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All rings in this note are considered to be associative and unital unless otherwise stated. Ring homomorphisms
are supposed to be unital, meaning that the identity element of one ring is mapped to the identity element of
the other.

1. Lecture: Representations of Lie algebras g and their enveloping algebra U(g)

Let 𝕂 be a field. A ring 𝐴 is called a 𝕂-algebra, if there exists a ring homomorphism 𝜂 ∶ 𝕂 → 𝑍(𝐴), where
𝑍(𝐴) denotes the center of the ring 𝐴. Then 𝐴 becomes a vector space over 𝕂 with scalar multiplication given
by

(1) 𝜆 ⋅ 𝑎 ∶= 𝜂(𝜆)𝑎,

for all 𝜆 ∈ 𝕂 and 𝑎 ∈ 𝐴. We will usually suppress 𝜂 and write simply 𝜆𝑎 to denote 𝜆 ⋅ 𝑎. The field 𝕂 itself is
of course a 𝕂-algebra, with 𝜂 = 𝑖𝑑𝕂. Also any field extension 𝔼 of 𝕂 is a 𝕂-algebra, where 𝜂 ∶ 𝕂 ⊆ 𝔼 is the
inclusion map. Furthermore, if 𝐴 is a 𝕂-algebra, then also polynomial rings 𝐴[𝑥1,… , 𝑥𝑛] and matrix rings𝑀𝑛(𝐴)

are 𝕂-algebras.
We will introduce now Lie algebras and a good reference on that subject is the book by Erdmann and Wildon

[1].

Definition 1.1 (Lie Algebra). Let 𝕂 be a field. A Lie algebra over 𝕂 is an 𝕂-vector space 𝐿, together with a bilinear
map, the Lie bracket [ , ] ∶ 𝐿 × 𝐿 → 𝐿, satisfying the following properties:

(L1) [𝑥, 𝑥] = 0, for all 𝑥 ∈ 𝐿

(L2) [𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]] + [𝑧, [𝑥, 𝑦]] = 0, for all 𝑥, 𝑦, 𝑧 ∈ 𝐿

Condition (L2) is known as the Jacobi identity. As the Lie bracket [−,−] is bilinear, we have

(2) 0 = [𝑥 + 𝑦, 𝑥 + 𝑦] = [𝑥, 𝑥] + [𝑥, 𝑦] + [𝑦, 𝑥] + [𝑦, 𝑦] = [𝑥, 𝑦] + [𝑦, 𝑥].

Hence condition (𝐿1) implies
(L1’) [𝑥, 𝑦] = −[𝑦, 𝑥], for all 𝑥, 𝑦 ∈ 𝐿.

1
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In case char(𝕂) ≠ 2, then (𝐿1
′
) implies (𝐿1) by choosing 𝑥 = 𝑦.

Definition 1.2 (Homomorphism of Lie algebras). Given a 𝕂-linear map 𝑓 ∶ 𝐿1 → 𝐿2 between to Lie algebras
(𝐿1, [, ]1) and (𝐿2, [, ]2) is said to be a homomorphism of Lie algebras if 𝑓 preserves the brackets, i.e.

(3) [𝑓 (𝑥), 𝑓 (𝑦)]2 = 𝑓 ([𝑥, 𝑦]1),

for all 𝑥, 𝑦 ∈ 𝐿.

Example 1.3 (Abelian Lie algebra). Any vector space 𝐿 can be made into a Lie algebra by setting [𝑥, 𝑦] = 0, for
all 𝑥, 𝑦 ∈ 𝐿 (where 0 shall denote the zero vector of 𝐿).

Example 1.4 (Vector Product). Let 𝐿 = ℝ
3 and consider the vector product [, ] ∶ ℝ

3
×ℝ

3
→ ℝ

3 with [𝑢, 𝑣] ∶= 𝑢× 𝑣,
for vectors 𝑢, 𝑣 ∈ ℝ

3. In coordinates, 𝑢 = (𝑢1, 𝑢2, 𝑢3) and 𝑣 = (𝑣1, 𝑣2, 𝑣3) this means:

(4) [𝑢, 𝑣] ∶= 𝑢 × 𝑣 = (𝑢2𝑣3 − 𝑢3𝑣2, 𝑢3𝑣1 − 𝑢1𝑣3, 𝑢1𝑣2 − 𝑢2𝑣1).

Clearly [𝑢, 𝑢] = 0 holds. One checks 𝑢 × (𝑣 ×𝑤) = (𝑢 ⋅𝑤)𝑣 − (𝑢 ⋅ 𝑣)𝑤, where 𝑢 ⋅ 𝑣 is the scalar product, and concludes
the Jacobi identity. Thus (ℝ3

, ×) is a Lie algebra. For the canonical basis vectors 𝑒1, 𝑒2, 𝑒3 of ℝ3 we have

(5) [𝑒1, 𝑒2] = 𝑒3, [𝑒1, 𝑒3] = −𝑒2, [𝑒2, 𝑒3] = 𝑒1.

Example 1.5 (Algebra as Lie algebra with Commutator). Let 𝐴 be any 𝕂-algebra. Then (𝐴, [, ]) is a Lie algebra,
where [, ] is the commutator bracket, i.e.

(6) [𝑎, 𝑏] = 𝑎𝑏 − 𝑏𝑎,

for all 𝑎, 𝑏 ∈ 𝐴. Clearly, [𝑎, 𝑎] = 0 holds and the Jacobi identity holds because for all 𝑎, 𝑏, 𝑐 ∈ 𝐴:

[𝑎, [𝑏, 𝑐]] + [𝑏, [𝑐, 𝑎] + [𝑐, [𝑎, 𝑏]] = 𝑎(𝑏𝑐 − 𝑐𝑏) − (𝑏𝑐 − 𝑐𝑏)𝑎 + 𝑏(𝑐𝑎 − 𝑎𝑐) − (𝑐𝑎 − 𝑎𝑐)𝑏 + 𝑐(𝑎𝑏 − 𝑏𝑎) − (𝑎𝑏 − 𝑏𝑎)𝑐

= 𝑎𝑏𝑐 − 𝑎𝑐𝑏 − 𝑏𝑐𝑎 + 𝑐𝑏𝑎 + 𝑏𝑐𝑎 − 𝑏𝑎𝑐 − 𝑐𝑎𝑏 + 𝑎𝑐𝑏 + 𝑐𝑎𝑏 − 𝑐𝑏𝑎 − 𝑎𝑏𝑐 + 𝑏𝑎𝑐

= 0.

Example 1.6 (Matrix Lie algebras). Consider 𝐴 = 𝑀𝑛(𝕂), the vector space of 𝑛 × 𝑛-matrices with entries in 𝕂.
Since 𝐴 is also an associative algebra, 𝐴 is a Lie algebra with commutator bracket. Note that a 𝕂-basis of 𝐴 is given
by the elementary matrices 𝐸𝑖𝑗 , with 1 ≤ 𝑖, 𝑗 ≤ 𝑛. One easily checks

(7) [𝐸𝑖𝑗 , 𝐸𝑘𝑙] = 𝐸𝑖𝑗𝐸𝑘𝑙 − 𝐸𝑘𝑙𝐸𝑖𝑗 = 𝛿𝑗𝑘𝐸𝑖𝑙 − 𝛿𝑙𝑖𝐸𝑘𝑗 ,

where 𝛿𝑖𝑗 denotes the Kronecker symbol with 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗 and 𝛿𝑖𝑗 = 0 otherwise. This Lie algebra is usually
denoted by gl

𝑛
(𝕂) or gl(𝑛,𝕂) and called general linear Lie algebra. For 𝑛 = 2, we have the 4 basis elements

𝑥 = 𝐸11, 𝑒 = 𝐸12, 𝑓 = 𝐸21, 𝑦 = 𝐸22. Hence the non-zero brackets are given by

(8) [𝑒, 𝑓 ] = 𝑥 − 𝑦, [ 𝑒, 𝑦] = 𝑒 = [𝑥, 𝑒], [𝑓 , 𝑥] = 𝑓 = [𝑦, 𝑓 ].

Example 1.7 (Special linear algebra). A subspace of gl
𝑛
(𝕂) is the space sl𝑛(𝕂) of all matrices with zero trace.

Recall that the trace 𝑡𝑟(𝑥) of a matrix 𝑥 = (𝑥𝑖𝑗 ) is the sum of entries of the main diagonal and that 𝑡𝑟(𝑥𝑦) = 𝑡𝑟(𝑦𝑥)

for two 𝑛 × 𝑛-matrices 𝑥 and 𝑦. Thus 𝑡𝑟([𝑥, 𝑦]) = 0. Hence the restriction of the commutator bracket to sl𝑛(𝕂) turns
this space into a Lie algebra, called special linear algebra.

For example, if 𝑛 = 2, then a basis for sl2(𝕂) is given by

(9) 𝑒 =
[

0 1

0 0]
, 𝑓 =

[

0 0

1 0]
, ℎ = 𝑥 − 𝑦 =

[

1 0

0 −1]
.

The non-zero brackets of these elements are given by the Serre relations:

(10) [𝑒, 𝑓 ] = ℎ, [ℎ, 𝑒] = 2𝑒, [ℎ, 𝑓 ] = −2𝑓 .
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Example 1.8 (Strictly upper triangular matrices). A subspace of sl𝑛(𝕂) is the space T𝑛(𝕂) of all strictly upper
triangular matrices, i.e.

(11) T𝑛(𝕂) = span

{

𝐸𝑖𝑗 ∶ 𝑖 < 𝑗

}

.

Then 𝑇𝑛(𝕂) becomes a Lie algebra with the commutator bracket. The three dimensional Heisenberg Lie algebra is
defined as h ∶= 𝑇3(𝕂), which has basis

(12) 𝑥 =

⎡

⎢

⎢

⎣

0 1 0

0 0 0

0 0 0

⎤

⎥

⎥

⎦

, 𝑦 =

⎡

⎢

⎢

⎣

0 0 0

0 0 1

0 0 0

⎤

⎥

⎥

⎦

, 𝑧 =

⎡

⎢

⎢

⎣

0 0 1

0 0 0

0 0 0

⎤

⎥

⎥

⎦

.

The brackets are given by

(13) [𝑥, 𝑦] = 𝑧, [𝑥, 𝑧] = 0, [𝑦, 𝑧] = 0.

Definition 1.9 (Derivations). A derivation of a 𝕂-algebra 𝐴 is a 𝕂-linear map 𝛿 ∶ 𝐴 → 𝐴 that satisfies the
Leibniz rule
(14) 𝛿(𝑎𝑏) = 𝑎𝛿(𝑏) + 𝛿(𝑎)𝑏,

for all 𝑎, 𝑏 ∈ 𝐴.

Note that if 𝛿 is a derivation of a 𝕂-algebra 𝐴 and 𝑐 ∈ 𝑍(𝐴) is an element of 𝐴, then 𝛿 ∶= 𝑐𝛿 defined as
𝛿(𝑥) = 𝑐𝛿(𝑥) is again a derivation, because for 𝑎, 𝑏 ∈ 𝐴:

𝛿(𝑎𝑏) = 𝑐𝛿(𝑎𝑏) = 𝑐 (𝑎𝛿(𝑏) + 𝛿(𝑎)𝑏) = 𝑎𝛿(𝑏) + 𝛿(𝑎)𝑏

using that 𝑐 commutes with 𝑎. In particular, given scalars 𝜆1, 𝜆2 ∈ 𝕂 and derivations 𝛿1, 𝛿2 of 𝐴 it is easy to
verify that 𝜆1𝛿1 + 𝜆2𝛿2 is again a derivation of 𝐴.

Definition 1.10 (Lie algebra of derivations). Let 𝐴 be a 𝕂-algebra and Der𝕂(𝐴) the space of all derivations
of 𝐴. Then Der𝕂(𝐴) is a Lie algebra with the commutator bracket (using the composition of functions), i.e. for
𝛿1, 𝛿2 ∈ Der𝕂(𝐴):

(15) [𝛿1, 𝛿2] = 𝛿1 ◦ 𝛿2 − 𝛿2 ◦ 𝛿1

Example 1.11 (Derivations in Polynomial rings). Let 𝐴 = 𝕂[𝑥1,… , 𝑥𝑛] be the polynomial ring in 𝑛 variables.
Then the usual partial derivations 𝜕

𝜕𝑥𝑖
, for 1 ≤ 𝑖 ≤ 𝑛, are derivations of 𝐴. Let 𝑓1,… , 𝑓𝑛 ∈ 𝐴 be polynomials, then

(16) 𝛿 = 𝑓1

𝜕

𝜕𝑥𝑖

+⋯ + 𝑓𝑛

𝜕

𝜕𝑥𝑛

is a derivation, since 𝐴 is commutative. Moreover, given any 𝛿 ∈ Der𝕂(𝐴) we set 𝑓𝑖 ∶= 𝛿(𝑥𝑖). Then by induction,
using the Leibniz rule, one shows that 𝛿(𝑥𝑚

𝑖
) = 𝑚𝑥

𝑚−1
𝑓𝑖 = 𝑓𝑖

𝜕

𝜕𝑥𝑖
(𝑥

𝑚

𝑖
). For an arbitrary monomial 𝑤 = 𝑥

𝑚1

1
⋯ 𝑥

𝑚𝑛

𝑛

one concludes similarly

(17) 𝛿(𝑤) = 𝑓1

𝜕

𝜕𝑥1

(𝑤) +⋯ + 𝑓𝑛

𝜕

𝜕𝑥𝑛

(𝑤).

Thus Der𝕂(𝐴) = ∑
𝑛

𝑖=1
𝐴

𝜕

𝜕𝑥𝑖
is a finitely generated as 𝐴-module (actually free of rank 𝑛 for a polynomial ring).

Example 1.12. In contrast to the last example, the Skolem-Noether Theorem says that the Lie algebra of derivation
Der𝕂(𝐴), for 𝐴 = 𝑀𝑛(𝕂) consists only of inner derivations, i.e. derivations of the form 𝛿(𝑎) = [𝑎, 𝑥] = 𝑎𝑥 − 𝑥𝑎,
for some element 𝑥 ∈ 𝐴.

Definition 1.13 (Representations of Lie algebras). Given a Lie algebra g over a field 𝕂. A representation of g on
a vector space 𝑉 is a homomorphism of Lie algebras 𝜌 ∶ g → End(𝑉 ), where End(𝑉 ) is seen as a Lie algebra with
commutator bracket. In case 𝑉 is finite dimensional one can identify the Lie algebra End(𝑉 ) with the general linear
algebra gl(𝑛,𝕂) =∶ gl(𝑉 ).
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Example 1.14 (the adjoint map). The adjoint map of a (finite dimensional) Lie algebra g is

(18) ad ∶ g → gl(g), 𝑥 ↦ (ad 𝑥) ∶ [𝑦 ↦ [𝑥, 𝑦]]

This map is a homomorphism of Lie algebras, due to the Jacobi identity:

(19) [(ad𝑥), (ad𝑦)](𝑧) = [𝑥, [𝑦, 𝑧]] − [𝑦, [𝑥, 𝑧]] = [𝑧, [𝑦, 𝑥]] = [[𝑥, 𝑦], 𝑧] = (ad[𝑥, 𝑦])(𝑧).

Hence ad turns g into a representation over g

2. Lecture: Representing 𝑈 (g) as ring extensions for small examples

Definition 2.1 (Free Algebra). The free algebra over a set 𝑋 is the vector space 𝑇 ⟨𝑋 ⟩ over 𝕂 with basis the
words 𝑤 = 𝑥1⋯ 𝑥𝑚 with letters 𝑥𝑖 ∈ 𝑋 , The multiplication is given by concatenation of words, i.e. for words
𝑣 = 𝑥1⋯ 𝑥𝑚 and 𝑤 = 𝑦1⋯ 𝑦𝑛 of length 𝑚 and 𝑛 one defines the word 𝑣𝑤 = 𝑥1⋯ 𝑥𝑚𝑦1⋯ 𝑦𝑛 of length 𝑛 + 𝑚 as their
product. By definition there exists an empty word 𝜔, i.e. a word of length 0, which serves as identity element of the
multiplication.1

Theorem 2.2 (Universal Property of the free algebra). For any set 𝑋 , algebra 𝐴 and function 𝑓 ∶ 𝑋 → 𝐴, there
exists a unique algebra homomorphism ̃

𝑓 ∶ 𝑇 ⟨𝑋 ⟩ → 𝐴, such that ̃𝑓 (𝑥) = 𝑓 (𝑥), for all 𝑥 ∈ 𝑋 .

