : A⊗B → T, a⊗ b 7→ a⊗ b+ J

ε1 : A → T, a 7→ a⊗ 1 + J

ε2 : B → T, b 7→ 1⊗ b+ J
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Since B is simple and J 6= A ⊗ B, we conclude that ε2 is injective. The images of the maps
ε1 and ε2 are subalgebras of T . Denote by A′ = ε1(A) and B′ = ε2(B). Since ε2 is injective,
B′ is a central simple K-algebra. Consider also the algebra homomorphism

ε1⊗ε2 : A⊗B → A′ ⊗B′.

By Lemma 3.13 and using that ε2 is injective we have

Ker(ε1⊗ε2) = Ker(ε1)⊗B = I ⊗B.

Moreover, A′ ⊆ CentT (B′), because

ε1(a)ε2(b) = a⊗ b+ J = ε2(b)ε1(a),

for all a ∈ A and b ∈ B. Hence by Lemma 3.11, the multiplication map m : A′ ⊗ B′ → T is
injective. Note that π = m ◦ (ε1⊗ε2). Hence

J = Ker(π) = Ker(m ◦ (ε1⊗ε2)) = Ker((ε1⊗ε2)) = I ⊗B.

�

The correspondence Theorem 3.14 implies that if B is central simple, then A⊗B is simple
if and only if A is simple. Together with Lemma 3.8 we can summarize our findings as follows:

Corollary 3.15 Let B be a central simple K-algebra (CSA) and A a K-algebra.

1. A⊗B is a simple K-algebra if and only if A is a simple K-algebra.

2. Z(A⊗B) = Z(A)⊗ Z(B) ' Z(A).

3. A⊗B is a central simple K-algebra if and only if A is a central simple K-algebra.

An immediate consequence of Corollary 3.15 we can prove that A⊗Aop is isomorphic to
a full matrix ring over K, if A is a finite dimensional central simple K-algebra.

Corollary 3.16 If A is an n-dimensional central simple K-algebra A, then A ⊗K Aop '
M(K).

Proof: Let ψ : A ⊗K Aop → End(KR) ' Mn(K) be given by a ⊗ b 7→ λa ◦ ρb. Since A is
central simple, Aop is central simple and hence A ⊗ Aop is central simple by Corollary 3.15.
Thus ψ is injective and as dimA⊗Aop = n2 = dimMn(K) it must be also surjective. �

We will strength now Lemma 3.12.

Corollary 3.17 Let B ≤ A be a subalgebra of a K-algebra A. If B is a finite dimensional
central simple K-algebra, then the linear map

m : CentA(B)⊗B −→ A, x⊗ b 7→ xb

is an isomorphism of K-algebras.
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Proof: We have already seen in Lemma 3.12 that m is injective and that its image is equal to
the sum of all simple Be-submodules of A that are isomorphic to B, where Be = B⊗Bop. By
Corollary 3.16, Be ' Mn(K), with n = dimB. Thus Be is a semisimple, simple K-algebra,
any left Be-module is semisimple and a direct sum of a unique (up to isomorphism) simple
Be-module. Hence A is isomorphic toa direct sum of copies of B as left Be-module and m is
surjective. �

Corollary 3.18 (Double Centralizer Theorem) Let A be a finite dimensional central
simple K-algebra with subalgebra B ≤ A. If B is a central simple algebra, then

1. CentA(B) is central simple and

2. CentA(CentA(B)) = B.

Proof: By Corollary 3.17, the multiplication m : CentA(B) ⊗ B ' A is an isomorphism.
Hence CentA(B)⊗B is simple and central and therefore also CentA(B) by Corollary 3.15.

Moreover, n = dimA = dim CentA(B) dimB.
Applying Corollary 3.17 to the subalgebra CentA(B), we also get that n = dimA =

dim CentA(CentA(B)) dim CentA(B). Hence dimB = dim CentA(CentA(B)). Now the result
follows as B ⊆ CentA(CentA(B)). �



4
The Brauer group of a

field

We have seen that in general the tensor product of division rings is not necessarily a division
ring. If K ≤ L is an inseperable field extension, then we have seen that K ⊗K L contains
a nilpotent element and hence cannot be a division algebra. But even for separable field
extensions the tensor product of two fields might not be a division algebra. For example,
Q(ı)⊗Q Q(ı) contains zero divisors:

(ı⊗ 1 + 1⊗ ı)(ı⊗ 1− 1⊗ ı) = (−1)⊗ 1− 1⊗ (−1) = 0.

More generally, if D is any K-algebra that contains an element a ∈ D \K satisfying an = 1,
for some even number n ≥ 1, then

(a⊗ 1 + 1⊗ a)

(
n−1∑
i=0

(−1)iai ⊗ an−i
)

=
n−1∑
i=0

(−1)iai+1 ⊗ an−i +
n−1∑
i=0

(−1)iai ⊗ an+1−i

= (−1)n−11⊗ a+ 1⊗ a = 0.

On the other hand, the tensor product of two central simple algebras is central simple.
Hence if D and D′ are finite dimensional central division algebras, then their matrix rings
Mn(D) ' D ⊗Mn(K) and Mm(D′) are finite dimensional central simple K-algebras and so
is their tensor product Mn(D) ⊗Mm(D′). What is the relation between finite dimensional
central simple algebras and division algebras? The short answer is given by the Wedderburn-
Artin Theorem. The uniqueness of that Theorem is important.

Lemma 4.1 Let D and E be two division algebras such that Mn(D) 'Mm(E) as rings, for
some n,m ≥ 1. Then n = m and D ' E as rings.

32
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Proof: Let A = Mn(D), B = Mm(E) and f : A → B an isomorphism of rings. The first
column of A = Mn(D) is the unique (up to isomorphism) simple left A-module M and
D ' EndA(M)op. Analogously, the first column of B = Mm(D) is the unique simple left B-
module N and E ' EndB(N)op. Since f induces an equivalence of categories between A and
B, any left B-module N is uniquely a left A-module by a ·n = f(a)n, for all a ∈ A and n ∈ N .
Moreover, the submodule lattice of BN and AN are equal and there exists an isomorphism
between EndB(N) and EndA(N). Hence the unique simple B-module N is isomorphic to M
as left A-module and E ' EndB(N)op ' EndA(M)op ' D. Furthermore, M has rank n over
D and N has rank m over E ' D. Thus, n = m. �

Corollary 4.2 Let A be a finite dimensional central simple K-algebra. Then there exists a
unique finite dimensional central division K-algebra D and a number n such that A 'Mn(D)
as K-algebras.

Proof: By the Wedderburn-Artin Theorem any finite dimensional simple algebra A is semisim-
ple and hence a finite direct product of matrix rings over division rings, i.e. A 'Mn1(D1)×
· · · ×Mnt(Dt). As A is simple we must have t = 1, i.e. A ' Mn(D), with D a division ring.
The first column of Mn(D) is a simple left A-module and D ' End(D)op. If A was a central
K-algbera, then D is also a finite dimensional central division algebra over K. �

Last Corollary and the uniqueness of the Wedderburn-Artin decomposition allows us to
conclude that the tensor product of two finite dimensional central division algebras is in fact
a division algebra if their dimensions are relatively prime.