Proof. Defne ̃
𝑓 ∶ 𝑇 (𝑋 ) → 𝐴 by ̃

𝑓 (𝑥1… 𝑥𝑚) ∶= 𝑓 (𝑥1)⋯ 𝑓 (𝑥𝑚), for all words 𝑥1⋯ 𝑥𝑚 in 𝑋 . One checks ̃𝑓 (𝑣𝑤) =
𝑓 (𝑥1)⋯ 𝑓 (𝑥𝑚)𝑓 (𝑦1)⋯ 𝑓 (𝑦𝑚) =

̃
𝑓 (𝑣)

̃
𝑓 (𝑤), for 𝑤 = 𝑥1⋯ 𝑥𝑚 and 𝑤 = 𝑦1⋯ 𝑦𝑛. The uniqueness is left to the

reader. □

Definition 2.3 (Enveloping Algebra). Let g be a finite dimensional Lie algebra with bracket [−,−] and basis 𝑋 .
The universal enveloping algebra of g is defined as

(20) 𝑈 (g) =
𝑇 ⟨𝑋 ⟩

⟨𝑥𝑦 − 𝑦𝑥 − [𝑥, 𝑦] ∶ 𝑥, 𝑦 ∈ 𝑋 ⟩

.

Moreover, 𝑖 ∶ g → 𝑈 (g) with 𝑖(𝑥) = 𝑥 , for 𝑥 ∈ g, is a Lie algebra homomorphism.

Suppose g has basis 𝑋 = {𝑥1,… , 𝑥𝑛}. Note that if g is Abelian, i.e. [−,−] ≅ 0, then 𝑈 (g) = 𝕂[𝑥1,… , 𝑥𝑛] is the
commutative polynomial ring in 𝑛 variables, which as a vector space has an ordered basis {𝑥𝑚1

1
⋯ 𝑥

𝑚𝑛

𝑛
∶ 𝑚𝑖 ≥ 0}.

In general, if 𝑗 > 𝑖, then 𝑥𝑗𝑥𝑖 = 𝑥𝑖𝑥𝑗 + [𝑥𝑗 , 𝑥𝑖]. Hence any element 𝑥𝑗𝑥𝑖 of length 2 can be reordered to 𝑥𝑖𝑥𝑗 , with
𝑖 < 𝑗 , plus an element of length 1. Therefore it is clear that the set {𝑥𝑚1

1
⋯ 𝑥

𝑚𝑛

𝑛
∶ 𝑚𝑖 ≥ 0}, consisting of so-called

standard monomials is always a generating set of 𝑈 (g) as𝕂-vector space. Although it is not obvious, that this set
is also a basis, the Poincaré-Birkhoff-Witt Theorem says exactly that, namely that the set of standard monomials
is always a basis of 𝑈 (g) as 𝕂-vector space, independent of g being Abelian or not. As a consequence, one
concludes that 𝑖 ∶ 𝑔 → 𝑈 (g) is injective and that we can identify the elements of g with their representatives in
𝑈 (𝑔). The universal enveloping algebra has the following universal property:

Theorem 2.4 (Universal Property of 𝑈 (g)). Let g be a Lie algebra and 𝐴 an associative algebra. For any
homomorphism of Lie algebras 𝑓 ∶ g → 𝐴, where 𝐴 is considered a Lie algebra with commutator bracket, there
exists a unique homomorphism of associative algebras 𝑓 ∶ 𝑈 (g) → 𝐴 such that 𝑓 (𝑥) = 𝑓 (𝑥), for all 𝑥 ∈ g.

Proof. Let 𝑋 be a basis of g. By the universal property of the free algebra 𝑇 ⟨𝑋 ⟩, Theorem 2.2, there exists a
unique algebra homomorphism ̃

𝑓 ∶ 𝑇 ⟨𝑋 ⟩ → 𝐴, extending 𝑓 . For any 𝑥, 𝑦 ∈ g we calculate:

(21) ̃
𝑓 (𝑥𝑦 − 𝑦𝑥 − [𝑥, 𝑦]) = 𝑓 (𝑥)𝑓 (𝑦) − 𝑓 (𝑦)𝑓 (𝑥) − 𝑓 ([𝑥, 𝑦]) = [𝑓 (𝑥), 𝑓 (𝑦)] − 𝑓 ([𝑥, 𝑦]) = 0,

1The free algebra is nothing but the monoid algebra of the monoid of words in 𝑋 over 𝕂.
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since 𝑓 is a homomorphism of Lie algebras. Hence ̃
𝑓 (𝐼 ) = 0, for 𝐼 = ⟨𝑥𝑦 − 𝑦𝑥 − [𝑥, 𝑦] ∶ 𝑥, 𝑦 ∈ g⟩ and there

exists a unique (well-defined) algebra homomorphism 𝑓 ∶ 𝑈 (g) = 𝑇 (g)/𝐼 → 𝐴 with 𝑓 (𝑤 + 𝐼 ) =
̃
𝑓 (𝑤), for words

𝑤, and which satisfies, 𝑓 (𝑥 + 𝐼 ) =
̃
𝑓 (𝑥) = 𝑓 (𝑥). □

Theorem 2.5 (Representations of Lie algebras as modules over 𝑈 (g)). Let 𝑉 be a vector space.
(1) If 𝜌 ∶ g → End(𝑉 ) is a representation over g, then by the universal property of 𝑈 (g) there exists a unique

homomorphism of associative algebras 𝜌 ∶ 𝑈 (g) → End(𝑉 ), which turns 𝑉 into a (left) 𝑈 (g)-module, by

(22) ℎ ⋅ 𝑣 = 𝜌(ℎ)(𝑣),

for all 𝑣 ∈ 𝑉 and ℎ ∈ 𝑈 (g).
(2) Conversely, if 𝑉 is a left 𝑈 (g)-module, then we define

(23) 𝜌 ∶ g → End(𝑉 ), 𝜌(𝑥) = [𝑣 ↦ 𝑥 ⋅ 𝑣].

Proof. (1) is clear, since a ring homomorphism 𝜌 ∶ 𝑈 (g) → End(𝑉 ) turns 𝑉 into a left 𝑈 (g)-module.
(2) Note that given 𝑥, 𝑦 ∈ g, then in 𝑈 (g) we have 𝑥𝑦 − 𝑦𝑥 = [𝑥, 𝑦]. Hence for all 𝑣 ∈ 𝑉 :

(24) [𝜌(𝑥), 𝜌(𝑦)](𝑣) = (𝜌(𝑥)𝜌(𝑦) − 𝜌(𝑦)𝜌(𝑥))(𝑣) = 𝑥 ⋅ 𝑦 ⋅ 𝑣 − 𝑦 ⋅ 𝑥 ⋅ 𝑣 = [𝑥, 𝑦] ⋅ 𝑣 = 𝜌([𝑥, 𝑦])(𝑣).

This shows that 𝜌 is a representation of g. □

Theorem 2.6 (Tensor product). Let g be a Lie algebra.
(1) There exist unique algebra homomorphisms Δ ∶ 𝑈 (g) → 𝑈 (g) ⊗ 𝑈 (g) and 𝜖 ∶ 𝑈 (g) → 𝕂, such that

(25) Δ(𝑥) = 1 ⊗ 𝑥 + 𝑥 ⊗ 1, 𝜖(𝑥) = 0,

for all 𝑥 ∈ g.
(2) Given two left 𝑈 (g)-modules 𝑀,𝑁 their tensor product 𝑀 ⊗ 𝑁 is again a left 𝑈 (g)-module by

(26) 𝑥 ⋅ (𝑚 ⊗ 𝑛) = (𝑥 ⋅ 𝑚) ⊗ 𝑛 + 𝑚 ⊗ (𝑥 ⋅ 𝑛)

for all 𝑥 ∈ g, 𝑚 ∈ 𝑀 and 𝑛 ∈ 𝑁 .

Proof. (1) Consider the linear map Δ
′
∶ g → 𝑈 (g) ⊗ 𝑈 (g) defined by (25), then Δ

′ is a homomorphism of Lie
algebras, because for all 𝑥, 𝑦 ∈ g:

[Δ
′
(𝑥),Δ

′
(𝑦)] = (1 ⊗ 𝑥 + 𝑥 ⊗ 1)(1 ⊗ 𝑦 + 𝑦 ⊗ 1) − (1 ⊗ 𝑦 + 𝑦 ⊗ 1)(1 ⊗ 𝑥 + 𝑥 ⊗ 1)

= (1 ⊗ 𝑥𝑦 + 𝑦 ⊗ 𝑥 + 𝑥 ⊗ 𝑦 + 𝑥𝑦 ⊗ 1) − (1 ⊗ 𝑦𝑥 + 𝑥 ⊗ 𝑦 + 𝑦 ⊗ 𝑥 + 𝑦𝑥 ⊗ 1)

= 1 ⊗ (𝑥𝑦 − 𝑦𝑥) + 𝑥𝑦 − 𝑦𝑥 ⊗ 1

= Δ
′
([𝑥, 𝑦]).

By the universal property of 𝑈 (g), Theorem 2.4, there exists a unique algebra homomorphism Δ ∶ 𝑈 (g) →
𝑈 (g) ⊗ 𝑈 (g) extending Δ′.

Similarly, if we let 𝜖′ ∶ g → 𝕂 be the linear map that sends 𝑥 to 0, then 𝜖′ is a homomorphism of Lie algebras
and there exists a unique algebra homomorphism 𝜖 ∶ 𝑈 (g) → 𝕂 extending 𝜖′.

(2) Since [𝑥, 𝑦] ⋅𝑚 = (𝑥𝑦 − 𝑦𝑥) ⋅𝑚, for any 𝑚 of an 𝑈 (g)-module𝑀 and 𝑥, 𝑦 ∈ g, we conclude [𝑥, 𝑦] ⋅ (𝑚⊗𝑛) =

(𝑥𝑦 − 𝑦𝑥) ⋅ (𝑚 ⊗ 𝑛), for all 𝑥, 𝑦 ∈ g, 𝑚 ∈ 𝑀 and 𝑛 ∈ 𝑁 . This shows that the action ⋅ ∶ g → End(𝑀 ⊗ 𝑁 )

given by (26) is a homomorphism of Lie algebras and hence there exists a unique algebra homomorphism
⋅ ∶ 𝑈 (g) → End(𝑀 ⊗ 𝑁 ) that defines a left 𝑈 (g)-module structure on 𝑀 ⊗ 𝑁 . □

Theorem 2.7 (Enveloping algebras of finite dimensional Lie algebras are Noetherian). The enveloping algebra
𝑈 (g) of a finite dimensional Lie algebra g is Noetherian domain.
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Proof. (sketch) 𝑈 (g) is filtered by the total degree of the standard monomials, i.e.

𝐹𝑘 ∶= span

{

𝑥
𝑚1

1
⋯ 𝑥

𝑚𝑛

𝑛
∶

𝑛

∑

𝑖=1

𝑚𝑖 = 𝑘

}

.

Then 𝐹0 = 𝕂, 𝐹1 = g. In particular 𝐹𝑘𝐹𝑙 ⊆ 𝐹𝑘+𝑙, 𝐹𝑖 ⊆ 𝐹𝑗 , for 𝑖 ≤ 𝑗 and ⋃ 𝐹𝑘 = 𝑈 (g). Thus {𝐹𝑘}𝑘≥0 is a filtration of
𝑈 (g). One can therefore form the associated graded ring

(27) gr𝑈 (g) = ⨁

𝑘≥0

𝐹𝑘/𝐹𝑘−1,

where 𝐹−1 ∶= {0}. An element 𝑎 ∈ 𝑈 (g) is said to have degree 𝑘 if 𝑎 ∈ 𝐹𝑘 ⧵ 𝐹𝑘−1. We call 𝑎 = 𝑎 + 𝐹𝑘−1 ∈ gr𝑈 (g)
the leading term of 𝑎. Note that 𝑎 = 0 if and only if 𝑎 = 0. Let 𝑏 ∈ 𝑈 (g) be an element of degree 𝑙, then we define

𝑎𝑏 ∶= 𝑎𝑏 + 𝐹𝑘+𝑙−1.

We easily see that 𝕂[𝑥1,… , 𝑥𝑛] ≃ gr𝑈 (g), as algebras, where the isomorphism is given by

𝑥
𝑚1

1
⋯ 𝑥

𝑚𝑛

𝑛
↦ 𝑥

𝑚1

1
⋯ 𝑥

𝑚𝑛

𝑛
+ 𝐹𝑚1+⋯+𝑚𝑛

.

Thus, gr𝑈 (g) is a Noetherian domain of Krull dimension equal to dim(g). The general Theory on graded rings
tells us that if the associated graded ring gr𝑈 (g) is Noetherian, then so is the graded ring 𝑈 (g) (see [5, 1.6.9]).
Moreover, if 𝑎𝑏 = 0 in 𝑈 (g), then 𝑎𝑏 = 𝑎𝑏 in gr𝑈 (g) ≃ 𝕂[𝑥1,… , 𝑥𝑛]. Hence 𝑎 = 0 or 𝑏 = 0, i.e. 𝑈 (g) is a
domain. □

Open Problem 2.8. It is not known whether given a field 𝕂 and a Lie algebra g such that 𝑈 (g) is Noetherian, g
must be finite dimensional.

Representing 𝑈 (g) as Ore extensions. Let 𝜎 be an automorphism of an algebra 𝑅. A linear map 𝛿 ∶ 𝑅 → 𝑅

is called a 𝜎-derivation if for all 𝑎, 𝑏 ∈ 𝑅:

(28) 𝛿(𝑎𝑏) = 𝜎(𝑎)𝛿(𝑏) + 𝛿(𝑎)𝑏.

Clear 𝛿 is a derivation if and only if it is an 𝑖𝑑-derivation.

Theorem 2.9 (Ore extension). Given an algebra 𝑅, an automorphism 𝜎 ∈ Aut(𝑅) and a 𝜎-derivation 𝛿, there
exists a ring 𝑆 = 𝑅[𝑥;𝜎, 𝛿], such that 𝑆 is free as left 𝑅-module with basis {𝑥 𝑖 ∶ 𝑖 ≥ 0}, such that

(29) 𝑥𝑎 = 𝜎(𝑎)𝑥 + 𝛿(𝑎)

for all 𝑎 ∈ 𝑅. The ring 𝑅[𝑥;𝜎, 𝛿] is called an Ore extension of 𝑅.

Ore extensions can be realized as a subring of the abelian group of ℤ-endomorphisms of 𝑅[𝑥] (see [5, 1.2.3].
Furthermore, it is known that Ore extensions of Noetherian domains are Noetherian domains. The proof is very
similar to Hilbert’s basis theorem (see [5, 1.2.9]).

Example 2.10 (Two dimensional Lie algebras). Suppose char(𝕂) ≠ 2 and let g = span(𝑥, 𝑦) be a Lie algebra
with basis {𝑥, 𝑦}. Then

(30) [𝑥, 𝑦] = 𝑎𝑥 + 𝑏𝑦,

for 𝑎, 𝑏 ∈ 𝕂. If 𝑎 = 𝑏 = 0, then g is abelian and 𝑈 (g) = 𝕂[𝑥, 𝑦].
Suppose 𝑏 ≠ 0

2 Set 𝑥′ ∶= 𝑏
−1
𝑥 and 𝑦′ = 𝑎𝑏

−1
𝑥 + 𝑦, then

(31) [𝑥
′
, 𝑦

′
] = 𝑏

−2
𝑎[𝑥, 𝑥] + 𝑏

−1
[𝑥, 𝑦] = 𝑎𝑏

−1
𝑥 + 𝑦 = 𝑦

′

2if 𝑏 = 0 and 𝑎 ≠ 0, then we can simply exchange 𝑥 and 𝑦.
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Hence, after a change of basis from {𝑥, 𝑦} to {𝑥′, 𝑦′}, we can assume that any non-abelian two dimensional Lie
algebra g has a basis {𝑥, 𝑦} with [𝑥, 𝑦] = 𝑦. The enveloping algebra 𝑈 (g) can be described as an Ore extension
where 𝑅 = 𝕂[𝑦], 𝜎 = 𝑖𝑑 and 𝛿 = 𝑦

𝜕

𝜕𝑦
is the derivation of 𝑅 sending 𝑦 to 𝑦 (check that this is a derivation of 𝑅):

(32) 𝑈 (g) = 𝕂[𝑦][𝑥; id, 𝑦

𝜕

𝜕𝑦

].

Alternatively, we could set 𝑅 = 𝕂[𝑥] and consider the automorphism 𝜎 of 𝕂[𝑥] defined by 𝜎(𝑥) = 𝑥 − 1. Then
[𝑥, 𝑦] = 𝑦 is equivalent to 𝑦𝑥 = (𝑥 − 1)𝑦 = 𝜎(𝑥)𝑦. Thus, we obtain

(33) 𝑈 (g) = 𝕂[𝑥][𝑦;𝜎, 0].

Example 2.11 (Heisenberg Lie algebra). The three dimensional Heisenberg Lie algebra h can be seen as the Lie
algebra with basis 𝑥, 𝑦, 𝑧 such that [𝑥, 𝑦] = 𝑧. It can be realized as a Lie algebra of matrices, where

(34) 𝑥 =

⎡

⎢

⎢

⎣

0 1 0

0 0 0

0 0 0

⎤

⎥

⎥

⎦

, 𝑦 =

⎡

⎢

⎢

⎣

0 0 0

0 0 1

0 0 0

⎤

⎥

⎥

⎦

, 𝑧 =

⎡

⎢

⎢

⎣

0 0 1

0 0 0

0 0 0

⎤

⎥

⎥

⎦

.

Let 𝑅 = 𝕂[𝑦, 𝑧] and set 𝜎 = 𝑖𝑑 and 𝛿 = 𝑧
𝜕

𝜕𝑦
. Then 𝛿(𝑦) = 𝑧 and

(35) 𝑈 (h) = 𝕂[𝑦, 𝑧][𝑥; 𝑧

𝜕

𝜕𝑦

].

Although the description of 𝑈 (h) looks very similar to 𝑈 (g), with g the two-dimensional non-abelian Lie algebra,
they are quite different. For instance, h is a so-called nilpotent Lie algebra, i.e. [h, [h, h]] = 0, while g is not, since
[g, g] = 𝕂𝑦 and [g,𝕂𝑦] = 𝕂[𝑦]. Note, that 𝑍(𝑈 (h)) = 𝕂[𝑧], while 𝑍(𝑈 (g)) = 𝕂.

Example 2.12 (sl2). The three dimensional special linear Lie algebra sl2 can be seen as the Lie algebra with basis
𝑒, 𝑓 , ℎ such that the Serre relation hold (see Example 1.7):

(36) [𝑒, 𝑓 ] = ℎ, [ℎ, 𝑒] = 2𝑒, [ℎ, 𝑓 ] = −2𝑓 .

Our aim is to express 𝑈 (sl2) as an iterated Ore extension. Set 𝑅 = 𝕂[ℎ] and define the automorphism 𝜎 of 𝕂[ℎ] by
𝜎(ℎ) = ℎ−2. Then [ℎ, 𝑒] = 2𝑒 is equivalent to 𝑒ℎ = ℎ𝑒−2𝑒 = 𝜎(ℎ)𝑒. Let 𝑆 = 𝕂[ℎ][𝑒;𝜎] and define an automorphism
𝜏 of 𝑆 by setting 𝜏(ℎ) = ℎ + 2 and 𝜏(𝑒) = 𝑒. In order to guarantee that there exists such an automorphism, we
must assure 𝜏(𝑒ℎ) = 𝜏(𝜎(ℎ)𝑒). We have on the left side 𝜏(𝑒ℎ) = 𝑒(ℎ + 2) = ℎ𝑒 − 2𝑒 + 2𝑒 = ℎ𝑒, while on the right
side we have 𝜏(𝜎(ℎ)𝑒) = 𝜏(ℎ𝑒 − 2𝑒) = (ℎ + 2)𝑒 − 2𝑒 = ℎ𝑒. Thus, 𝜏(𝑒𝑔) = 𝜏(𝜎(ℎ)𝑒) holds and we can define the
automorphism 𝜏.

Furthermore, we define a 𝜏-derivation 𝛿 as 𝛿(ℎ) = 0 and 𝛿(𝑒) = −ℎ, i.e. 𝛿 = −ℎ
𝜕

𝜕𝑒
. We need to check that 𝛿 is

indeed a 𝜏-derivation and will do so only on the generators:

𝛿(𝑒ℎ) = 𝜏(𝑒)𝛿(ℎ) + 𝛿(𝑒)ℎ = −ℎ
2
= (ℎ + 2)(−ℎ) − 2(−ℎ) = 𝜏(ℎ)𝛿(𝑒) + 𝛿(ℎ)𝑒 − 2𝛿(𝑒) = 𝛿(𝜎(ℎ)𝑒).

Hence we can form the Ore extension 𝑆[𝑓 ; 𝜏, 𝛿] and have that 𝑓 𝑒 = 𝜏(𝑒)𝑓 + 𝛿(𝑒) = 𝑒𝑓 − ℎ, which is equivalent to
[𝑒, 𝑓 ] = ℎ. We also have 𝑓 ℎ = 𝜏(ℎ)𝑓 + 𝛿(ℎ) = (ℎ + 2)𝑓 , which is equivalent to [ℎ, 𝑓 ] = −2𝑓 . Thus we can establish
an isomorphism

(37) 𝑈 (sl2) ≃ 𝕂[ℎ][𝑒;𝜎][𝑓 ; 𝜏, 𝛿]

3. Lecture: Group representations and group algebras.

Definition 3.1 (Semigroup ring). Given a ring 𝑅 and a semigroup 𝑆. The semigroup ring 𝑅[𝑆] is defined as
follows:
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(1) As set, 𝑅[𝑆] is equal to the direct sum 𝑅
(𝑆), which is the set of elements 𝑓 = (𝑟𝑠)𝑠∈𝑆 such that there

exists a finite subset 𝐹 ⊆ 𝑆 with 𝑟𝑠 = 0 for all 𝑠 ∈ 𝑆 ⧵ 𝐹 . The support of such element 𝑓 is defined as
sup(𝑓 ) = {𝑠 ∈ 𝑆 ∣ 𝑟𝑠 ≠ 0}. Elements of 𝑅[𝑆] are written as finite sums 𝑓 = ∑ 𝑟𝑠𝑠, where 𝑠 is a placeholder for
the coefficient 𝑟𝑠 and where it is understood, that only finitely many coefficients 𝑟𝑠 are non-zero.

(2) The addition of two elements 𝑓 = ∑ 𝑎𝑠𝑠 and 𝑔 = ∑ 𝑏𝑠𝑠 in 𝑅[𝑆] is defined as

(38) 𝑓 + 𝑔 = ∑(𝑎𝑠 + 𝑏𝑠)𝑠.

(3) The multiplication of two elements 𝑓 = ∑ 𝑎𝑠𝑠 and 𝑔 = ∑ 𝑏𝑠𝑠 in 𝑅[𝑆] is defined as

(39) 𝑓 𝑔 = ∑ 𝑐𝑠𝑠, with 𝑐𝑠 =

(

∑

𝑠1𝑠2=𝑠

𝑎𝑠1
𝑏𝑠2

)

Since sup(𝑓 ) and sup(𝑔) are finite, there are only finitely many coefficients 𝑐𝑠 that are non-zero and each
coefficient 𝑐𝑛 = ∑

𝑠1𝑠2=𝑠
𝑎𝑠1
𝑏𝑠2

has only a finite number of non-zero summands.
If 𝑅 is unital, with neutral element 1 and 𝑆 is a monoid, with neutral element 𝑒, then 𝑅[𝑆] is unital with neutral
element 1𝑒.

Example 3.2. Let 𝑅 be a ring.
(1) Let 𝑆 = {𝑒} be the trivial semigroup. Then 𝑅[𝑆] = {𝑎𝑒 ∣ 𝑎 ∈ 𝑅} is isomorphic to 𝑅.
(2) Let 𝑆 = ℕ = {𝑥

𝑛
∣ 𝑛 ≥ 0} and multiplication 𝑥𝑛𝑥𝑚 = 𝑥

𝑛+𝑚 for all numbers 𝑛, 𝑚 ≥ 0. Then

(40) 𝑅[ℕ] =

{
∞

∑

𝑛=0

𝑎𝑛𝑥
𝑛
∣ 𝑎𝑛 ∈ 𝑅 and only finitely many 𝑎𝑛 are non-zero

}

=∶ 𝑅[𝑥]

is the polynomial ring over 𝑅 in one variable. Note that the multiplication is given by

(41)
(

∞

∑

𝑛=0

𝑎𝑛𝑥
𝑛

)(

∞

∑

𝑛=0

𝑏𝑛𝑥
𝑛

)

=

(

∞

∑

𝑛=0

𝑐𝑛𝑥
𝑛

)

and 𝑐𝑛 = ∑
𝑥
𝑖
𝑥
𝑗
=𝑥

𝑛 𝑎𝑖𝑏𝑗 = ∑
𝑛

𝑖=0
𝑎𝑖𝑏𝑛−𝑖.

(3) Let 𝑆 = ℕ
𝑘
= {𝑥

𝑛1

1
⋯ 𝑥

𝑛𝑘

𝑘
∣ 𝑛𝑖 ≥ 0} be the monoide with (𝑥

𝑛1

1
⋯ 𝑥

𝑛𝑘

𝑘 ) (𝑥
𝑚1

1
⋯ 𝑥

𝑚𝑘

𝑘 ) ∶= 𝑥
𝑛1+𝑚1

1
⋯ 𝑥

𝑛𝑘+𝑚𝑘

𝑘
, then

𝑅[ℕ
𝑘
] =

{
∞

∑

𝑛1=0

⋯

∞

∑

𝑛𝑘=0

𝑎
(𝑛1,…,𝑛𝑘)

𝑥
𝑛1

1
⋯ 𝑥

𝑛𝑘

𝑛
∣ 𝑎

(𝑛1,…,𝑛𝑘)
∈ 𝑅 and 𝑎

(𝑛1,…,𝑛𝑘)
= 0 for almost all

}

=∶ 𝑅[𝑥1,… , 𝑥𝑛]

Theorem 3.3 (Universal property of the semigroup ring). Let 𝑆 be a semigroup and 𝑅 a ring. For any ring
homomorphism 𝑓 ∶ 𝑅 → 𝑅

′ from 𝑅 to another ring 𝑅′ and for any function of semigroups 𝑔 ∶ 𝑆 → 𝑅
′ between

𝑆 and the semigroup (𝑅
′
, ⋅) such that 𝑓 (𝑟)𝑔(𝑠) = 𝑔(𝑠)𝑓 (𝑟) for all 𝑟 ∈ 𝑅 and 𝑠 ∈ 𝑆. There exists a unique ring

homomorphism 𝑓 ∶ 𝑅[𝑆] → 𝑅
′ such that 𝑓 (𝑟𝑠) = 𝑓 (𝑟)𝑔(𝑠). If 𝑓 and 𝑔 are unital, then so is 𝑓 .

Proof. Since any element of 𝑅[𝑆] can be uniquely written as 𝛾 = ∑
𝑠∈𝑆

𝑟𝑠𝑠 with only finitely many coefficients
non-zero, we can define 𝑓 ∶ 𝑅[𝑆] → 𝑅

′ by

(42) 𝑓 (𝛾) ∶= ∑

𝑠∈𝑆

𝑓 (𝑟𝑠)𝑔(𝑠).

Since 𝑓 is already defined to preserve sums, it is a homomorphism of the additive groups of 𝑅[𝑆] and 𝑅′. Hence,
it is only necessary to check the multiplicativity of 𝑓 at elements of the form 𝑟𝑠. Let 𝑟1, 𝑟2 ∈ 𝑅 and 𝑠1, 𝑠2 ∈ 𝑆. Then

𝑓 ((𝑟1𝑠1)(𝑟2𝑠2)) = 𝑓 (𝑟1𝑟2𝑠1𝑠2)

= 𝑓 (𝑟1𝑟2)𝑔(𝑠1𝑠2) by definition of 𝑓
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= 𝑓 (𝑟1)𝑓 (𝑟2)𝑔(𝑠1)𝑔(𝑠2) since 𝑓 and 𝑔 are multiplicative
= 𝑓 (𝑟1)𝑔(𝑠1)𝑓 (𝑟2)𝑓 (𝑠2) by hypothesis the images of 𝑓 and 𝑔 commute
= 𝑓 (𝑟1𝑠1)𝑓 (𝑟2𝑠2).

Suppose there exists another ring homomorphism ℎ ∶ 𝑅[𝑆] → 𝑅
′ such that ℎ(𝑟𝑠) = 𝑓 (𝑟)𝑔(𝑠), then for any

𝛾 = ∑
𝑠∈𝑆

𝑟𝑠𝑠 ∈ 𝑅[𝑆] also

(43) ℎ(𝛾) = ∑

𝑠∈𝑆

ℎ(𝑟𝑠𝑠) = ∑

𝑠∈𝑆

𝑓 (𝑟𝑠)𝑔(𝑠) = 𝑓 (𝛾).

Hence ℎ = 𝑓 . □

Note that if 𝑅 is commutative and 𝑓 ∶ 𝑅 → 𝑍(𝑅
′
) is any ring homomorphism from 𝑅 to the center of 𝑅′, then

the hypothesis 𝑓 (𝑟)𝑔(𝑠) = 𝑔(𝑠)𝑓 (𝑟) is automatically satisfied.

Definition 3.4 (Polycyclic-by-finite groups). A polycyclic-by-finite group is a group 𝐺 that admits a normal series

(44) 1 = 𝐺0 ⊲ 𝐺1 ⊲⋯ ⊲ 𝐺𝑛 = 𝐺,

such that 𝐺𝑖 is normal in 𝐺𝑖+1 and 𝐺𝑖+1/𝐺𝑖 is infinite cyclic with 𝐺𝑛/𝐺𝑛−1 being finite.

Theorem 3.5. If 𝑅 is a left Noetherian ring and 𝐺 is polycyclic-by-finite group, then 𝑅[𝐺] is left Noetherian.

Proof. see [5] □

Open Problem 3.6. It is not known whether given a field 𝕂 and a group 𝐺 such that 𝕂[𝐺] is Noetherian, 𝐺 must
be polycyclic-by-finite.

Definition 3.7 (Group representation). Let 𝐺 be a finite group and 𝕂 a field. A representation of 𝐺 on a vector
space 𝑉 is a group homomorphism 𝜌 ∶ 𝐺 → 𝐺𝐿(𝑉 ) = {𝑓 ∶ 𝑉 → 𝑉 ∶ 𝑓 is a linear isomorphism }.

Example 3.8. For example if 𝐺 = ℤ4 = ⟨𝑔 ∶ 𝑔
4
= 𝑒⟩, then a representation of 𝐺 on 𝑉 = ℝ

2 is for example given

by the rotation matrix 𝐴 =
(

0 −1

1 0 )
∈ 𝐺𝐿(ℝ

2
), i.e. 𝜌 ∶ 𝐺 → 𝐺𝐿(ℝ

2
) with 𝜌(𝑔) = 𝐴, 𝜌(𝑔2) = 𝐴

2, 𝜌(𝑔) = 𝐴
3

and 𝜌(𝑒) being the identity matrix.