Proposition 4.3 Let C e D be finite dimensional central division algebras over. If dimK(C)
and dimK(D) are relatively prime, then C ⊗D is a central division algebra over K.

Proof: We know that C ⊗ D is a finite dimensional central simple K-algebra. Hence by
Corollary 4.2 there exists a finite dimensional central division K-algebra E and number r ≥ 1
such that C ⊗D 'Mr(E). Let n = dimK(C). Then Mn(K) ' C ⊗ Cop and

Mn(D) ' D ⊗Mn(K) ' D ⊗ C ⊗ Cop 'Mr(E)⊗ Cop 'Mr(E ⊗ Cop).

Since E ⊗ Cop is a finite dimensional central simple algebra, again Corollary 4.2 shows that
there exist a finite dimensional central division algebra E′ and a number s ≥ 1 such that
E ⊗ Cop ' Ms(E

′). Hence Mn(D) ' Mrs(E
′). By the uniqueness of the Wedderburn-Artin

decomposition n = rs and D ' E′.
Similarly for m = dimK(D) we have D ⊗Dop 'Mm(K) and

Mm(C) ' C ⊗Mm(K) ' C ⊗D ⊗Dop 'Mr(E)⊗Dop 'Mr(E ⊗Dop)

Againm E⊗Dop 'Mt(E
′′) for some number t ≥ 1 and a division algebra E′′. ThusMm(C) '

Mrt(E
′′) and by the uniqueness of the Wedderburn-Artin Theorem, m = rt and C ' E′′.

Hence r is a divisor of n and m and by hypothesis r = 1. Thus C ⊗D ' E. �

When extending the scalars of a central simple algebra, we can apply Corollary 3.15 again
and conclude that the dimension of a finite dimensional central simple algebras is a square
number. In particular the dimension of any finite dimensional central division algebra over a
field is a square.
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Lemma 4.4 Let A be a central simple K-algebra and K the algebraic closure of K.

1. If K ≤ L is a field extension of K, then A⊗K L is a central simple L-algebra.

2. If dimK(A) = n, then n = d2 and A⊗K K 'Md(K) as K-algebras, for some d ≥ 1.

Proof: (1) follows directly from Corollary 3.15.
(2) By (1) A ⊗ K is a central simple K-algebra. By Corollary 4.2, A ⊗ K ' Md(D)

for some finite dimensional central division algebra D over K. Since any element of D is
algebraic over K = Z(D), we must have D = K. Moreover, if n = dimK(A) and {a1, . . . , an}
is a K-basis for A, then a1 ⊗ 1, . . . , an⊗1 is a K-basis for A⊗K. Thus A⊗K 'Md(K) and
n = dimK(A) = dimK(A⊗K) = dimK(Md(K)) = d2. �

Definition 4.5 The degree of a finite dimensional central simple K-algebra A is defined as

degK(A) :=
√

dimK(A).

The Brauer group will be defined on the set of equivalence classes of finite dimensional
central simple algebras over a field.

Definition 4.6 Let A and B be finite dimensional central simple K-algebra. Then A and
B are called similar, in symbol A ∼ B if and only if there exist numbers n,m ≥ 1 and an
isomorphism of K-algebras

A⊗Mn(K) ' B ⊗Mm(K).

The relation ∼ is obviously reflexive and symmetric. Let A ∼ B and B ∼ C, for finite
dimensional central simple K-algebras A,B,C. Then there exist n1, n2,m1,m2 such that

A⊗Mn1(K) ' B ⊗Mm1(K) and B ⊗Mn2(K) ' C ⊗Mm2(K).

Then

A⊗Mn1n2(K) ' (A⊗Mn1(K))⊗Mn2(K) ' (B ⊗Mm1(K))⊗Mn2(K)

' B ⊗Mn2(K)⊗Mm1(K)

' (C ⊗Mm2(K))⊗Mm1(K) ' C ⊗Mm1m2(K)

Thus, A ∼ C.
Let us denote by [A] = [A]∼ the equivalence class of a finite dimensional central simple K-

algebra. We have already seen that any such algebra A is isomorphic toMn(D) for some finite
dimensional central division algebra D overK. Hence A ∼ D shows that any equivalence class
contains a finite dimensional central division algebra. The uniqueness of the Wedderburn-
Artin decomposition shows that any two finite dimensional central division algebra contained
in the same equivalence class must be isomorphic.

Lemma 4.7 Let D and E be finite dimensional central division algebras over K. Then D
and E are similar if and only if D and E are isomorphic K-algebras.
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Proof: Suppose D ∼ E. Then there are numbers n,m ≥ 1 such thatMn(D) ' D⊗Mn(K) '
E ⊗Mm(K) 'Mm(E). By Lemma 4.1 E ' D. �

We conclude that for any finite dimensional central simple K-algebra A there exists a
uniquely determined finite dimensional central division algebra D over K such that [A] = [D].
Moreover, D determines the equivalence class of A, i.e. [A] = {Mn(D) : n ≥ 1}.

Definition 4.8 The Schur index of a finite dimensional central simple K-algebra A is defined
as

IndK(A) := degK(D) =
√

dimK(D)

if A 'Mr(D) for some finite dimensional central division K-algebra D and r ≥ 1.

Theorem 4.9 (The Brauer group of a field) Let K be a field. The set of equivalence
classes of finite dimensional central simple K-algebras

Br(K) = {[A] : A is a finite dimensional central simple K-algebra}

is a group with product given by the tensor product

[A] · [B] := [A⊗B] ∀[A], [B] ∈ Br(K)

neutral element given by [K] such that [A]−1 = [Aop] for all [A] ∈ Br(K).

Proof: Firstly we have to show that the product is independent of the representatives of the
classes. Hence let A ∼ A′ and B ∼ B′ be finite dimensional central simple K-algebras. Then
there are n1, n2,m1,m2 ≥ 1 such that

A⊗Mn1(K) ' A′ ⊗Mn2(K) and B ⊗Mm1(K) ' B′ ⊗Mm2(K).

Hence

(A⊗B)⊗Mn1m1(K) ' A⊗Mn1(K)⊗B ⊗Mm1(K)

' A′ ⊗Mn2(K)⊗B′ ⊗Mm2(K) '
(
A′ ⊗B′

)
⊗Mn2m2(K)

shows A⊗B ∼ A′ ⊗B′.
The isomorphism K ⊗ A ' A ' A⊗K shows that [K][A] = [A] = [A][K]. Furthermore,

from 3.16 we know that A ⊗ Aop ' Mn(K), with n = dimK(A). Hence A ⊗ Aop ∼ K, i.e.
[A][Aop] = [K].