Representations of a group 𝐺 on a vector space 𝑉 turns 𝑉 into a left 𝕂[𝐺]-module by defining

(45) 𝜆 ∶ 𝕂[𝐺] × 𝑉 → 𝑉 , (∑ 𝑎𝑔𝑔, 𝑣) ↦ ∑ 𝑎𝑔𝜌(𝑔)(𝑣)

Conversely, any left 𝕂[𝐺]-module structure 𝜆 on 𝑉 defines a representation of 𝐺 on 𝑉 , by setting
(46) 𝜌(𝑔)(𝑣) ∶= 𝜆(𝑔, 𝑣) =∶ 𝑔 ⋅ 𝑣,

for all 𝑔 ∈ 𝐺 and 𝑣 ∈ 𝑉 .
Hence, if one wants to study group representations, one can equally consider modules over the group algebra.

Theorem 3.9. Let 𝕂 be a field, 𝐺 a group and 𝕂[𝐺] its group algebra.
(1) There exist unique algebra homomorphisms Δ ∶ 𝕂[𝐺] → 𝕂[𝐺] ⊗ 𝕂[𝐺] and 𝜖 ∶ 𝕂[𝐺] → 𝕂 defined by

(47) Δ(𝑔) = 𝑔 ⊗ 𝑔, 𝜖(𝑔) = 1,

for all 𝑔 ∈ 𝐺.
(2) For any left 𝕂[𝐺]-modules, 𝑀 and 𝑁 , the tensor product 𝑀 ⊗ 𝑁 is a left 𝕂[𝐺]-module using Δ, i.e.

(48) 𝑔 ⋅ (𝑚 ⊗ 𝑛) = Δ(𝑔)(𝑚 ⊗ 𝑛) = (𝑔 ⋅ 𝑚) ⊗ (𝑔 ⋅ 𝑛)

for all 𝑔 ∈ 𝐺,𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁 .

Proof. left to the reader. □
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4. Lecture: Maschke’s Theorem for group algebras and block decomposition.

Definition 4.1 (semisimple Modules). A module 𝑀 is semisimple if any submodule 𝑁 of 𝑀 has a complement in
𝑀 , i.e. there exists a submodule 𝐿 of 𝑀 such that 𝑀 = 𝑁 ⊕ 𝐿.

It is a standard fact that a left 𝑅-module 𝑀 is semisimple if and only if any short exact sequence
(49) 0 → 𝑁 → 𝑀 → 𝐿 → 0

splits. In particular, a ring 𝑅 is called (left) semisimple if and only if every left (and right) 𝑅-module is semisimple.
The Wedderburn-Artin Theorem characterizes semisimple rings as finite products of matrix rings over

division rings.

Theorem 4.2 (Wedderburn-Artin Theorem). The following statements are equivalent for a ring 𝑅:
(1) Every left 𝑅-module is semisimple, i.e. 𝑅 is semisimple.
(2) 𝑅 is a left Artinian ring and 𝐽 𝑎𝑐(𝑅) = 0.
(3) 𝑅 is isomorphic to a finite direct product of matrix rings over division rings.

Recall that the Jacobson radical of a ring 𝑅 is defined as

𝐽 𝑎𝑐(𝑅) = ⋂{𝑀 ∶ 𝑀 is a left maximal ideal of 𝑅}.

Maschke’s Theorem tells us precisely, when a group ring 𝕂[𝐺] is semisimple. Note that for that 𝐺 has to be
finite. The reason is that if 𝕂[𝐺] is semisimple, the trivial 𝕂[𝐺]-module 𝕂, with 𝑔 ⋅ 1𝕂 = 1𝕂, for all 𝑔 ∈ 𝐺, is
projective. Hence the augmentation map 𝜖 ∶ 𝕂[𝐺] → 𝕂 given by 𝜖(𝑔) = 1 splits and there exists 𝛾 ∶ 𝕂 → 𝕂[𝐺]

and in particular an element 𝑡 = ∑
𝑛

𝑖=1
𝜆𝑖ℎ𝑖 = 𝛾(1𝕂) ∈ 𝕂[𝐺], with 𝜆𝑖 ≠ 0, for all 𝑖. Let 𝑔 ∈ 𝐺 and set 𝑓 = 𝑔ℎ

−1

1
.

Then

(50) 𝜆1𝑔 +

𝑛

∑

𝑖=2

𝜆𝑖𝑔ℎ
−1

1
ℎ𝑖 = 𝑔ℎ

−1

1
𝑡 = 𝛾(𝑔ℎ

−1

1
⋅ 1𝕂) = 𝛾(1𝕂) =

𝑛

∑

𝑖=1

𝜆𝑖ℎ𝑖.

In particular, as the group elements form a basis of 𝕂[𝐺], we have that 𝑔 = ℎ𝑖, for some 𝑖. In other words
𝐺 = {ℎ1,… , ℎ𝑛} and 𝐺 is finite. Hence, suppose 𝐺 is finite. Identify |𝐺| = |𝐺|1𝕂 ∈ 𝕂. If char(𝕂) ∤ |𝐺|, then |𝐺|

is non-zero in 𝕂 and hence invertible, i.e. 1

|𝐺|
∈ 𝕂. Let 𝛽 ∶ 𝑉 → 𝑊 be any surjective homomprhism of 𝕂[𝐺]-

modules. Since 𝛽 is also𝕂-linear, and since 𝑉 and𝑊 are vector spaces, there exists a𝕂-linear section 𝛾 ∶ 𝑊 → 𝑉

such that the composition 𝛽𝛾 = 𝑖𝑑𝑊 . If we could define a section as left𝕂[𝐺]-module homomorphism, we would
show that any short exact sequence splits and hence 𝕂[𝐺] would be semisimple. This is what we are going to
do in case char(𝕂) ∤ |𝐺|. Define an averaging function �̃� ∶ 𝑊 → 𝑉 by

(51) �̃�(𝑤) ∶=

1

|𝐺|

∑

𝑔∈𝐺

𝑔
−1

⋅ 𝛾 (𝑔 ⋅ 𝑤) , ∀𝑤 ∈ 𝑊 .

Then �̃� is 𝕂-linear and also 𝕂[𝐺]-linear, because for any ℎ ∈ 𝐺 and 𝑤 ∈ 𝑊 we have:

�̃�(ℎ𝑤) =

1

|𝐺|

∑

𝑔∈𝐺

𝑔
−1

⋅ 𝛾 (𝑔ℎ ⋅ 𝑤) =

1

|𝐺|

∑

𝑔∈𝐺

ℎ𝑘
−1

⋅ 𝛾 (𝑘 ⋅ 𝑤) = ℎ�̃�(𝑤),

where we use that the multiplication of an element with ℎ yields a permutation of the elements of the group.
Furthermore,

𝛽 (�̃�(𝑤)) = 𝛽

(

1

|𝐺|

∑

𝑔∈𝐺

𝑔
−1

⋅ 𝛾 (𝑔 ⋅ 𝑤)

)

=

1

|𝐺|

∑

𝑔∈𝐺

𝑔
−1

⋅ 𝛽 (𝛾 (𝑔 ⋅ 𝑤)) =

1

|𝐺|

∑

𝑔∈𝐺

𝑔
−1

⋅ (𝑔 ⋅ 𝑤) =

1

|𝐺| (

∑

𝑔∈𝐺

𝑔
−1
𝑔

)

⋅ 𝑤 = 𝑤
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This means, that �̃� splits 𝛽. Hence we proved that if char(𝐾) ∤ |𝐺|, then any short exact sequence of𝕂[𝐺]-modules
splits and 𝕂[𝐺] is semisimple. In the language of group representations, a representations 𝑉 is called irreducible
if it is simple as 𝕂[𝐺]-module. 𝑉 is called completely reducible if and only if 𝑉 is a semisimple 𝕂[𝐺]-module.

Theorem 4.3 (Maschke3). Let 𝕂 be a field. Then 𝕂[𝐺] is semisimple, i.e. every representation over 𝐺 is completely
reducible, if and only if 𝐺 is finite and char(𝕂) ∤ |𝐺|.

Proof. We have already shown that if char(𝕂) ∤ |𝐺| and 𝐺 is finite, then 𝕂[𝐺] is semisimple. Conversely, assume
𝕂[𝐺] is semisimple. We have already seen that 𝐺 has to be finite. Consider the left ideal 𝐼 = ∑

𝑔∈𝐺
𝕂[𝐺](𝑔 − 𝑒).

Then 𝕂[𝐺]/𝐼 = 𝕂(𝑒 + 𝐼 ) ≃ 𝕂 is one-dimensional. Moreover,

ℎ ⋅ (𝑒 + 𝐼 ) = ℎ + 𝐼 = 𝑒 + 𝐼 , ∀ℎ ∈ 𝐺.

Suppose 𝕂[𝐺] is semisimple, then the canonical map 𝜖 ∶ 𝕂[𝐺] → 𝐾 [𝐺]/𝐼 splits and there exists 𝛽 ∶ 𝕂[𝐺]/𝐼 →

𝕂[𝐺] such that 𝑒 + 𝐼 = 𝜖(𝛽(𝑒 + 𝐼 )). Let 𝑥 = 𝛽(𝑒 + 𝐼 ). Then 𝑥 = ∑
𝑔∈𝐺

𝑎𝑔𝑔 for some 𝑎𝑔 ∈ 𝕂. Since ℎ ⋅ (𝑒 + 𝐼 ) = 𝑒 + 𝐼 ,
also ℎ𝑥 = 𝑥 . This means that

(52) ∑

𝑔∈𝐺

𝑎𝑔𝑔 = 𝑥 = ℎ𝑥 = ∑

𝑔∈𝐺

𝑎𝑔ℎ𝑔 = ∑

𝑔∈𝐺

𝑎
ℎ
−1
𝑔
𝑔.

Therefore, all the coefficients of 𝑥 are equal, i.e. 𝑎ℎ = 𝑎𝑒 , for any ℎ ∈ 𝐻 . Let 𝜆 = 𝑎𝑒 . Then 𝑥 = 𝜆∑
𝑔∈𝐺

𝑔 . Applying
𝜖 yields

𝑒 + 𝐼 = 𝜖(𝑥) = 𝜆

(

∑

𝑔∈𝐺

𝑔 + 𝐼

)

= 𝜆|𝐺|(𝑒 + 𝐼 ).

This shows that 1 = 𝜆|𝐺| and in particular |𝐺| ≠ 0 in 𝕂, i.e. char(𝕂) ∤ |𝐺|. □

Example 4.4. Combining Maschke’s Theorem with the Wedderburn-Artin Theorem, we have that any group ring
𝕂[𝐺] of a finite group 𝐺 over a field 𝕂 with char(𝕂) ∤ |𝐺| must be isomorphic to a direct sum of matrix rings over
division rings, i.e.

(53) 𝕂[𝐺] ≃ 𝑀𝑛1
(𝐷1) ×⋯ ×𝑀𝑛𝑘

(𝐷𝑘).

The matrix rings𝑀𝑛𝑖
(𝐷𝑖) are called the blocks of𝕂[𝐺]. Moreover, up to isomorphism there are only 𝑘 non-isomorphic

simple 𝕂[𝐺]-modules, i.e. irreducible representations, of dimension 𝑛1[𝐷1 ∶ 𝕂],… , 𝑛𝑘[𝐷𝑘 ∶ 𝕂]. Note that there
exists always at least one 1-dimensional representation of 𝐺, i.e. we must have 𝐷𝑖 = 𝕂 and 𝑛𝑖 = 1 for some 𝑖.

Some examples: Let 𝐺 = 𝐶4 = ⟨𝑔 ∶ 𝑔
4
= 𝑒⟩ be the cyclic group of order 4 and 𝕂 = ℚ. Then ℚ[𝐶4] ≃ ℚ×ℚ×ℚ(𝑖),

becauseℚ[𝐶4] ≃ ℚ[𝑥]/⟨𝑥
4
−1⟩ sending 𝑔 to the coset of 𝑥 modulo 𝑥4−1. Since 𝑥4−1 = (𝑥−1)(𝑥+1)(𝑥

2
+1) ∈ ℚ[𝑥],

we get (using the Chinese reminder theorem)

(54) ℚ[𝐶4] ≃ ℚ[𝑥]/⟨𝑥 − 1⟩ × ℚ[𝑥]/⟨𝑥 + 1⟩ × ℚ[𝑥]/⟨𝑥
2
+ 1⟩ ≃ ℚ × ℚ × ℚ(𝑖).

If instead of ℚ we take the group ring over ℂ, then 𝑥2 + 1 decomposes further an we obtain ℂ[𝐶4] ≃ ℂ × ℂ × ℂ × ℂ.

As the smallest non-commutative example we might take 𝐺 = 𝑆3 and 𝐾 = ℂ. Then ℂ[𝑆3] is semisimple and
must decompose into a direct product of matrix rings 𝑀𝑛𝑖

(ℂ) (note that as ℂ is algebraically closed, 𝐷𝑖 = ℂ). In
particular the sum of dimensions of the matrix rings 𝑛2

𝑖
must be equal to 6 and since 𝑆3 is non-Abelian, not all 𝑛𝑖

can be equal to 1. Hence the only possibility of dimensions is 1 + 1 + 2
2
= 6, i.e. ℂ[𝑆3] ≃ ℂ × ℂ ×𝑀2(ℂ). We can

also read off from this decomposition, that there any irreducible 𝑆3-representation has dimension 1 or 2 and that
there exist exactly two non-isomorphic 1-dimensional irreducible 𝑆3-modules and exactly one 2-dimensional one.

3Heinrich Maschke (1853-1908), Biography: MacTutor

https://mathshistory.st-andrews.ac.uk/Biographies/Maschke/
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The number of conjugacy classes and the dimensions of the centres of finite dimensional division algebras
allows us to estimate the number of different blocks of a group ring 𝕂[𝐺]. Recall that the relation

𝑥 ∼ 𝑦 ∶⇔ ∃𝑔 ∈ 𝐺 ∶ 𝑦 = 𝑔𝑥𝑔
−1

is an equivalence relation ∼ on a group 𝐺 and partitions the group into equivalence classes, called conjugacy
classes.

Lemma 4.5. Let 𝕂 be a field and 𝐺 a finite group.
(1) For any conjugacy class 𝐶 = [𝑥]∼ = {𝑔𝑥𝑔

−1
∶ 𝑔 ∈ 𝐺}, the element

𝐶 = ∑

𝑦∈𝐶

𝑦

is a central element of the group ring, i.e. 𝐶 ∈ 𝑍(𝕂[𝐺]).
(2) Let 𝐶1,… , 𝐶𝑘 be the set of all conjugacy classes of 𝐺. Then (𝐶1,⋯ , 𝐶𝑘) is a 𝕂-basis of the centre 𝑍(𝕂[𝐺]) of

𝕂[𝐺].

Proof. (1) Let ℎ ∈ 𝐺. For any 𝑦 = 𝑔𝑥𝑔
−1

∈ 𝐶 we have ℎ𝑦ℎ−1 = 𝑦
′
∈ 𝐶, i.e. ℎ𝑦 = 𝑦

′
ℎ. Thus ℎ𝐶 = 𝐶ℎ and

(55) ℎ𝐶 = ∑

𝑦∈𝐶

ℎ𝑦 = ∑

𝑦
′
∈𝐶

𝑦
′
ℎ = 𝐶ℎ.

Hence, 𝐶 is central in 𝕂[𝐺].
(2) The elements {𝑔 ∶ 𝑔 ∈ 𝐺} form an 𝕂-basis of 𝕂[𝐺]. Thus {𝐶1,… , 𝐶𝑘} is a 𝕂-linearly independent set and

we only need to show that it is also a generating set of 𝑍(𝕂[𝐺]). Let 𝑥 ∈ 𝑍(𝕂[𝐺]). Then 𝑥 can be written as:

(56) 𝑥 =

𝑘

∑

𝑖=1
(

∑

𝑦∈𝐶𝑖

𝑟𝑖,𝑦𝑦

)

, 𝑟𝑖,𝑦 ∈ 𝕂.

For all ℎ ∈ 𝐺 we have ℎ𝑥 = 𝑥ℎ, i.e.

(57)
𝑘

∑

𝑖=1
(

∑

𝑦∈𝐶𝑖

𝑟𝑖,𝑦𝑦

)

= 𝑥 = ℎ𝑥ℎ
−1

=

𝑘

∑

𝑖=1
(

∑

𝑦∈𝐶𝑖

𝑟𝑖,𝑦ℎ𝑦ℎ
−1

)

=

𝑘

∑

𝑖=1
(

∑

𝑦
′
∈ℎ𝐶𝑖ℎ

−1

𝑟𝑖,𝑦′𝑦
′

)

.

Since 𝐶𝑖 = ℎ𝐶𝑖ℎ
−1, we have that all coefficients 𝑟𝑖,𝑦 of the same conjugacy class are equal, i.e. there exists 𝑟𝑖 ∈ 𝕂

with 𝑟𝑖 = 𝑟𝑖,𝑦 , for all 𝑦 ∈ 𝐶𝑖. Hence 𝑥 = ∑
𝑘

𝑖=1
𝑟𝑖𝐶𝑖, showing that (𝐶1,… , 𝐶𝑘) is an 𝕂-basis for 𝑍(𝕂[𝐺]). □

As a Corollary we can estimate the number of blocks of 𝕂[𝐺] in the semisimple case.

Corollary 4.6. Let 𝐺 be a finite group and 𝕂 a field such that char(𝐾) ∤ |𝐺| and

(58) 𝑅 ≃ 𝑀𝑛1
(𝐷1) ×⋯ ×𝑀𝑛𝑘

(𝐷𝑘)

with finite dimensional division algebras 𝐷1,… , 𝐷𝑘 . Let 𝑚 be the number of different conjugacy classes. Then

(59) 𝑚 = [𝑍(𝐷1) ∶ 𝕂] +⋯ + [𝑍(𝐷𝑘) ∶ 𝕂],

where [𝑍(𝐷) ∶ 𝕂] denotes the dimension of the centre 𝑍(𝐷) of 𝐷 as a 𝕂-vector space. In particular, the number
of blocks, e.g. the number of non-isomorphic irreducible representations, is bounded by the number of conjugacy
classes, with equality if 𝑍(𝐷𝑖) = 𝕂 for all 𝑖.

Proof. By Lemma 4.5, dim(𝑍(𝕂[𝐺]) = 𝑚 and by the Wedderburn-Artin decomposition
(60) 𝑍(𝕂[𝐺]) ≃ 𝑍(𝑀𝑛1

(𝐷1)) ×⋯ × 𝑍(𝑀𝑛𝑘
(𝐷𝑘)) ≃ 𝑍(𝐷1) ×⋯ × 𝑍(𝐷𝑘)

we conclude that 𝑚 = dim(𝑍(𝕂[𝐺])) = ∑
𝑘

𝑖=1
[𝑍(𝐷𝑖) ∶ 𝐾 ]. Since the number 𝑘 of blocks is the number of

non-isomorphic simple 𝕂[𝐺]-modules and since [𝑍(𝐷𝑖) ∶ 𝕂] ≥ 1 the last statement follows. □
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Example 4.7. Let 𝐺 be a finite Abelian group. Then two group elements are conjugated if and only if they are equal.
Hence the number of conjugacy classes is |𝐺|. However, the number of blocks of 𝐾 [𝐺] = 𝑍(𝐾 [𝐺]) also depends on
the finite field extensions of 𝐾 .

(1) ℂ[𝐺] = ℂ ×⋯ × ℂ = ℂ
𝑛, where 𝑛 = |𝐺|, since ℂ is algebraically closed.

(2) ℝ[𝐺] = ℝ
𝑘
× ℂ

𝑚 such that 𝑛 = 𝑘 + 2𝑚, for some 𝑚 ≥ 0 and 𝑘 ≥ 1, since ℝ and ℂ are the only finite field
extensions. For example, if 𝐺 = 𝐶4 is the cyclic group of 4 elements, then ℝ[𝐶4] = ℂ × ℝ × ℝ, in which case
we have that the number of non-isomorphic simples is strictly less than the conjugacy classes of the group.

(3) There are many finite field extension of 𝕂 = ℚ as well as of a finite field 𝕂 = 𝐺𝐹(𝑝
𝑛
), which may occur in

the Wedderburn decomposition of a group ring. For example if 𝐺 = 𝐶5 is the cyclic group of order 5, then
ℚ[𝐶5] = ℚ(𝛼)×ℚ, where 𝛼 is a primitive 5th root of unity. A similar situation occurs if𝕂 = 𝔽2 is the field of
two elements, since then 𝑥5 − 1 = (𝑥 − 1)(𝑥

4
+ 𝑥

3
+ 𝑥

2
+ 𝑥 + 1) is a factorisation into irreducible plynomials

and hence 𝔽2[𝐶5] ≃ 𝔽2(𝛼) × 𝔽2 for a primitive 5th root of unity 𝛼 over 𝔽2. However, if 𝕂 = 𝐺𝐹(4) is the
field with 4 elements, then 𝕂[𝐶5] ≃ 𝕂(𝛼) × 𝕂(𝛽) × 𝕂 decomposes into three fields, where 𝕂(𝛼) and 𝕂(𝛽)
are field extensions of degree 2 over 𝕂.

Example 4.8. Let 𝐺 = 𝑆3 = {𝑖𝑑, 𝛼, 𝛽, 𝛽
2
, 𝛼𝛽, 𝛼𝛽

2
} be the group of permutations on three letters, with 𝛼 = (12) and

𝛽 = (123), then 𝑆3 has three conjugacy classes: [𝑖𝑑] = {𝑖𝑑}, [𝛼] = {𝛼, 𝛼𝛽, 𝛼𝛽
2
} and [𝛽] = {𝛽, 𝛽

2
}. Hence ℂ[𝑆3] has

three blocks and their sizes 𝑛1, 𝑛2, 𝑛3 must satisfy 𝑛2
1
+ 𝑛

2

2
+ 𝑛

2

3
= 6. Thus only one of the 𝑛′

𝑖
𝑠 can be different from 1,

i.e.

(61) ℂ[𝑆3] ≃ 𝑀2(ℂ) × ℂ × ℂ.

Example 4.9. Let 𝐺 = 𝐷4 = {𝑖𝑑, 𝜏, 𝜏
2
, 𝜏

3
, 𝛼, 𝛼𝜏, 𝛼𝜏

2
, 𝛼𝜏

3
} be the dihedral group 𝐷4, i.e. the symmetry group on the

square, with 𝛼 = (12)(34) and 𝜏 = (1234), then 𝐷4 has five conjugacy classes: [𝑖𝑑], [𝛼] = {𝛼, 𝛼𝜏
2
}, [𝛼𝜏] = {𝛼𝜏, 𝛼𝜏

3
},

[𝜏] = {𝜏, 𝜏
3
} and [𝜏2] = {𝜏

2
}. Hence ℂ[𝐷4] has five blocks and their sizes 𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5 must satisfy∑

5

𝑖=1
𝑛
2

𝑖
= 8.

Since ℂ[𝐷4] has at leasy one 1-dimensional representation, at least one of the 𝑛′
𝑖
𝑠 must be 1 and the only possibility

is that one of the 𝑛′
𝑖
𝑠 is equal to 2, while the rest is equal to 1, i.e.

(62) ℂ[𝐷4] ≃ 𝑀2(ℂ) × ℂ × ℂ × ℂ × ℂ.

5. Lecture: Introduction to Hopf algebras bialgebras, convolution product.

A Hopf algebra is an algebra and a coalgebra such that their structures are compatible. Recall that the
multiplication and the identity of a 𝕂-algebra 𝐴 can be understood as having 𝕂-linear homomorphisms
𝜇 ∶ 𝐴 → 𝐴 ⊗ 𝐴 and 𝜂 ∶ 𝕂 → 𝐴 such that 𝜇 is associative and 𝜖(1) is the identity of 𝐴 with respect to the
multiplication. In diagrams this means

𝐴 ⊗ 𝐴 ⊗ 𝐴

𝜇⊗𝑖𝑑 //

𝑖𝑑⊗𝜇

��

𝐴 ⊗ 𝐴

𝜇

��

𝕂 ⊗ 𝐴

𝜂⊗𝑖𝑑 //
𝐴 ⊗ 𝐴

𝜇

��

𝐴 ⊗ 𝕂

𝑖𝑑⊗𝜂oo

𝐴 ⊗ 𝐴
𝜇

//
𝐴 𝐴

≃

ee

≃

::

Definition 5.1. A coassociative coalgebra with counit is a 𝐾 -vector space 𝐶 with 𝐾 -linear maps

Δ ∶ 𝐶 → 𝐶 ⊗ 𝐶 the comultiplication, 𝜀 ∶ 𝐶 ⟶ 𝐾 the counit,

such that the following diagrams are commutative:

𝐶
Δ //

Δ

��

𝐶 ⊗ 𝐶

𝑖𝑑⊗Δ

��

𝐾 ⊗ 𝐶 𝐶 ⊗ 𝐶
𝜀⊗𝑖𝑑oo 𝑖𝑑⊗𝜀 //

𝐶 ⊗ 𝐾

𝐶 ⊗ 𝐶
Δ⊗𝑖𝑑

//
𝐶 ⊗ 𝐶 ⊗ 𝐶 𝐶

≃

dd

≃

::

Δ

OO
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We will use the so-called Sweedler-notation for the comultiplication of an element 𝑐:

(63) Δ(𝑐) = ∑

(𝑐)

𝑐1 ⊗ 𝑐2 ∈ 𝐶 ⊗ 𝐶.

If 𝐶 is a 𝐾 -coalgebra and 𝐴 is a 𝐾 -algebra, then Hom𝐾 (𝐶, 𝐴) becomes a 𝐾 -algebra by the convolution product:

(64) (𝑓 ⋆ 𝑔)(𝑐) ∶= ∑

(𝑐)

𝑓 (𝑐1)𝑔(𝑐2)

for all 𝑓 , 𝑔 ∈ Hom(𝐶, 𝐴) and 𝑐 ∈ 𝐶. If 𝜀 is the counit of 𝐶 and 𝜂 ∶ 𝐾 → 𝐴 the unit of 𝐴, then 𝜂 ◦ 𝜀 ∈ Hom(𝐶, 𝐴) is
the unit of this algebra. In particular 𝐶∗

= Hom(𝐶, 𝐾) is a 𝐾 -algebra with unit 𝜀.

Definition 5.2. A 𝐾 -algebra 𝐵 is called 𝐾 -bialgebra if 𝐵 is a 𝐾 -coalgebra such that the comultiplication and
counit are algebra maps. A 𝐾 -bialgebra 𝐻 is called Hopfalgebra, if the identity 𝑖𝑑 ∈ End(𝐻 ) has an inverse 𝑆 w.r.t.
the convolution product. 𝑆 is called the antipode of 𝐻 . and one has

∑

(ℎ)

ℎ1𝑆(ℎ2) = 𝜀(ℎ) = ∑

(ℎ)

𝑆(ℎ1)ℎ2.

Example 5.3. We list some examples of Hopf algebras

(1) Let 𝐺 be a group. Then 𝐾 [𝐺] is a Hopf algebra with Δ(𝑔) = 𝑔 ⊗ 𝑔 and 𝜖(𝑔) = 1 and 𝑆(𝑔) = 𝑔
−1 for all

𝑔 ∈ 𝐺.
(2) Let 𝑋 be a set. Then the free algebra 𝕂⟨𝑋 ⟩ is a Hopf algebra with

Δ(𝑥) = 1 ⊗ 𝑥 + 𝑥 ⊗ 1, 𝜖(𝑥) = 0, 𝑆(𝑥) = −𝑥,

for any 𝑥 ∈ 𝑋 . In particular, if g is a Lie algebra over 𝐾 . Then 𝐻 = 𝑈 (g) is a Hopf algebra with the same
coalgebra structure as the free algebra.

(3) Let 𝐺 be an algebraic group and 𝐻 = (𝐺) its coordinate ring. Then
Δ ∶ (𝐺) → (𝐺 × 𝐺) ≃ (𝐺) × (𝐺) 𝑓 ↦ [(𝑔, ℎ) ↦ 𝑓 (𝑔ℎ)]

𝜖 ∶ (𝐺) → 𝐾 𝜖(𝑓 ) = 𝑓 (1)

𝜖 ∶ (𝐺) → (𝐺) 𝑓 ↦ [𝑔 → 𝑓 (𝑔
−1
)]

Proposition 5.4. Let 𝐻 be a bialgebra and 𝑀,𝑁 left 𝐻 -module. Then 𝑀 ⊗ 𝑁 is a left 𝐻 -module by the action

(65) ℎ ⋅ (𝑚 ⊗ 𝑛) ∶= Δ(ℎ)(𝑚 ⊗ 𝑛) ∶= ∑

(ℎ)

(ℎ1 ⋅ 𝑚) ⊗ (ℎ2 ⋅ 𝑛),

for any 𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁 and ℎ ∈ 𝐻 , where Δ(ℎ) = ∑
(ℎ)
ℎ1 ⊗ ℎ2 in Sweedler’s notation.

Proof. There exists a unique algebra homomorphism 𝜓 ∶ End(𝑀) ⊗ 𝐸𝑛𝑑(𝑁 ) → End(𝑀 ⊗ 𝑁 ) given by

(66) 𝜓(𝑓 ⊗ 𝑔)(𝑚 ⊗ 𝑛) ∶= 𝑓 (𝑚) ⊗ 𝑔(𝑛).

Let 𝜆𝑀 ∶ 𝐻 → End(𝑀) denote the algebra homomorphisms associated to the left 𝐻 -module structure on 𝑀 , i.e.
𝜆
𝑀
(ℎ)(𝑚) = ℎ ⋅ 𝑚, for 𝑚 ∈ 𝑀 and ℎ ∈ 𝐻 . Similarly, let 𝜆𝑁 ∶ 𝐻 → 𝐸𝑛𝑑(𝑁 ) denote the 𝐻 -action on 𝑁 . Then the

composition of the algebra homomorphisms

(67) 𝜓 ◦ (𝜌
𝑀
⊗ 𝜌

𝑁
) ◦ Δ ∶ 𝐻 → 𝐻 ⊗ 𝐻 → End(𝑀) ⊗ 𝐸𝑛𝑑(𝑁 ) → End(𝑀 ⊗ 𝑁 )

is an algebra homomorphism. Explicitly, for 𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁 and ℎ ∈ 𝐻 we calculate:

(68) (𝜓 ◦ (𝜌
𝑀
⊗ 𝜌

𝑁
) ◦ Δ(ℎ)) (𝑚 ⊗ 𝑛) = ∑

(ℎ)

𝜌
𝑀
(ℎ1)(𝑚) ⊗ 𝜌

𝑁
(ℎ2)(𝑛) = ∑

(ℎ)

(ℎ1 ⋅ 𝑚) ⊗ (ℎ2 ⋅ 𝑛).

□
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Note that the field 𝕂 is also a left 𝐻 -module, called the trivial 𝐻 -module, with 𝐻 -action ℎ ⋅ 1𝕂 = 𝜖(ℎ). For
any left 𝐻 -module 𝑀 we define:

𝑀
𝐻
= {𝑚 ∈ 𝑀 ∣ ∀ℎ ∈ 𝐻 ∶ ℎ ⋅ 𝑚 = 𝜖(ℎ)𝑚}.

We have an isomorphism of vector spaces Hom𝐻 (𝕂, 𝑀) ⟶ 𝑀
𝐻 , given by 𝑓 ↦ 𝑓 (1), which is actually a

functorial isomorphism between Hom𝐻 (𝕂,−) and (−)
𝐻 .