�

We have already characterised the finite dimensional central division algebras over several
fields. For instance if K = K is algebraically closed, then Br(K) = {[K]} is the trivial group,
e.g. Br(C) = {[C]}. Similarly, if K is a finite field, then Br(K) = {[K]}.

Then we have also Br(R) = {[R], [H]}. In particular

H⊗R H 'M4(R)

as dimR(H) = 4 and H = Hop. Hence Br(R) ' (Z2,+) is the cyclic group of order 2.
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Consider a field K and a finite dimensional central simple K-algebra A that admits a K-
linear involution, i.e. an anti-isomorphism ∗ : A → A such that a∗∗ = a for all a ∈ A. Then
∗ is an isomorphism between A and its opposite algebra Aop. Thus [A]2 = [A][Aop] = [K]
shows that [A] has order 2 in the Brauer group Br(K). For example if the Quaternion algebra
Q = Q(a, b;K) is a division algebra, then the conjugation (see equation 1.18) of Q is an
involution and Q is an element of order 2 in Br(K).

We will show that any element of the Brauer group has finite order, i.e. Br(K) is a torsion
group, but first we will see how to reduce the study of the Brauer group to Galois extensions
of K.

Theorem 4.10 Let L/K be a field extension. The following map

τL/K : Br(K)→ Br(L), [A] 7→ [A⊗ L]

is a group homomorphism, such that if K ≤ L ≤ F is an extension of fields, then

τF/K = τF/L ◦ τL/K .

Proof: We need to show that τL/K is well-defined. Hence if A ∼ B are similar finite dimen-
sional central simple K-algebras, then there are numbers n,m ≥ 1 and an isomorphism of
K-algebras A⊗Mn(K) ' B ⊗Mm(K). Hence

(A⊗ L)⊗LMn(L) ' A⊗Mn(K)⊗ L ' B ⊗Mn(K)⊗ L ' (B ⊗ L)⊗LMm(L)

shows that τL/K is well-defined. By Proposition 3.7 (A ⊗ B) ⊗ L ' (A ⊗ L) ⊗L (B ⊗ L) as
L-algebras shows

τL/K([A][B]) = [(A⊗B)⊗L] = [(A⊗L)⊗L (B⊗L)] = [A⊗L][B⊗L] = τL/K([A])τL/K([B]).

We also have τL/K([K]) = [L], which shows that τL/K is a group homomorphism.
Let K ≤ L ≤ F be a field extension and A a central simple K-algebra. Then we have an

isomorphism of F -algebras

(A⊗K L)⊗L F −→ A⊗K F, (a⊗K x)⊗L y 7→ a⊗K xy.

Hence
τF/L(τL/K([A])) = [(A⊗K L)⊗L F ] = [A⊗K F ] = τF/K([A]).

�

We make a remark about the index and the degree of a finite dimensional central simple
K-algebra A. We have seen that there exists a finite dimensional central division algebra D
over K such that A 'Mr(D). Hence

degK(A) =
√

dimK(A) = r
√

dimK(D) = rIndK(D) = rIndK(A).

Moreover we have seen that then [A] = [D] and if [B] = [A], then B ∼ D and hence IndK(B) =
IndK(A) = degK(D). Moreover, for any field extension L/K, if A⊗L ∼ D⊗L 'Ms(E) for
some finite dimensional central division algebra E over L. Then

IndK(A) =
√

dimK(D) =
√

dimL(D ⊗ L) = s
√

dimL(E) = s degL(E) = sIndL(A⊗ L).

This means IndL(A⊗ L) | IndK(A).
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Definition 4.11 Let A be a finite dimensional central simple K-algebra. A field extension L
of K is called a splitting field for A if [A] ∈ Ker(τL/K).

Lemma 4.12 Let A be a finite dimensional central simple K-algebra and L a field extension
of K. Then L is a splitting field for A if and only if there exists a number n ≥ 1 and an
isomorphism of L-algebras A⊗ L 'Mn(L).

Proof: By Corolary 4.2, there exists a finite dimensional central division K-algebra D, a
number r ≥ 1 and an isomorphism of K-algebras A 'Mr(D). Hence

A⊗ L 'Mr(D)⊗ L 'Mr(K)⊗D ⊗ L 'Mr(D ⊗ L)

as L-algebras. Since D⊗L is a finite dimensional central simple L-algebra, there exists again
by Corollary 4.2 a finite dimensional central division L-algebra E, a number s ≥ 1 and an
isomorphism of L-algebras D ⊗ L 'Ms(E). Hence

A⊗ L 'Mr(D ⊗ L) 'Mrs(E).

If L is a splitting field for A. Then [A⊗ L] = [L] and there are numbers n,m ≥ 1 and an
isomorphism of L-algebras (A⊗ L)⊗LMn(L) 'Mm(L). Hence

Mm(L) ' (A⊗ L)⊗LMn(L) 'Mrs(E)⊗LMn(L) 'Mrsn(E).

By the uniqueness of the Wedderburn-Artin Theorem Lemma 4.1, we must have E = L and
m = rsn. Hence D ⊗ L 'Ms(L) and A⊗ L 'Mrs(L).

Conversely, if A ⊗ L ' Mn(L), then clearly A ⊗ L ∼ L and therefore [A ⊗ L] = [L], i.e.
[A] ∈ Ker(τL/K).

�

If L is a splitting field for A, then so is any field extension F/L, because A ⊗ F '
(A⊗L)⊗L F 'Mn(L)⊗L F 'Mn(F ). In particular K is a splitting field for any A and the
next Proposition will show that any finite dimensional central simple K-algebra A admits a
finite dimensional splitting field.

Proposition 4.13 Any finite dimensional central simple algebra has a finite dimensional
splitting field.

Proof: Let n = dimK(A). We have already seen that there exists an isomorphism of algebras
f : A ⊗K K → Md(K), with d2 = n. For 1 ≤ i, j ≤ d, denote by Eij the matrix units
of Md(K). Let {b1, . . . , bn} be a K-basis of A. Then there exist elements µijk ∈ K for
1 ≤ i, j ≤ d and 1 ≤ k ≤ n such that

f(bk ⊗ 1) =

n∑
i,j=1

µijkEij ∈Md(K).

Let L be the subfield of K generated by all elements µijk and K. Then f restricts to an
isomorphism of L-algebras f : A⊗L→Md(L). Hence L is a finite dimensional splitting field
for A. �
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The kernel of τL/K is called a relative Brauer group, denoted by Br(L/K) := Ker(τL/K)
and we have just seen that any [A] ∈ Br(K) belongs to a relative Brauer group, i.e.

Br(K) =
⋃
{Br(L/K) | L/K is a finite field extension}.

We will see soon, that L can be assumed to be a finite Galois extension of K, but first of all
we need another technical Lemma:

Theorem 4.14 (Skolem-Noether) Let A and B be finite dimensional simple K-algebras
and f, g : A → B two K-algebra homomorphisms. If B is central, then there exists an
invertible element u ∈ B such that

g(a) = uf(a)u−1, ∀a ∈ A.