For 𝑀 = 𝐻 , we set ∫ 𝐻

𝑙
= 𝐻

𝐻
= {𝑡 ∈ 𝐻 ∶ ∀ℎ ∈ 𝐻 ∶ ℎ𝑡 = 𝜖(ℎ)𝑡}. Using the right 𝐻 -module action, we set

∫
𝐻

𝑟
= {𝑡 ∈ 𝐻 ∶ ∀ℎ ∈ 𝐻 ∶ 𝑡ℎ = 𝜖(ℎ)𝑡}.

6. Lecture: Representations of Hopf algebras and tensor categories.

Definition 6.1. Let 𝐻 be a Hopf algebra over 𝕂. A 𝕂-module 𝑉 is called a (right) Hopf module for 𝐻 , if it satisfies
the three conditions:

(1) 𝑉 is a right 𝐻 -module.
(2) 𝑉 is a right 𝐻 -comodule.
(3) Compatibility condition: Δ𝑉 (𝑣 ⋅ ℎ) = ∑(𝑣0 ⋅ ℎ1) ⊗ (𝑣1 ⋅ ℎ2), ∀ℎ ∈ 𝐻, 𝑣 ∈ 𝑉 .

If 𝑉 ,𝑊 are Hopf modules,a 𝕂-linear map 𝑓 ∶ 𝑉 → 𝑊 is said to be a Hopf module map if it is both a module and
comodule map.

The compatibility condition for a Hopf module says that Δ𝑉 ∶ 𝑉 → 𝑉 ⊗𝐻 is a morphism of right 𝐻 -modules,
with 𝑉 ⊗ 𝐻 carrying the right 𝐻 -module structure as above. Denote by 𝐻

𝐻
the category of right 𝐻 -Hopf

modules. The fundamental theorem of Hopf algebras, proved by Larson and Sweedler in 1969, says that 𝐻

𝐻
is

equivalent to the category of all 𝕂-vector spaces (see [3]).
If 𝑉 is a right Hopf module, the invariant and covariant submodules of 𝑉 are defined, respectively, to be and

(69) 𝑉
𝐻
= {𝑣 ∈ 𝑉 ∶ 𝑣 ⋅ ℎ = 𝜖(ℎ)𝑣, ∀ℎ ∈ 𝐻 } 𝑉

𝑐𝑜𝐻
= {𝑣 ∈ 𝑉 ∶ Δ𝑉 (𝑣) = 𝑣 ⊗ 1𝐻 }.

Given a 𝕂-module 𝑊 , the tensor product 𝑊 ⊗ 𝐻 can be made into a 𝐻 -Hopf module by setting

(70) (𝑤 ⊗ ℎ) ⋅ 𝑔 = 𝑤 ⊗ ℎ𝑔, ∀𝑤 ∈ 𝑊 , ℎ, 𝑔 ∈ 𝐻 Δ𝑊⊗𝐻 = id𝑊 ⊗ Δ𝐻 .

Hopf modules of that form are called trivial The following theorem asserts that all Hopf modules are trivial.

Theorem 6.2 (Fundamental Theorem of Hopf modules (Larson-Sweedler, 1969)). Let 𝑉 be a right 𝐻 -Hopf
module. Then the multiplication map

(71) 𝜌 ∶ 𝑉
𝑐𝑜𝐻

⊗ 𝐻 → 𝑉 , 𝑣 ⊗ ℎ ↦ 𝑣 ⋅ ℎ

is an isomorphism of Hopf modules, where 𝑉 𝑐𝑜𝐻 ⊗ 𝐻 is considered a trivial Hopf module.

Proof. The map 𝜙 ∶ 𝑉 → 𝑉
𝑐𝑜𝐻 with 𝜙(𝑣) = ∑ 𝑣0 ⋅ 𝑆(𝑣1) is well defined.

For 𝑣 ∈ 𝑉 we calculate:

Δ𝑉 (𝜙(𝑣)) = ∑Δ𝑉 (𝑣(0) ⋅ 𝑆(𝑣1)) = ∑ 𝑣
(0)

⋅ 𝑆(𝑣3)⊗ 𝑣1𝑆(𝑣2) = ∑ 𝑣
(0)

⋅ 𝑆(𝑣2)⊗ 𝜖(𝑣1) = 𝑣(0) ⋅ 𝑆(𝑣1)⊗ 1𝐻 = 𝜙(𝑣)⊗ 1𝐻

Hence, 𝜙(𝑣) ∈ 𝑉 𝑐𝑜𝐻 . Furthermore, (𝜙 ⊗ id)Δ𝑉 ∶ 𝑉 → 𝑉
𝑐𝑜𝐻

⊗ 𝐻 is the inverse of 𝜌, because for 𝑣 ∈ 𝑉 , we have

𝜌 ◦ (𝜙 ⊗ id)Δ𝑉 (𝑣) = 𝜙(𝑣
(0)
) cot 𝑣1 = 𝑣

(0)
⋅ 𝑆(𝑣1)𝑣2 = 𝑣

(0)
𝜖(𝑣1) = 𝑣.

If 𝑣 ∈ 𝑉 𝑐𝑜𝐻 and ℎ ∈ 𝐻 , then

(𝜙 ⊗ id)Δ𝑉 ◦ 𝜌(𝑣 ⊗ ℎ) = ∑𝜙((𝑣 ⋅ ℎ)0) ⊗ (𝑣 ⋅ ℎ)1 = ∑𝜙(𝑣 ⋅ ℎ1) ⊗ ℎ2 = ∑ 𝑣 ⋅ ℎ1𝑆(ℎ2)ℎ3 = 𝑣 ⊗ ℎ.

□
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Let 𝐻 be a finite dimensional Hopf algebra. We have seen that any right 𝐻 -comodule is a left 𝐻 ∗-module.
In case 𝐻 is finite dimensional, then 𝐻 ∗-module is a also a 𝐻 -comodule, by Δ𝐻∗ ∶ 𝐻

∗
→ 𝐻

∗
⊗ 𝐻 given by

Δ𝐻∗(𝑓 ) = ∑ 𝑓
(0)
⊗ 𝑓1 if and only if (𝑝 ∗ 𝑓 )(ℎ) = ∑ 𝑝(𝑓1)𝑓(0)(ℎ), for all 𝑝 ∈ 𝐻

∗
, ℎ ∈ 𝐻. On the other hand, we

have that 𝐻 ∗ is a right 𝐻 -module, via (𝑓 ⋅ ℎ)(𝑔) ∶= 𝑓 (𝑔𝑆(ℎ))), for all 𝑓 ∈ 𝐻
∗ and ℎ, 𝑔 ∈ 𝐻 .

Theorem 6.3 (Larson - Sweedler, 1969). . Let H be a finite dimensional Hopf algebra over 𝕂. Then
(1) 𝐻 ∗ is a right Hopf module.
(2) dim ∫

𝐻

𝑙
= dim ∫

𝐻

𝑟
= 1

(3) The antipode 𝑆 is bijective, and 𝑆(∫ 𝐻

𝑙
) = ∫

𝐻

𝑟

(4) For any 0 ≠ 𝜆 ∈ ∫
𝐻

∗

𝑙
, the map 𝐻 → 𝐻

∗, given by ℎ ↦ ℎ ∙ 𝜆, is an isomorphism of left 𝐻 -modules.

Proof. (1) is left to the reader.
(2+3) Consider the Hopf module structure on 𝐻 ∗. By the fundamental theorem we have (𝐻 ∗

)
𝑐𝑜𝐻

⊗ 𝐻 ≃ 𝐻
∗.

And, as 𝐻 is finite dimensional, we get dim((𝐻
∗
)
𝑐𝑜𝐻

) = 1. Note that 𝑓 ∈ (𝐻
∗
)
𝑐𝑜𝐻 if and only if Δ𝐻∗(𝑓 ) = 𝑓 ⊗ 1𝐻

if and only if for all 𝑝 ∈ 𝐻
∗ and ℎ ∈ 𝐻 : (𝑝 ∗ 𝑓 )(ℎ) = 𝑝(1)𝑓 (ℎ) = 𝜖𝐻∗(𝑝)𝑓 (ℎ), which is saying 𝑝 ∗ 𝑓 = 𝜖𝐻∗(𝑝)𝑓 ,

i.e. 𝑓 ∈ ∫
𝐻

∗

𝑙
. Replacing 𝐻 ∗ by 𝐻 we also have dim(∫

𝐻

𝑙
) = 1.

By the Fundamental Theorem we have the isomorphism ∫
𝐻

∗

𝑙
⊗𝐻 → 𝐻

∗ by multiplication, i.e. 𝜆 ⊗ ℎ ↦ 𝜆 ∙ ℎ.
If ℎ ∈ Ker(𝑆), then 𝜆 ∙ ℎ = 𝑆(ℎ) ⋅ ℎ = 0. Thus ℎ = 0, which shows that 𝑆 is injective and as 𝐻 is finite dimensional,
𝑆 is bijective.

Since 𝑆(∫ 𝐻

𝑟
) ⊆ ∫

𝐻

𝑙
, as well as 𝑆(∫ 𝐻

𝑙
) ⊆ ∫

𝐻

𝑟
, 𝑆 injective and dim(∫

𝐻

𝑙
) = 1, we obtain 𝑆(∫ 𝐻

𝑙
) = ∫

𝐻

𝑟
.

(4) The Fundamental Theorem and dim(∫
𝐻

∗

𝑙
) = 1 shows again for any 0 ≠ 𝜆 ∈ ∫

𝐻
∗

𝑙
: 𝐻 ∗

= 𝜆 ∙ 𝐻 = 𝑆(𝐻 ) ⋅ 𝜆.
As 𝑆 is bijective, 𝐻 ⋅ 𝜆 = 𝐻

∗. □

The existence of the isomorphism 𝐻 → 𝐻
∗ says that 𝐻 is a Frobenius Algebras.

Let 𝕂 be a field, 𝐺 a finite group and 𝑅 = 𝕂[𝐺] its group ring. The linear functional 𝜑 ∶ 𝕂[𝐺] → 𝕂 defined
by 𝜑 (∑𝑔∈𝐺

𝜆𝑔𝑔) = 𝜆𝑒 satisfies that it does not contain any non-zero left (nor right) ideal of 𝕂[𝐺]. Because for
all 𝑥 = ∑

𝑔∈𝐺
𝜆𝑔𝑔 ∈ Ker(𝜑) and ℎ ∈ 𝐺 we have

0 = 𝜑(ℎ
−1
𝑥) = 𝜑

(

∑

𝑔∈𝐺

𝜆𝑔ℎ
−1
𝑔

)

= 𝜑

(

∑

𝑘∈𝐺

𝜆ℎ𝑘𝑘

)

= 𝜆ℎ.

The importance of this map is that it establishes an isomorphism between 𝕂[𝐺] and 𝕂[𝐺]
∗
∶= Hom(𝕂[𝐺],𝕂).

Given an algebra 𝐴 over a field 𝕂, 𝐴∗ becomes a left and right 𝐴-module by

(𝑎 ⋅ 𝑓 )(𝑥) ∶= 𝑓 (𝑥𝑎), (𝑓 ⋅ 𝑎)(𝑥) = 𝑓 (𝑎𝑥), ∀𝑓 ∈ 𝐴
∗
, 𝑎, 𝑥 ∈ 𝐴

With these actions, 𝐴∗ becomes actually an injective left and right 𝐴-module, because if 𝐼 is a right ideal of 𝐴
and 𝑓 ∶ 𝐼 → 𝐴

∗ is a right 𝐴-linear map. Considering 𝐼 as a subspace of 𝐴, we have a decomposition 𝐴 = 𝐼 ⊕ 𝐼
′

for some subspace 𝐼 ′. Define 𝜑 ∈ 𝐴
∗ by 𝜑(𝑎) = 𝑓 (𝑎)(1) if 𝑎 ∈ 𝐼 and 𝜑(𝑎) = 0 if 𝑎 ∈ 𝐼 ′. Then for any 𝑎 ∈ 𝐼 using

the 𝐴-linearity of 𝑓 :

𝑓 (𝑎)(𝑥) = (𝑓 (𝑎) ⋅ 𝑥)(1) = 𝑓 (𝑎𝑥)(1) = 𝜑(𝑎𝑥) = (𝜑 ⋅ 𝑎)(𝑥), ∀𝑥 ∈ 𝐴.

Hence 𝑓 (𝑎) = 𝜑 ⋅ 𝑎, for any 𝑎 ∈ 𝐼 . By Baer’s criterion, 𝐴∗ is an injective right 𝐴-module. A similar argument
shows that 𝐴∗ is an injective left 𝐴-module.

Theorem 6.4 (Brauer-Nesbitt-Nakayama). Let 𝐴 be a finite dimensional algebra over a field 𝕂. The following
statements are equivalent:

(a) There exists a 𝕂-linear map 𝜑 ∶ 𝐴 → 𝐾 such that Ker(𝜑) does not contain any non-zero right ideal.
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(b) There exists an isomorphism Θ ∶ 𝐴 → 𝐴
∗ of right 𝐴-modules.

(c) There exists a bilinear map 𝛽 ∶ 𝐴 × 𝐴 → 𝕂 that is non-degenerated and associative, i.e. 𝛽(𝑎𝑏, 𝑐) = 𝛽(𝑎, 𝑏𝑐),
for all 𝑎, 𝑏𝑐 ∈ 𝐴.

(d) Any of the statement (a),(b) holds with “right" being replaced by “left".

Proof. (𝑎) ⇒ (𝑐) Define 𝛽 ∶ 𝐴 × 𝐴 → 𝕂 by 𝛽(𝑎, 𝑏) ∶= 𝜑(𝑎𝑏). Then 𝛽 is bilinear and 𝛽(𝑎𝑏, 𝑐) = 𝜑(𝑎𝑏𝑐) = 𝛽(𝑎, 𝑏𝑐)

holds for all 𝑎, 𝑏, 𝑐 ∈ 𝐴. Moreover if 𝛽(𝑎, 𝐴) = 0 for some 𝑎 ∈ 𝐴, then 𝜑(𝑎𝐴) = 𝛽(𝑎, 𝐴) = 0 implies 𝑎𝐴 is a right
ideal contained in Ker(𝜑) and hence zero, i.e. 𝑎 = 0. Since 𝐴 is finite dimensional, a result in Linear Algebra
shows that any left non-degenerated bilinear form is also right non-degenerated. Hence 𝛽 is non-degenerated.

(𝑐) ⇒ (𝑏) Define Θ ∶ 𝐴 → 𝐴
∗ by Θ(𝑎) ∶= 𝛽(𝑎,−) ∶ [𝑏 ↦ 𝛽(𝑎, 𝑏)]. Then Θ is well-defined and 𝐾 -linear.

Moreover, Θ(𝑎) = 0 implies 𝛽(𝑎, 𝐴) = Θ(𝑎)(𝐴) = 0. Since 𝛽 is non-degenerated, 𝑎 = 0, i.e. Θ is injective and as
dim(𝐴) = dim(𝐴

∗
), Θ is bijective. Furthermore, for any 𝑎, 𝑎′ ∈ 𝐴:

Θ(𝑎𝑎
′
)(𝑏) = 𝛽(𝑎𝑎

′
, 𝑏) = 𝛽(𝑎, 𝑎

′
𝑏) = Θ(𝑎)(𝑎

′
𝑏) = (Θ(𝑎) ⋅ 𝑎

′
)(𝑏), ∀𝑏 ∈ 𝐴.

shows Θ(𝑎𝑎′) = Θ(𝑎) ⋅ 𝑎
′. Hence Θ is an isomorphism of right 𝐴-modules.

(𝑏) ⇒ (𝑎) Define 𝜑 ∶ 𝐴 → 𝐾 by 𝜑(𝑎) ∶= Θ(1)(𝑎), for all 𝑎 ∈ 𝐴. Then 𝜑 is 𝐾 -linear. For any 𝑎 ≠ 0 we have
Θ(𝑎) ≠ 0. Hence there exists 𝑏 ∈ 𝐴 such that

𝜑(𝑎𝑏) = Θ(1)(𝑎𝑏) = (Θ(1) ⋅ 𝑎)(𝑏) = Θ(𝑎)(𝑏) ≠ 0.

Hence, 𝑎𝐴 ⊈ Ker(𝜑).
(𝑐) ⇔ (𝑑) Since (𝑐) is independent from one side, properties (𝑎) and (𝑏) can be obtained analogously for “left"

instead of “right". For instance in (𝑐) ⇒ (𝑏) we could have defined Θ
′
∶ 𝐴 → 𝐴

∗ with Θ
′
(𝑎) ∶= 𝛽(−, 𝑎) ∶ [𝑏 ↦

𝛽(𝑏, 𝑎)].
□

Definition 6.5. A finite dimensional algebra 𝐴 is called a Frobenius algebra if it satisfies any of the conditions of
the Brauer-Nesbritt-Nakayama Theorem.

The Larson-Sweedler Theorem says that for any finite dimensional Hopf algebra𝐻 there exist an isomorphism
of 𝐻 -modules 𝐻 ≃ 𝐻

∗. Hence 𝐻 is Frobenius.

Corollary 6.6. A finite dimensional Frobenius algebra is left and right self-injective. In particular, any finite
dimensional Hopf algebra, e.g. a group ring of a finite group over a field, is left and right self-injective.

7. Lecture: Maschke’s Theorem for Hopf algebras and Larson-Sweedler Theorem

It is known that finite dimensional Frobenius algebras have global dimension 0 or infinite. Algebras of global
dimension 0 are semisimple.

Theorem 7.1 (Maschke’s Theorem for Hopf algebras). The following statements are equivalent for a Hopf algebra
𝐻 over a field 𝕂:

(a) 𝐻 is a semisimple artinian 𝕂-algebra;
(b) (−)

𝐻 is an exact functor;
(c) ∃𝑡 ∈ ∫

𝐻

𝑙
such that 𝜖(𝑡) = 1.

In this case 𝐻 is finite dimensional.

Proof. (𝑎) ⇒ (𝑏)We have seen already that for a left 𝐻 -module 𝑀 , Hom𝐻 (𝕂, 𝑀) ≃ 𝑀
𝐻 , given by 𝑓 ↦ 𝑓 (1). In

particular, the functors (−)𝐻 and Hom𝐻 (𝕂,−) are isomorphic. If 𝐻 is semisimple, then Hom𝐻 (𝕂,−) is exact.
(𝑏) ⇒ (𝑐) For𝑀 = 𝐻 , the exactness means that 𝜖 ∶ 𝐻 → 𝕂 splits, i.e. there exists 𝛾 ∈ Hom𝐻 (𝕂, 𝐻 ), such that

𝜖(𝛾(1)) = 1. Set 𝑡 = 𝛾(1) ∈ ∫
𝐻

𝑙
, then 𝜖(𝑡) = 1.
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(𝑐) ⇒ (𝑎) Let 𝑀,𝑁 be left 𝐻 -modules and 𝑓 ∶ 𝑀 → 𝑁 an epimorphism of left 𝐻 -modules that splits. Since
𝑀 and 𝑁 are vector spaces, there exists a linear map 𝑔 ∶ 𝑁 → 𝑀 such that 𝑓 𝑔 = 𝑖𝑑𝑁 . Let 𝑡 ∈ ∫

𝐻

𝑙
with 𝜖(𝑡) = 1

and define �̃� ∶ 𝑁 → 𝑀 given by

(72) �̃�(𝑛) = ∑ 𝑡1𝑔(𝑆(𝑡2) ⋅ 𝑛), ∀𝑛 ∈ 𝑁 .

Then one can check that �̃� is left 𝐻 -linear. Moreover, using the 𝐻 -linearity of 𝑓 , we have for 𝑛 ∈ 𝑁 :

𝑓 (�̃�(𝑛)) = ∑ 𝑡1𝑓 𝑔(𝑆(𝑡2) ⋅ 𝑛) = ∑ 𝑡1𝑆(𝑡2) ⋅ 𝑛 = 𝜖(𝑡)𝑛 = 𝑛.

□

Theorem 7.2 (Larson-Radford, 1988). Let 𝐻 be a finite dimensional Hopf algebra. Suppose char(𝕂) = 0. Then 𝐻
is semisimple if and only if 𝐻 ∗ is semisimple if and only if 𝑆2 = id.

Proof. see [2] □

Corollary 7.3 (Finite dimensional commutative or cocommutative Hopf algebras are semisimple). Let 𝐻 be a
finite dimensional semisimple Hopf algebra over 𝕂.

(1) 𝐻 is cocommutative if and only if 𝐻 = 𝕂[𝐺], for some group 𝐺.
(2) 𝐻 is commutative if and only if 𝐻 = 𝕂[𝐺]

∗, for some group 𝐺.
Semisimple Hopf algebras that are commutative or cocommutative are called trivial

8. Lecture: Constructing semisimple Hopf algebras

This last part is based on my preprint [4]. We will assume char(𝕂) = 0.

Definition 8.1 (Kac-Paljutkin algebra). 𝐻8 is the algebra generated by 𝑥, 𝑦, 𝑧 over 𝕂 subject to

𝑥𝑦 = 𝑦𝑥, 𝑥
2
= 1 = 𝑦

2
, 𝑥𝑧 = 𝑧𝑦, 𝑦𝑧 = 𝑧𝑥

𝑧
2
=

1

2

(1 + 𝑥 + 𝑦 − 𝑥𝑦)

with coalgebra structure given by 𝑥 and 𝑦 group-like and

Δ(𝑧) =

1

2

(1 ⊗ 1 + 𝑥 ⊗ 1 + 1 ⊗ 𝑦 − 𝑥 ⊗ 𝑦) (𝑧 ⊗ 𝑧), 𝜖(𝑧) = 1, 𝑆(𝑧) = 𝑧.

Definition 8.2 (Pansera’s algebra). 𝐻
2𝑛

2 is the algebra generated by 𝑥, 𝑦, 𝑧 over 𝕂 subject to

𝑥𝑦 = 𝑦𝑥, 𝑥
𝑛
= 1 = 𝑦

𝑛
, 𝑥𝑧 = 𝑧𝑦, 𝑦𝑧 = 𝑧𝑥

𝑧
2
=

1

𝑛 (

𝑛−1

∑

𝑖,𝑗=0

𝑞
−𝑖𝑗
𝑥
𝑖
𝑦
𝑗

)

,

where 𝑞 is a primitive 𝑛th root of unity. The coalgebra structure is given by 𝑥 and 𝑦 being group-like and

Δ(𝑧) =

1

𝑛 (

𝑛−1

∑

𝑖,𝑗=0

𝑞
−𝑖𝑗
𝑥
𝑖
⊗ 𝑦

𝑗

)

(𝑧 ⊗ 𝑧), 𝜖(𝑧) = 1, 𝑆(𝑧) = 𝑧.

Proposition 8.3 (Skew-polynomial ring as bialgebra). Let 𝐵 be an bialgebra, 𝜎 an automorphism of 𝐵 and
𝐽 ∈ 𝐵 ⊗ 𝐵 an invertible element. Then the following statements are equivalent:

(a) 𝐵[𝑧;𝜎] is a bialgebra with 𝐵 a subalgebra and Δ(𝑧) = 𝐽 (𝑧 ⊗ 𝑧), 𝜖(𝑧) = 1;
(b) (𝜎, 𝐽 ) is a twisted automorphism, i.e.

(a) (Δ ⊗ 𝑖𝑑)(𝐽 )(𝐽 ⊗ 1) = (𝑖𝑑 ⊗ Δ)(𝐽 )(1 ⊗ 𝐽 )

(b) (𝜖 ⊗ 𝑖𝑑)(𝐽 ) = 1 = (𝑖𝑑 ⊗ 𝜖)(𝐽 )

(c) Δ(𝜎(𝑏)) = 𝐽
−1
(𝜎 ⊗ 𝜎)Δ(𝑏)𝐽 , for all 𝑏 ∈ 𝐵
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(d) 𝜖𝜎 = 𝜖

Definition 8.4 (Drinfeld twist). An invertible element 𝐽 ∈ 𝐵 ⊗ 𝐵 is called a Drinfeld twist if

(1) (Δ ⊗ 𝑖𝑑)(𝐽 )(𝐽 ⊗ 1) = (𝑖𝑑 ⊗ Δ)(𝐽 )(1 ⊗ 𝐽 )

(2) (𝜖 ⊗ 𝑖𝑑)(𝐽 ) = 1 = (𝑖𝑑 ⊗ 𝜖)(𝐽 )

Let Σ𝑚 denote the symmetric group on 𝑚 letters. The standard generators 𝑠1,… , 𝑠𝑚−1 of Σ𝑚, i.e. the transposi-
tions 𝑠𝑖 = (𝑖, 𝑖 + 1), generate a free monoid 𝑀 = ⟨𝑠1,… , 𝑠𝑚−1⟩ that acts on 𝑅 = 𝐵

⊗𝑚, with 𝐵 = 𝕂ℤ𝑛, and allows
to consider the skew monoid algebra 𝑅#𝑀 , which in the case 𝑚 = 2 corresponds to the skew polynomial ring
𝑅[𝑧;𝜎]. The comultiplication of 𝑠𝑖 can be defined as Δ(𝑠𝑖) = 𝐽𝑖(𝑠𝑖 ⊗ 𝑠𝑖), for a suitable twist 𝐽𝑖 ∈ 𝑅 ⊗ 𝑅. Under
further assumptions on these twists 𝐽𝑖, we define a Hopf structure on the quotient 𝑅#𝑀/𝐼 , where 𝐼 is the ideal
generated by the usual relations of the symmetric group, 𝑠𝑖𝑠𝑖+1𝑠𝑖 = 𝑠𝑖+1𝑠𝑖𝑠𝑖+1 and 𝑠𝑖𝑠𝑗 = 𝑠𝑗 𝑠𝑖 for |𝑖 − 𝑗 | > 1, but
with 𝑠2

𝑖
= 𝑡𝑖 ∶= 𝜇𝑅(𝐽𝑖), where 𝜇𝑅 is the multiplication of 𝑅. The obtained Hopf algebra 𝐻 is an extension of 𝕂Σ𝑚

by 𝑅 and can be considered a crossed product 𝑅#𝛾Σ𝑚 for a suitable 2-cocycle 𝛾 ∶ Σ𝑚 × Σ𝑚 → 𝑅
×. For 𝐵 = 𝕂[ℤ𝑛]

and 𝕂 containing a primitive 𝑛th root of unity, we provide twists 𝐽𝑖 that satisfy all our assumptions and yield a
family of semisimple Hopf algebras 𝐻𝑛,𝑚 = 𝕂[ℤ𝑛]

⊗𝑚
#𝛾Σ𝑚 of dimension 𝑛𝑚𝑚!. The original Kac-Paljutkin Hopf

algebra appears as 𝐻2,2, while Pansera’s algebras appear as 𝐻𝑛,2.

Definition 8.5 (Skew Monoid algebras). Given a ring 𝑅 and a monoid 𝑀 , such that there exists a homomorphism
of monoids 𝜌 ∶ 𝑀 → End(𝑅) with 𝜌(𝑚) being a ring endomorphism of 𝑅. Then 𝑆 = 𝑅 ⊗ 𝕂[𝑀] carries an algebra
structure given by

(𝑎 ⊗ 𝑚)(𝑏 ⊗ 𝑛) = 𝑎𝜌(𝑚)(𝑏) ⊗ 𝑚𝑛,

for 𝑎, 𝑏 ∈ 𝑅,𝑚,𝑚 ∈ 𝑀 . The algebra 𝑆 is denoted by 𝑅#𝑀 and called the skew monoid algebra. We will denote the
action of 𝑀 on 𝑅 by 𝑚

𝑎 =∶ 𝜌(𝑚)(𝑎).

Let 𝐵 = 𝕂[ℤ𝑛] and 𝑞 a primitive 𝑛th root of unity in 𝕂. Set

𝐽 =

1

𝑛

𝑛−1

∑

𝑖,𝑗=0

𝑞
−𝑖𝑗
𝑥
𝑖
⊗ 𝑥

𝑗
∈ 𝐵 ⊗ 𝐵

then 𝐽 is a Drinfeld twist of 𝐵.
For 1 ≤ 𝑖 ≤ 𝑚 consider the embedding 𝑒𝑚

𝑖
∶ 𝐵 → 𝐵

⊗𝑚.

Lemma 8.6. (𝑒𝑚
𝑖
⊗ 𝑒

𝑚

𝑗
)(𝐽 ) is a twist for 𝐵⊗𝑚 ⊗ 𝐵

⊗𝑚, for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑚.

Theorem 8.7 (Extension by the symmetric group). Let 𝑛, 𝑚 ≥ 1, 𝐵 = 𝕂[ℤ𝑛], with ℤ𝑛 = ⟨𝑥 ∶ 𝑥
𝑛
= 1⟩, 𝑞 a

primitive 𝑛th root of unity and 𝐽 = 1

𝑛
∑
𝑛−1

𝑖,𝑗=0
𝑞
−𝑖𝑗
𝑥
𝑖
⊗ 𝑥

𝑗 . Consider the free monoid 𝑀 on 𝑋 = {𝑠1,… , 𝑠𝑚−1}, where
𝑠𝑖 = (𝑖, 𝑖 + 1) is the transposition in the symmetric group Σ𝑚. Set 𝑅 = 𝐵

⊗𝑚.

(1) 𝑅#𝑀 is a bialgebra with
Δ(𝑠𝑖) = 𝐽𝑖(𝑠𝑖 ⊗ 𝑠𝑖), 𝜖(𝑠𝑖) = 1,

for 1 ≤ 𝑖 < 𝑚 and 𝐽𝑖 = (𝑒
𝑚

𝑖
⊗ 𝑒

𝑚

𝑖+1
)(𝐽 ).

(2) The ideal 𝐼 of 𝑅#𝑀 generated by

𝑠
2

𝑖
− 𝑡𝑠𝑖

, 𝑠𝑖𝑠𝑖+1𝑠𝑖 − 𝑠𝑖+1𝑠𝑖𝑠𝑖+1, 𝑠𝑖𝑠𝑗 − 𝑠𝑗 𝑠𝑖, ∀𝑖, 𝑗 with |𝑖 − 𝑗 | > 1.

is a biideal of 𝑅#𝑀 .
(3) 𝐻 = (𝑅#𝑀)/𝐼 is a Hopf algebra of dimension dim(𝑅)

𝑛
𝑛! with Hopf subalgebra 𝑅⊗𝑛 and Hopf quotient 𝕂Σ𝑚.

Furthermore,
(a) {𝑤 ∶ 𝑤 ∈ Σ𝑚} is an 𝑅-basis of 𝐻 ;
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(b) there exists a 2-cocycle 𝛾 ∶ Σ𝑚 × Σ𝑚 → 𝑍(𝑅)
× such that 𝐻 ≃ 𝑅#𝛾Σ𝑚 with multiplication given by

(73) (𝑎#𝑤)(𝑏#𝑣) = 𝑎𝜎𝑤(𝑏)𝛾(𝑤, 𝑣)#𝑤𝑣.

for all 𝑎, 𝑏 ∈ 𝑅 and 𝑤, 𝑣 ∈ Σ𝑚, where 𝛾(𝑤, 𝑣) is a product of elements 𝜎𝑢(𝑡𝑠), for some 𝑢 ∈ Σ𝑚 and 𝑠 ∈ 𝑋 .
(c) 𝜖(𝛾(𝑤, 𝑣)) = 1, for all 𝑤, 𝑣 ∈ Σ𝑚.
(d) 𝐻 is semisimple with integral ∫ ∑

𝑤∈Σ𝑚
𝑤, where ∫ is the integral of 𝑅.