Proof: Let T = A ⊗ Bop. Then T is a finite dimensional simple K-algebra. By the
Wedderburn-Artin Theorem, T ' Mn(D) for some finite dimensional division K-algebra
D. Recall that up to isomorphism, there exist only one simple left T -module, say E, and
that End(TE) ' Dop and dim(E) = n[D : K]. Moreover, any non-zero finitely generated left
T -module M is isomorphic to Er, for some r ≥ 1, and dim(M) = r dim(E) = rn[D : K]. In
particular, two non-zero finitely generated left T -modules are isomorphic if and only if they
have the same dimension.

Since B is simple algebra, it is a simple B ⊗ Bop-module. Note that as A is simple, f
and g are injective. For each of the ring homomorphisms, we have a T = A ⊗ Bop-module
structure on B, namely by

(a⊗ b) · x = f(a)xb, ∀a ∈ A, b, x ∈ B.

and
(a⊗ b) · x = g(a)xb, ∀a ∈ A, b, x ∈ B.

Thus the two left T -module structures on B must be isomorpic. Hence there exists an
isomorphism ϕ : B → B of left T -modules such that

ϕ(f(a)x) = ϕ(a · xb) = a · ϕ(x)b = g(a)ϕ(x)b, ∀a ∈ A, x, b ∈ B.

Thus, for a = 1A, x = 1B we have ϕ(b) = ϕ(1B)b, for all b ∈ B. As ϕ is bijective, there exists
b ∈ B with 1 = ϕ(b) = ϕ(1B)b. Hence u = ϕ(1B) ∈ U(B) is invertible. Moreover,

g(a)u = g(a)ϕ(1B) = ϕ(f(a)1B) = ϕ(f(a)) = ϕ(1B)f(a) = uf(a), ∀a ∈ A

This shows, g(a) = uf(a)u−1 for all a ∈ A.
�

Corollary 4.15 Let A be a finite dimensional central simple K-algebra and B1, B2 simple
K-subalgebras of A. If g : B1 → B2 is an isomorphism of K-algebras, then there exists
u ∈ U(A) such that f(x) = uxu−1, for all x ∈ B1. Moreover,

u−1CentA(B1)u = CentA(B2).
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Proof: Let f = id|B1
: B1 → A be the restriction of the identity map to B1. By the Skolem-

Noether Theorem, 4.14, there exists u ∈ U(A) such that g(x) = uxu−1 for all x ∈ B1.
Furthermore, let y ∈ A. Then for any x ∈ B1 we have

yg(x) = g(x)y ⇔ yuxu−1 = uxu−1y ⇔
(
u−1yu

)
x = x

(
u−1yu

)
As g is surjective andy element if B2 is of the form g(x) for some x ∈ B1. Thus y ∈ CentA(B2)
if and only if u−1yu ∈ CentA(B1). �

An automorphism σ of a ring R is called an inner automorphism if there exists an invertible
element u ∈ U(R) such that σ(x) = uxu−1. The inner automorphisms form a subgroup
Inn(A) of the group of automorphisms Aut(A) of A. The map U(R) → Inn(A) given by
u 7→ [x 7→ uxu−1] is a surjective group homomorphism. By Corollary 4.15 we have that

Corollary 4.16 Any automorphism of a finite dimensional central simple K-algebra is inner.

The following so-called Centralizer Theorem will generalise the Double Centralizer Theo-
rem.

Theorem 4.17 (Centralizer Theorem) Let A be a finite dimensional central simple K-
algebra with simple K-subalgebra B ≤ A. Then

1. there exists an isomorphism of K-algebras A⊗Bop → CentA(B)⊗ EndK(B);

2. dim(A) = dim(B) · dim(CentA(B));

3. CentA(B) is simple with center Z(CentA(B)) = Z(B) such that CentA(CentA(B)) = B.

Proof: (1) As B is finite dimensional, say n = dim(B), its endomorphism ring End(B) '
Mn(K) is central simple and so is A ⊗ End(B) as A is central simple. The map f : B →
A⊗ End(B) sending b to

f(b) = b⊗ idB, ∀b ∈ B.

is an injective algebra homomorphism.
Denote by λb ∈ End(B) the endomorphism λb(x) = bx. Then l : B → End(B) with

l(b) = λb is an injective algebra homomorphism The map g : B → A⊗ End(B) sending b to

g(b) = 1⊗ λb, ∀b ∈ B

is also an injective algebra homomorphism.
Hence f(B) ' B ' g(B) as K-algebras, showing that the subalgebras f(B) and g(B)

of A ⊗ End(B) are isomorphic. By the Skolem-Noether Theorem there exist an invertible
element u ∈ U(A⊗ End(B)) such that

g(b) = uf(b)u−1, ∀b ∈ B.

As seen before, this implies CentA⊗End(B)(g(B)) = u−1CentA⊗End(B)(f(B))u and hence

CentA⊗End(B)(g(B)) ' CentA⊗End(B)(f(B)).
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By Lemma 3.8, we have

CentA⊗End(B)(f(B)) = CentA⊗End(B)(B ⊗ idB) = CentA(B)⊗ End(B).

Similarly we calculate

CentA⊗End(B)(g(B)) = CentA⊗End(B)(1⊗ l(B)) = A⊗ CentEnd(B)(l(B)).

In order to conclude, we need to determine CentEnd(B)(l(B)). Denote by r : Bop →
End(B) the map r(b) = ρb, where ρb(x) = xb is the right multiplication of an element x by b.

Then for any ϕ ∈ End(B)

ϕ ∈ CentEnd(B)(l(B)) ⇔ ∀b ∈ B : ϕ ◦ λb = λb ◦ ϕ
⇔ ∀b ∈ B : ∀x ∈ B : ϕ(bx) = bϕ(x)

⇔ ∀b ∈ B : ϕ(b) = bϕ(1)

⇔ ϕ ∈ r(Bop)

Hence CentEnd(B)(l(B)) = r(Bop) and since Bop is simple, r is injective and therefore, Bop '
r(Bop) ' CentEnd(B)(l(B)). Thus

A⊗Bop ' A⊗CentEnd(B)(l(B)) ' CentA⊗End(B)(g(B)) ' CentA⊗End(B)(f(B)) = CentA(B)⊗End(B).

(2) follows from (1) and the following calculations

dim(A) dim(B) = dim(A⊗Bop) = dim(CentA(B)) dim(End(B)) = dim(CentA(B)) dim(B)2.

(3) Since A and Bop are simple, so is A⊗Bop. By (1) also CentA(B)⊗ End(B) is simple
and therefore also CentA(B).

Applying (2) to CentA(B) instead of B yields dim(B) = dim(CentA(CentA(B))) and
therefore CentA(CentA(B)) = B. Then Z(CentA(B)) = CentA(B) ∩B = Z(B).

�

Corollary 4.18 Let A be a finite dimensional central simple K-algebra and K ≤ L ≤ A a
subfield of A containing K. Then

1. A⊗ L ' CentA(L)⊗Mn(K) as L-algebras, with n = [L : K];

2. dim(A) = [L : K] dim(CentA(L))

3. [L : K] | deg(A) =
√

dim(A).

Proof: Take B = L in the Centralizer Theorem 4.17. Then (1) and (2) follow from the
same Theorem, having in mind that End(KL) ' Mn(K). Furthermore, L ⊆ CentA(L)
turns CentA(L) into an L-algebra. Therefore dim(CA(L)) = dim(LCA(L))[L : K], where
dim(LCA(L)) denotes the dimension of CA(L) as L-space. Hence [L : K] divides dim(CA(L))
and therefore [L : K]2 | [L : K] dim(CA(L)) = dim(A) by 4.17(2). Thus [L : K] | deg(A). �



5
Maximal Subfields and

Crossed products

A subfield L of a K-algebra A is a K-subalgebra L ≤ A that is a field and contains K.
Recall that a finite field extension L/K is a Galois extension if L/K is separable and normal,
where L/K is called a normal extension if any polynomial f ∈ K[x] that has a root in
L will decompose over L in linear factors. Given any finite field extension L/K with L =
K(a1, . . . , an), we can consider the product f of minimal polynomialsminai,K of the a1, . . . , an
and consider the splitting field F overK. It is a fact from Galois Theory that F/K is a normal
extension, called the normal closure of L and generated by all the (finitely many) roots of f .
Let A be finite dimensional central simple K-algebra with finite splitting field L of A and F
the normal closure of L, then F is also a splitting field of A.

A maximal subfield L of a central simpleK-algebra A is a subfield such that CentA(L) = L.
Our aim will be to show that any finite dimensional central simple K-algebra is similar to
a finite dimensional central simple K-algebra that contains a splitting field L as maximal
subfield such that L is a finite Galois extension of K.

Lemma 5.1 A subfield L of a division algebra D over K is maximal if and only if it is
maximal in the lattice of subfields of D.

Proof: Any subfield L is commutative and hence satisfies L ⊆ CentD(L). Hence if L ⊆ L′ is
a chain of subfields of D and L is maximal, then L ⊆ L′ ⊆ CentD(L) = L.

On the other hand, if L is maximal in the lattice of subfields of D, then for any non-zero
x ∈ CentD(L), the subfield L′ = L(x) generated by L and x is an extension of L and hence
x ∈ L′ = L. Thus L = CentD(L). �

While Lemma 5.1 shows that maximal subfields do exist in finite dimensional central
division algebras, they might not exist in a finite dimensional central simple algebra as we
will see soon. However, if they exist, then they are splitting fields for the algebra in question.

41
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Theorem 5.2 Any maximal subfield L of a finite dimensional central simple K-algebra A is
a splitting field for A and satisfies [L : K] = degK(A).

Proof: Let L be a maximal subfield of A and n = degK(A). Then Corollary 4.18 yields
n2 = [L : K] dimK(CentD(L)) = [L : K]2. Thus n = [L : K]. Moreover, by the same
Corollary, A⊗L = CentA(L)⊗Mn(K) = L⊗Mn(K) 'Mn(L) ∼ L. Hence [A] ∈ Ker(τL/K).
�

The following technical Lemma will be important to show that we can reduce our study to
separable splitting fields. Recall that an element of a divisionK-algebra a ∈ D is not separable
over K if it is a multiple root of its minimal polynomial f . In other words, if f = (x− a)mg,
for some g ∈ K[x] and m ≥ 2. Then the formal derivative f ′ = (x − a)m−1((x − a)g′ + mg)
has still a as a root and f divides f ′. Since the degree of f is larger than that of f ′ we
must have f ′ = 0. This of course cannot happen if char(K) = 0. If char(K) = p > 0,
the condition f ′ = 0 implies that f = h(xp) for some h ∈ K[x]. Let n ≥ 1 be the largest
number such that there exists f ∈ K[xp

n
] and f 6∈ K[xp

n+1
]. Then there exist g ∈ K[x] with

f = g(xp
n
). Note that g′ 6= 0 since otherwise g = h(xp) and f = h(xp

n+1
) which contradicts

our choice of n. Thus, g is irreducible in K[x] and in particular the minimal polynomial of
ap

n as g(ap
n
) = f(a) = 0. Thus we showed that for any non-separable element a of a division

K-algebra D over a field of characteristic p, there exists n ≥ 1 such that apn is separable over
K.

Theorem 5.3 (Noether-Jacobson) Any noncommutative algebraic central division alge-
bra D over K contains a separable subfield K ( L.

Proof: If a ∈ D \ K is separable over K, then we can choose the subfield L = K(a) ≤ D
generated by a and K, which is possible since the elements of K commute with a and since
non-zero elements of D are invertible in K. In case char(K) = 0, we can choose any element
a ∈ D \K, since any element is separable. Hence assume char(K) = p > 0.

We will prove the result by contradiction: Suppose that no element of D \K is separable
over K. Let a ∈ D \ K be any element. By the previous comment, there exists a minimal
n ≥ 1 such that apn is separable over K and apn−1 is not. We can substitute a by apn−1 and
obtain that a 6∈ K, while ap is separable and hence by assumption belongs to K = Z(D).

Consider the additive commutator δ = [−, a] : D → D. Then δ 6= 0 since a 6∈ K = Z(D)
and δp = 0, as ap ∈ Z(D) and δp(b) = bap − apb = 0. Let m ≥ 1 be the least positive integer
such that δm 6= 0 and δm+1 = 0. Then there exists 0 6= w ∈ D such that

δ(w) = wa− aw 6= 0 and δ2(w) = δ(w)a− aδ(w) = 0.

Thus δ(w)−1a = aδ(w)−1 and δ(w) + aw = wa. For u = waδ(w)−1 we calculate:

aua−1 + 1 = awaδ(w)−1a−1 + 1 = awδ(w)−1 + 1 = (aw + δ(w))δ(w)−1 = waδ(w)−1 = u.

If u is not separable, then there exists m ≥ 1 such that upm is separable and hence
up

m ∈ K. If u is separable, then u ∈ K and we can take m = 0. But then

up
m

=
(
aua−1 + 1

)pm
= (aua−1)p

m
+ 1 = aup

m
a−1 + 1 = up

m
+ 1,

which leads to the contradiction 0 = 1. Hence there must exist some element of D \K that
is separable over K. �
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Theorem 5.4 Let D be a finite dimensional central division algebra over K. Then D con-
tains a maximal subfield L such that L/K is separable.

Proof: Let L be a subfield of D such that L/K is separable and [L : K] is maximal. Such a
subfield exists, since K is a subfield of D with K separable over K.

We will show that L = CentD(L). Clearly CentD(L) is a central division algebra over L
by 4.17. If L 6= CentD(L), then by the Noether-Jacobson Theorem 5.3 there exists a subfield
L′ ⊆ CentD(L) with L ( L′ and L/L′ separable. But then L′ is also a subfield of D and
L′/K is separable as L′/L and L/K are separable field extensions. As [L′ : K] > [L : K], we
obtain a contradiction to the choice of L. Therefore, CentD(L) = L, i.e. L is maximal. �

Theorem 5.5 Any finite dimensional central simple K-algebra has a finite dimensional split-
ting field L such that L/K is Galois.

Proof: Let D be a finite dimensional central division algebra over K. By Theorem 5.4, D
contains a maximal separable subfield L. Substituting L by its normal closure F , shows that
F is a Galois and a splitting field of D. �

Corollary 5.6 For any field K we have

BrK =
⋃
{Br(L/K) : L/K is a finite Galois extension }

The last Corollary allows us to reduce our classification of finite dimensional central di-
vision algebras over a field to those that have a finite Galois extension as splitting field. We
will classify Br(L/K) with the help of so called crossed products.

Assume that L/K is a finite Galois extension with Galois group

G = Gal(L/K) = {σ ∈ Aut(L) : σ|K = idK}.

Consider A = EndK(L) 'Mn(K), where n = [L : K]. Then each g ∈ G can be considered a
K-linear endomorphism of A, i.e. g ∈ A, by x 7→ g(x), for all x ∈ L. We need the following
fact about the linear independence of automorphisms of L:

Lemma 5.7 (Dedekind’s Lemma) The elements of Gal(()L/K) form a linearly indepen-
dent set of EndK(L) considered as vector space over L.

Proof: A = EndK(L) is a vector space over L with scalar multiplication given by λ · f : [x 7→
λf(x)] for all f ∈ A and λ ∈ L. We wish to prove that any set {σ1, . . . , σm} ⊆ G is linearly
independent. If m = 1, then λσ1 = 0, means λ = 0 since σ1 6= 0. Suppose we have proven our
claim for some m ≥ 1. Let {σ1, . . . , σm+1} ⊆ G be m + 1 distinct elements such that there
exist λ1, . . . , λm+1 ∈ L with

λ1σ1 + · · ·+ λm+1σm+1 = 0 (5.1)

Note that equation 5.1 is an equation of functions. If one of the λi = 0, then all are equal to
zero by induction hypothesis. Thus we suppose λm+1 6= 0 and by dividing equation 5.1 by
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λm+1 we actually can suppose that λm+1 = 1. In other words, without loss of generality we
can assume that we have an equation:

λ1σ1 + · · ·+ λmσm + σm+1 = 0 (5.2)

Since σm+1 6= σ1, there exists y ∈ L such that σ1(y) 6= σm+1(y) 6= 0. Hence for all x ∈ L:

λ1σ1(xy) + · · ·+ λmσm(xy) + σm+1(xy) = 0.

Multiplying by the inverse of σ−1
m+1 yields(

λ1σ1(y)σm+1(y)−1
)
σ1(x) + · · ·+

(
λmσm(y)σm+1(y)−1

)
σm(x) + σm+1(x) = 0.

By setting µi := λiσi(y)σm+1(y)−1 for all 1 ≤ i ≤ m we re-write the last equation:

µ1σ1 + · · ·+ µmσm + σm+1 = 0. (5.3)

Subtrating equations 5.3 from 5.2 yields:

(λ1 − µ1)σ1 + · · ·+ (λm − µm)σm = 0. (5.4)

The induction hypothesis then shows λi = µi, for all i. But then λ1 = µ1 = λ1σ1(y)σm+1(y)−1

and σ1(y) 6= σm+1(y) implies λ1 = 0 - a contradiction. �

Since [|G|2 = [L : K]2 = dimK(A) = [L : K] dimL(A), we have dimL(A) = |G| and
therefore that the elements of G form a basis of A as vector space over L.

Not all finite dimensional central simple algebras contain a maximal subfield. Consider
the real quaternions H and the central simple R-algebra A = Mn(H). Then dimR(A) = 4n2.
If there existed a maximal subfield L ⊆ A of A, then by Corollary 4.18, 4n2 = [L : R]2. Hence
[L : R] = 2n. However, any finite field extension of R has degree at most 2. Thus if n > 1,
then A cannot have a maximal subfield, e.g. A = M4(H).

However, we will prove now that any finite dimensional central simple K-algebra with
finite dimensional splitting field L is similar to a finite dimensional central simple K-algebra
that contains (up to isomorphism of course) L as a maximal subfield.

Theorem 5.8 For any finite field extension L/K and [A] ∈ Br(L/K) there exists [B] = [A]
such that L is a maximal subfield of B and degK(B) = [L : K]2.

Proof: Let D be a finite dimensional central division K-algebra, such that [A] = [D]. Then
D ⊗ L ' Mn(L), for n2 = dimK(D). The algebra Mn(L) is simple and semisimple. Hence
there exists a unique simple left Mn(L)-module V such that Mn(L) ' V n.

The isomorphism between D ⊗ L and Mn(L) yields both a left D- and a left L-module
structure on V . Considering B = EndD(V ), the algebra of left D-linear endomorphisms of
V , we have that D ∼ B, since for m = dimD(V ) we have

D ⊗Mm(K) 'Mm(D) ' EndD(V ) = B.

Moreover, since the left D- and left L-action on V commute, we obtain an embedding of
K-algebras of L into EndD(V ) by

x 7→ [v 7→ (1⊗ x) · v], ∀x ∈ L.
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We calculate

[L : K] = dimD(D ⊗ L) = dimD(Mn(L)) = dimD(V n) = n dimD(V ) = nm

and deduce

dimK(B) = dimK(EndD(V )) = dimK(D) dimD(V )2 = n2m2 = [L : K]2.

Furthermore, by Corollary 4.18, [L : K]2 = dimK(B) = [L : K] dimK(CentB(L)) shows,
dimK(CentB(L)) = [L : K]. Since L ⊆ CentB(L), we obtain equality, i.e. L is a maximal
subfield of B. �

Definition of crossed products

Lemma 5.9 Let L/K be a Galois extension with Galois group G. Then L?γG is associative
if and only if γ satisfies γ(g, h)γ(gh, k) = γ(g, hk)g(γ(h, k)), for all g, h, k ∈ G.

Proof: ...still to come ... �

Definition of 2-cocycle:

Z2(G,L×) = {γ : G×G→ L× : γ(g, h)γ(gh, k) = γ(g, hk)g(γ(h, k)), ∀g, h, k ∈ G}

For γ ∈ Z2(G,L×) we conclude (setting g = h = id)) that γ(id, id)γ(id, k) = γ(id, k)γ(id, k)
holds for all k ∈ G. Similarly, setting h = k = id, yields γ(g, id)γ(g, id) = γ(g, id)g(γ(id, id)).
Hence

γ(id, g) = γ(id, id) and γ(g, id) = g(γ(id, id)), ∀g ∈ G.

Set u = γ(id, id).

Theorem 5.10 Let L/K be a Galois extension with Galois group G. Then for any γ ∈
Z2(G,L×), L ?γ G is a central simple K-algebra of dimension [L : K]2 and L as maximal
subfield.

Proof: ...still to come ... �

Theorem 5.11 Let L/K be a Galois extension with Galois group G. For any [A] ∈ Br(L/K),
there exists γ ∈ Z2(G,L×) such that [A] = [L ?γ G].

Proof: ...still to come ... �

Group structure on Z2(G,L×). Neutral element ε̂(g, h) = 1, for all g, h ∈ G. Definition
of 2-coboundary. Given δ : G→ L× define δ̂ ∈ Z2(G,L×) by

δ̂(g, h) := δ(g)g(δ(h))δ(gh)−1.

The set of 2-coboundaries
B2(G,L×) := {δ̂ : δ : G→ L×}

is a subgroup of Z2(G,L×) and the second cohomology group of G with coefficients in L× is
defined to be

H2(G,L×) = Z2(G,L×)/B2(G,L×)
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Theorem 5.12 Let L/K be a Galois extension with Galois group G. Then

β : H2(G,L×)→ Br(L/K), [γ] 7→ [L ?γ G]

is an isomorphism of Abelian groups.

Proof: ...still to come ... �

Lemma 5.13 Let R be a ring and e a non-zero idempotent of R. Then eRe ' End(RRe)
op

as rings.

Proof: ...still to come ... �

Lemma 5.14 Let A be a finite dimensional central simple K-algebra with non-zero idempo-
tent e ∈ A. Then [A] = [eAe].

Proof: ...still to come ... �

A set of idempotents {e1, . . . , en} of a ring R is called a complete set of orthogonal idem-
potents of R if 1 =

∑n
i=1 ei and eiej = 0 for all i 6= j.

Lemma 5.15 Let L/K be a finite Galois extension with Galois group G. Then there exits a
unique complete set of central orthogonal idempotents {eg : g ∈ G}of L⊗ L satisfying:

(a⊗ b)eg = (1⊗ g(b)a)eg = eg(a⊗ b), ∀a, b ∈ L, g ∈ G.

Proof: ...still to come ... �

Recall the construction of L?γG which had basis {g : g ∈ G} subject to the multiplication
rule

(ag)(bh) = ag(b)γ(g, h)gh.

The identity element of L ?γ G was u−1id where u = γ(id, id). Recall that u = γ(id, id) =
γ(id, g) for all g ∈ G holds.

And there was an inclusion i : L→ L ?γ G with i(a) = au−1id.

gi(a) = g(au−1id) = g(a)g(u)−1γ(g, id)g = g(a)g = i(g(a))g.

We shall identify a ∈ L with i(a) ∈ L ?γ G and set ug := g. Then ug satisfies

uga = g(a)ug, uguh = γ(g, h)ugh ∀a ∈ L, g, h ∈ G (5.5)

Note that 1L?γG = u−1uid and that ug is invertible with inverse

(ug)
−1 = g−1

(
γ(g, g−1)−1u−1

)
ug−1 ,

because

ugg
−1
(
γ(g, g−1)−1u−1

)
ug−1 = γ(g, g−1)−1u−1ugug−1 = γ(g, g−1)−1u−1γ(g, g−1)uid = 1L?γG.
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Lemma 5.16 Let L/K be a finite Galois extension with Galois field G. Let {eg : g ∈ G} be
the idempotents of L⊗ L as in Lemma 5.15 and set e = eid. Then

L ?γγ′ G ' e (L ?γ G)⊗K
(
L ?γ′ G

)
e

as K-algebras and in particular β([γγ′]) = β([γ])β([γ′]).

Proof: Let {eg : g ∈ G} be the idempotents of L ⊗ L as in Lemma 5.15. Set e = eid. We
identify L⊗ L with its image in (L ?γ G)⊗K (L ?γ G).

Denote by {ug : g ∈ G} the L-basis of L ?γ G of invertible elements that satisfies

uga = g(a)ug and uguh = γ(g, h)ugh ∀g, h ∈ G, a ∈ L.

Then (u−1
g ⊗ 1)e(ug ⊗ 1) is an idempotent of L ?γ G and lies actually in L ⊗ L, because for

any a, b ∈ L and g ∈ G we have (u−1
g ⊗ 1)(a ⊗ b)(ug ⊗ 1) = g−1(a) ⊗ b ∈ L ⊗ L. Thus

(u−1
g ⊗ 1)e(ug ⊗ 1) ∈ L ⊗ L. Since uga = g(a)ug, we also have au−1

g = u−1
g g(a) and we

calculate, for all a, b ∈ L and g ∈ G:

(a⊗ b)(u−1
g ⊗ 1)e(ug ⊗ 1) = (u−1

g ⊗ 1)(g(a)⊗ b)e(ug ⊗ 1)

= (u−1
g ⊗ 1)(1⊗ g(a)b)e(ug ⊗ 1) = (1⊗ g(a)b)(u−1

g ⊗ 1)e(ug ⊗ 1)

Hence the idempotent (u−1
g ⊗ 1)e(ug ⊗ 1) ∈ L⊗ L satisfies the same identity as eg and must

be equal to eg be the uniqueness of it, i.e. (u−1
g ⊗ 1)e(ug ⊗ 1) = eg or equivalently

e(ug ⊗ 1) = (ug ⊗ 1)eg. (5.6)

Similarly, if {vg : g ∈ G} denotes an L-basis of L?γ′ G of invertible elements that satisfies

vga = g(a)vg and vgvh = γ′(g, h)ugh ∀g, h ∈ G, a ∈ L,

then (1 ⊗ vg)e(1 ⊗ v−1
g ⊗ 1) is an idempotent of L ?γ G and lies actually in L ⊗ L, because

for any a, b ∈ L and g ∈ G we have: (1 ⊗ vg)(a ⊗ b)(1 ⊗ v−1
g ) = a ⊗ g(b) ∈ L ⊗ L. Thus

(1⊗ vg)e(1⊗ v−1
g ) ∈ L⊗L. Since vgb = g(b)vg, we also have bvg = g−1(b)vg and we calculate,

for all a, b ∈ L and g ∈ G:

(a⊗ b)(1⊗ vg)e(1⊗ v−1
g ) = (1⊗ vg)(a⊗ g−1(b))e(1⊗ v−1

g )

= (1⊗ vg)(1⊗ ag−1(b))e(1⊗ v−1
g ) = (1⊗ g(a)b)(1⊗ vg)e(1⊗ v−1

g )

Hence the idempotent (1 ⊗ vg)e(1 ⊗ v−1
g ) ∈ L ⊗ L also satisfies the same identity as eg and

must be equal to eg, i.e. (1⊗ vg)e(1⊗ v−1
g ) = eg or equivalently

(1⊗ vg)e = eg(1⊗ vg). (5.7)

Let {wg : g ∈ G} an analogous L-basis for L ?γγ′ G satisfying

wga = g(a)wg and wgwh = γ(g, h)γ′(g, h)wgh ∀g, h ∈ G, a ∈ L

and define the map

ψ : L ?γγ′ G→ e
(
L ?γ G⊗ L ?γ′ G

)
e, ψ(awg) = (1⊗ a)e(ug ⊗ vg)e, ∀g ∈ G, a ∈ L.
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Since (1⊗ a)e = e(1⊗ a), the image of ψ belongs certainly to e
(
L ?γ G⊗ L ?γ′ G

)
e. For any

g, h ∈ G and a, b ∈ L, using equations (5.6) and (5.7) yields:

ψ(awg)ψ(bwg) = (1⊗ a)e(ug ⊗ vg)e(1⊗ b)e(uh ⊗ vh)e

= (1⊗ ag(b))e(ug ⊗ vg)e(uh ⊗ vh)e using the property of e and vg
= (1⊗ ag(b))e(ug ⊗ 1)eg(uh ⊗ vgvh)e using (5.7)
= (1⊗ ag(b))e(uguh ⊗ vgvh)e using (5.6)
= (1⊗ ag(b))e(γ(g, h)ugh ⊗ γ′(g, h)vgh)e using properties of ug and vg
= (1⊗ ag(b)γ(g, h)γ′(g, h))e(ugh ⊗ vgh)e using the property of e
= ψ(ag(b)γ(g, h)γ′(g, h)wgh)

= ψ((awg)(bwh))

Note also that the identity of L ?γγ′ G is mapped to e, because for u = γ(id, id) and
v = γ′(id, id), we have 1L?γγ′G = (uv)−1wid and hence

ψ(1L?γγ′G) = (1⊗ u−1v−1)e(uid ⊗ vid)e

= (u−1 ⊗ v−1)e(uid ⊗ vid)e = e(1L?γG ⊗ 1L?γ′G)e = e.

Since L ?γγ′ G is a simple algebra, ψ is injective. Let a, b ∈ L and g, h ∈ G. If g 6= h, then
e(aug ⊗ bvh)e = 0, because by equations (5.6) and (5.7) we have

e(aug ⊗ bvh)e = (a⊗ b)e(ug ⊗ vh)e = (a⊗ b)e(ug ⊗ 1)egeh(1⊗ vh)e = 0,

since egeh = 0 if g 6= h. On the other hand, any element of the form e(aug ⊗ bvg)e is equal to

e(aug ⊗ bvg)e = (1⊗ ab)e(ug ⊗ vg)e = ψ(abwg).

Thus, ψ is also surjective and hence an isomorphism. �

Corollary 5.17 The Brauer group of a field is a torsion group.

Proof: We have seen that any [A] ∈ Br(K) belongs to some Br(L/K), with L/K a finite
Galois extension and Galois group G. Then we have seen that H2(G,L×) ' Br(L/K) and
that [A] = [L ?γ G] = β([γ]), for some γ ∈ Z2(G,L×). Hence we only need to show that
H2(G,L×) is a torsion group for each Galois group G of a finite Galois extension L/K. Let
γ ∈ Z2(G,L×). Using the defining relation of a 2-cocyles,

γ(g, h)γ(gh, k) = γ(g, hk)g(γ(h, k)), ∀g, h, k ∈ G

we calculate:
γ(g, h)n

∏
k∈G

γ(gh, k) =
∏
k∈G

(γ(g, hk)g(γ(h, k)))

Define δ : G→ L× by
δ(g) :=

∏
k∈G

γ(g, k).
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Then we obtain

γ(g, h)n =
∏
k∈G

(
γ(g, hk)g(γ(h, k))γ(gh, k)−1

)
=

(∏
k∈G

γ(g, hk)

)
g

(∏
k∈G

γ(h, k)

)(∏
k∈G

γ(gh, k)

)−1

= δ(g)g (δ(h)) δ(gh)−1 = δ̂(g, h).

Thus, γn = δ̂ ∈ B2(G,L×), i.e. [γ] has finite order.
�

We finish with an example.
Let L/K be a Galois extension with Galois group G. Then for any γ ∈ Z2(G,L×) we can

define δ : G→ L× as δ(g) = γ(id, id)−1, for all g ∈ G and conclude that

δ̂(g, h) = δ(g)g(δ(h))δ(gh)−1 = g
(
γ(id, id)−1

)
, ∀g, h ∈ G.

In particular γ′ = δ̂ satisfies

γ′(id, g) = γ′(id, id) = 1 = g(1) = g(γ′(id, id)) = γ′(g, id), ∀g ∈ G.

Therefore, any class [γ] ∈ H2(G,L×) can be represented by some γ ∈ Z2(G,L×) with
γ(id, id) = γ(id, g) = γ(g, id) = 1 for all g ∈ G.

We assume now that [L : K] = 2 and G = {id, σ}. For any [γ] ∈ H2(G,L×) with
γ(id, id) = γ(id, σ) = γ(σ, id) = 1 we also have by the the 2-cocycle condition with all three
parameters equal to σ:

γ(σ, σ) = γ(σ, σ)γ(σ2, σ) = γ(σ, σ2)σ(γ(σ, σ)) = σ(γ(σ, σ)) ∈ Lσ = K

Hence γ(σ, σ) ∈ K×. Define ψ : K× → H2(G,L×) with b 7→ ψ(b) = [γb], where

γb(σ, σ) = b and γb(id, id) = γb(id, σ) = γb(σ, id) = 1.

Then ψ is a surjective group homomorphism, because for any b, b′ ∈ K× we have ψ(bb′) = [γbb′ ]
with

γbb′(σ, σ) = bb′ = (γbγb′) (σ, σ).

Hence ψ(bb′) = ψ(b)ψ(b′).
Recall the norm nL/K : L → K defined by nL/K(x) = xσ(x), for all x ∈ L. The norm is

multiplicative and in particular, nL/K(L×) is a multiplicative subgroup of K×. We will show
that Ker(ψ) = nL/K(L×). For any b = nL/K(x) = xσ(x), we can define δ : G → L× with
δ(id) = 1 and δ(σ) = x and conclude:

δ̂(id, id) = δ(id)2δ(id)−1 = 1 = γb(id, id)

δ̂(σ, id) = δ(σ)σ(δ(id))δ(σ)−1 = 1 = γb(σ, id)

δ̂(id, σ) = δ(id)δ(σ)δ(σ)−1 = 1 = γb(id, σ)

δ̂(σ, σ) = δ(σ)σ(δ(σ))δ(id)−1 = xσ(x) = b = γb(σ, σ).
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Hence nL/K(L×) ⊆ Ker(ψ). On the other hand, if b ∈ Ker(ψ), then γb = δ̂, for some
δ : G→ L×. Hence, 1 = γb(id, id) = δ(id)2δ(id)−1 = δ(id) and

b = γb(σ, σ) = δ(σ)σ(δ(σ))δ(σ2)−1 = nL(K(δ(σ)) ∈ nL/K(L×).

Thus we proved,
K×/nL/K(L×) ' H2(G,L×) ' Br(L/K).
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