Proof. See [4]. □

Example 8.8 (Case 𝑚 = 3). Let 𝑞 be a primitive third root of unity. Write 𝑥 for the generator of 𝐵 = 𝕂ℤ𝑛 and
𝑅 = 𝐵

⊗3
= 𝕂ℤ𝑛 ⊗ 𝕂ℤ𝑛 ⊗ 𝕂ℤ𝑛. Elements of 𝑅 are linear combinations of monomials 𝑥 𝑖

1
𝑥
𝑗

2
𝑥
𝑘

3
, where 𝑥1 stands for

𝑥 ⊗ 1 ⊗ 1, 𝑥2 stands for 1 ⊗ 𝑥 ⊗ 1 and 𝑥3 stands for 1 ⊗ 1 ⊗ 𝑥 . The transpositions 𝑠1 = (12) and 𝑠2 = (23) are
generators of Σ3. Write 𝜎𝑖 = 𝜎𝑠𝑖

for the corresponding automorphism of 𝑅. The twist 𝐽 = ∑
𝑛−1

𝑗=0
𝑒𝑗 ⊗ 𝑥

𝑗 for 𝕂ℤ𝑛

yields two twists

𝐽𝑠1
=

1

𝑛

𝑛−1

∑

𝑖,𝑗=0

𝑞
−𝑖𝑗
𝑥
𝑖

1
⊗ 𝑥

𝑗

2
and 𝐽𝑠2

=

1

𝑛

𝑛−1

∑

𝑖,𝑗=0

𝑞
−𝑖𝑗
𝑥
𝑖

2
⊗ 𝑥

𝑗

3

for 𝑅. Set 𝑧1 ∶= 𝑠1 and 𝑧2 ∶= 𝑠2 for the generator of the free monoid 𝑀 = ⟨𝑠1, 𝑠2⟩. The Hopf algebra

(74) 𝐻𝑛,3 = (𝑅#𝑀)/⟨𝑧
2

1
− 𝑡1, 𝑧

2

2
− 𝑡2, 𝑧1𝑧2𝑧1 − 𝑧2𝑧1𝑧2⟩ = (𝕂ℤ𝑛)

⊗3
#𝛾Σ3

has therefore generators 𝑥1, 𝑥2, 𝑥3, 𝑧1, 𝑧2 subject to 𝑥𝑖𝑥𝑗 = 𝑥𝑗𝑥𝑖 and 𝑥𝑛𝑖 = 1, for all 𝑖, 𝑗 and

𝑧1𝑥1 = 𝑥2𝑧1, 𝑧1𝑥2 = 𝑥1𝑧1, 𝑧1𝑥3 = 𝑥3𝑧1

𝑧2𝑥1 = 𝑥1𝑧2, 𝑧2𝑥2 = 𝑥3𝑧2, 𝑧2𝑥3 = 𝑥2𝑧2

𝑧1𝑧2𝑧1 = 𝑧2𝑧1𝑧2, 𝑧
2

1
= 𝑡1 ∶=

1

𝑛

𝑛−1

∑

𝑖,𝑗=0

𝑞
−𝑖𝑗
𝑥
𝑖

1
𝑥
𝑗

2
, 𝑧

2

2
= 𝑡2 ∶=

1

𝑛

𝑛−1

∑

𝑖,𝑗=0

𝑞
−𝑖𝑗
𝑥
𝑖

2
𝑥
𝑗

3
.

While the 𝑥𝑖 are group-like, we have

Δ(𝑧1) =

(

1

𝑛

𝑛−1

∑

𝑖,𝑗=0

𝑞
−𝑖𝑗
𝑥
𝑖

1
⊗ 𝑥

𝑗

2

)

(𝑧1 ⊗ 𝑧1) Δ(𝑧2) =

(

1

𝑛

𝑛−1

∑

𝑖,𝑗=0

𝑞
−𝑖𝑗
𝑥
𝑖

2
⊗ 𝑥

𝑗

3

)

(𝑧2 ⊗ 𝑧2).

𝐻𝑛,3 has dimension 6𝑛
3 and basis

{

𝑥
𝑖

1
𝑥
𝑗

2
𝑥
𝑘

3
𝑤 ∶ 0 ≤ 𝑖, 𝑗 , 𝑙 < 𝑛, 𝑤 ∈ {1, 𝑧1, 𝑧2, 𝑧1𝑧2, 𝑧2𝑧1, 𝑧1𝑧2𝑧1}

}

. The 2-cocycle 𝛾 is
determined by the multiplication in 𝐻𝑛,3 and given by 𝛾(id, 𝑤) = 𝛾(𝑤, id) = 1, for 𝑤 ∈ Σ3, and the following table.
Note that 𝜎1𝜎2(𝑡1) = 𝑡2 and 𝜎1(𝑡2) = 𝜎2(𝑡1) =

1

𝑛
∑
𝑛−1

𝑖,𝑗=0
𝑞
−𝑖𝑗
𝑥
𝑖

1
𝑥
𝑗

3
.

𝛾 𝑠1 𝑠2 𝑠1𝑠2 𝑠2𝑠1 𝑠1𝑠2𝑠1

𝑠1 𝑡1 1 𝑡1 1 𝑡1

𝑠2 1 𝑡2 1 𝑡2 𝑡2

𝑠1𝑠2 1 𝜎2(𝑡1) 𝑡1 𝑡1𝜎2(𝑡1) 𝑡1𝜎2(𝑡1)

𝑠2𝑠1 𝜎1(𝑡2) 1 𝑡2𝜎1(𝑡2) 𝑡2 𝑡2𝜎1(𝑡2)

𝑠1𝑠2𝑠1 𝑡2 𝑡1 𝑡2𝜎1(𝑡2) 𝑡1𝜎2(𝑡1) 𝑡1𝑡2𝜎2(𝑡1)

Remark 8.9. We see, that 𝐻𝑛,2 embeds into 𝐻𝑛,3 by sending 𝑥, 𝑦, 𝑧 of 𝐻𝑛,2 to the corresponding elements 𝑥1, 𝑥2, 𝑧1 in
𝐻𝑛,3. More generally, for 𝑛, 𝑚 ≥ 2, the algebra 𝑅 = 𝕂ℤ

⊗𝑚

𝑛
embeds into 𝑅′

= 𝕂ℤ
⊗𝑚+1

𝑛
by sending 𝑎1 ⊗⋯ ⊗ 𝑎𝑚 into

𝑎1 ⊗⋯⊗ 𝑎𝑚 ⊗ 1𝐵. Similarly, Σ𝑚 can be considered a subgroup of Σ𝑚+1, where we identify the generators 𝑠1,… , 𝑠𝑚−1

with the first 𝑚 − 1 generators of Σ𝑚+1. Hence, if 𝑥1,… , 𝑥𝑚 denotes the basis of 𝑅 = 𝕂ℤ
⊗𝑚+1

𝑛
and 𝑧1,… , 𝑧𝑚−1

the remaining algebra generators of 𝐻𝑛,𝑚 and if 𝑥′
1
,… , 𝑥

′

𝑚+1
denote the basis of 𝑅′ and 𝑧′

1
,… , 𝑧

′

𝑚+1
the remaining

generators of 𝐻𝑛,𝑚+1, then mapping 𝑥𝑖 to 𝑥′𝑖 and 𝑧𝑖 to 𝑧
′

𝑖
yields an algebra embedding of 𝐻𝑛,𝑚 into 𝐻𝑛,𝑚+1, which is

also an embedding of Hopf algebras.
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Remark 8.10. Let 𝐻 = 𝐻𝑛,𝑚 and 𝑤 ∈ Σ𝑚. We claim that the comultiplication of 𝑤 in 𝐻 looks like Δ(𝑤) =

𝐽 (𝑤)(𝑤 ⊗ 𝑤) for an invertible element 𝐽 (𝑤) ∈ 𝑅 ⊗ 𝑅 with 𝜖(𝜇𝑅(𝐽 (𝑤))) = 1. We will prove this by induction on the
length of the chosen representation 𝑤 = 𝑠𝑖1

… 𝑠𝑖𝑘
in the generators 𝑠1,… 𝑠𝑚−1. For 𝑘 = 1, we have 𝑤 = 𝑠𝑖, for some 𝑖

and by definition Δ(𝑧𝑖) = 𝐽𝑖(𝑧𝑖 ⊗ 𝑧𝑖) for 𝑧𝑖 = 𝑠𝑖 and 𝐽𝑖 = 𝐽𝑠𝑖
= (𝑒

𝑚

𝑖
⊗ 𝑒

𝑚

𝑖+1
)(𝐽 ), which is invertible, since 𝐽 is invertible.

Moreover, 𝜇𝑅(𝐽𝑖) = 𝑒
𝑚

𝑖,𝑖+1
(𝐽 ) = 𝑡𝑖 and 𝜖(𝑡𝑖) = 1. Now suppose that 𝑤 = 𝑠𝑖𝑣 has length greater than 1, where 𝑣 ∈ Σ𝑚

and there exists 𝐽 (𝑣) ∈ 𝑅 ⊗ 𝑅 such that Δ(𝑣) = 𝐽 (𝑣)(𝑣 ⊗ 𝑣). Then

(75) Δ(𝑤) = 𝐽𝑖(𝑧𝑖 ⊗ 𝑧𝑖)𝐽 (𝑣)(𝑣 ⊗ 𝑣) = 𝐽𝑖𝐽 (𝑣)
𝜎𝑖
(𝑤 ⊗ 𝑤),

where we denote by 𝐽 (𝑤)𝜎𝑖 = (𝜎𝑖 ⊗ 𝜎𝑖)(𝐽 (𝑤)). Setting 𝐽 (𝑤) = 𝐽 (𝑠𝑖𝑣) = 𝐽𝑖𝐽 (𝑣)
𝜎𝑖 proves our claim, since also

𝜇𝑅(𝐽 (𝑤)) = 𝑡𝑖𝜎𝑖(𝜇𝑅(𝐽 (𝑣))) has counit 1.
Thus, given a subgroup 𝑁 of Σ𝑚, we can consider the Hopf subalgebra of 𝐻 generated by 𝑅 and {𝑤 ∶ 𝑤 ∈ 𝑁 },

which we shall denote by 𝑅#𝛾𝑁 . Since for any 𝑤 ∈ 𝑁 , Δ(𝑤) = 𝐽 (𝑤)(𝑤 ⊗ 𝑤) ∈ (𝑅#𝛾𝑁 ) ⊗ (𝑅#𝛾𝑁 ) we conclude that
the subalgebra 𝑅#𝛾𝑁 is a semisimple Hopf subalgebra of 𝐻 .

Example 8.11. Consider 𝐻𝑛,𝑚 = 𝑅#𝛾Σ𝑚 with generators as above and consider 𝜃, the product of all 𝑧′
𝑖
𝑠, i.e.

𝜃 = 𝑧1⋯ 𝑧𝑚−1. Let 𝐻 be the subalgebra of 𝐻𝑛,𝑚 generated by 𝑅 and 𝜃. We claim that 𝐻 is equal to 𝑅#𝛾⟨𝑠⟩, where
𝑠 = (12⋯𝑚) is the cycle of length 𝑚. Clearly, 𝜃 = 𝑠 and we claim that 𝜃𝑘 = (∏

𝑘−1

𝑖=1
𝛾(𝑠

𝑖
, 𝑠)) 𝑠

𝑘 , for 2 ≤ 𝑘 ≤ 𝑚,
since inductively, if 𝜃𝑘 = 𝑐𝑘𝑠

𝑘 , for some 𝑐𝑘 ∈ 𝑅
×, then 𝜃

𝑘+1
= 𝑐𝑘𝑠

𝑘
𝑠 = 𝑐𝑘𝛾(𝑠

𝑘
, 𝑠)𝑠

𝑘+1. Thus 𝐻 = 𝑅#𝛾⟨𝑠⟩, as

(∏
𝑘−1

𝑖=1
𝛾(𝑠

𝑖
, 𝑠)) ∈ 𝑅

×. Note that 𝜃𝑚 = (∏
𝑚−1

𝑖=1
𝛾(𝑠

𝑖
, 𝑠)) =∶ 𝑡 ∈ 𝑅

×. Hence 𝐻 ≃ 𝑅[𝜃;𝜎]/⟨𝜃
𝑚
− 𝑡⟩, where 𝜎 = 𝜎𝑠 . In

particular, 𝐻 is generated by 𝑥1,… , 𝑥𝑚 and 𝜃 subject to 𝜃𝑥𝑖 = 𝑥
𝑠(𝑖)
𝜃 and 𝜃𝑚 = 𝑡. While Δ(𝜃) = 𝐽 (𝑠)(𝜃 ⊗ 𝜃), with

𝐽 (𝑠) as in Remark 8.10. Note that 𝜃𝑚−1 = 𝑡 𝑠
𝑚−1, for 𝑡 = 𝑡𝛾(𝑠

𝑚−1
, 𝑠)

−1. Since 𝑠−1 = 𝑠
𝑚−1 we obtain

(76) 𝜃
𝑚−1

= 𝑡 𝑠
−1

= 𝑡 𝑧𝑚−1⋯ 𝑧1 = 𝑡𝑆(𝜃).

Hence 𝑆(𝜃) = 𝑡
−1
𝜃
𝑚−1

= 𝑡
−1
𝛾(𝑠

𝑚−1
, 𝑠)𝜃

𝑚−1. The dimension of 𝐻 is 𝑚𝑛𝑚. For 𝑚 = 2, we obtain 𝐻 ′
= 𝐻𝑛,2.

Appendix A. Tensor Products

All vector spaces are considered over 𝕂. Denote by Hom(𝑈 , 𝑉 ) the set of linear maps from 𝑈 to 𝑉 and
End(𝑈 ) = Hom(𝑈 , 𝑈 ). Let {𝑈𝑖}𝑖∈𝐼 be a family of vector spaces. The direct product∏

𝑖∈𝐼
𝑈𝑖 of this family is the

cartesian product of the 𝑈𝑖’s equipped with the componentwise addition and scalar multiplication. By definition
the elements of∏

𝑖∈𝐼
𝑈𝑖 are functions 𝑓 ∶ 𝐼 ↦ ⋃

𝑖∈𝐼
𝑈𝑖 such that 𝑓 (𝑖) ∈ 𝑈𝑖 for any 𝑖 ∈ 𝐼 and we will write (𝑥𝑖)𝑖∈𝐼 to

represent the function 𝑓 (𝑖) = 𝑥𝑖. For each 𝑗 ∈ 𝐼 , there exist projections

𝜋𝑗 ∶ ∏

𝑖∈𝐼

𝑈𝑖 → 𝑈𝑗 , (𝑥𝑖)𝑖∈𝐼 ↦ 𝑥𝑗

which yields the isomorphism

Hom(𝑊 ,∏

𝑖∈𝐼

𝑈𝑖) ⟶ ∏

𝑖∈𝐼

Hom(𝑊 , 𝑈𝑖)(77)

𝑓 ⟼ (𝜋𝑖𝑓 )𝑖∈𝐼(78)

With this notation we have that the direct sum of the {𝑈𝑖}𝑖∈𝐼 of all functions that are non-zero just for finitely
many 𝑖 ∈ 𝐼 .

⨁

𝑖∈𝐼

𝑈𝑖 ∶= {(𝑥𝑖)𝑖∈𝐼 ∣ ∃𝐹 ⊆ 𝐼 such that 𝐹 is finite and ∀𝑖 ∈ 𝐼 ⧵ 𝐹 ∶ 𝑥𝑖 = 0}.

For each 𝑗 ∈ 𝐼 , there exist an embedding

𝜖𝑗 ∶ 𝑈𝑗 → ⨁

𝑖∈𝐼

𝑈𝑖 , 𝑥 ↦ (𝛿𝑖𝑗𝑥)𝑖∈𝐼

which yields the isomorphism
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Hom(⨁

𝑖∈𝐼

𝑈𝑖, 𝑊 ) ⟶ ∏

𝑖∈𝐼

Hom(𝑈𝑖, 𝑊 )(79)

𝑓 ⟼ (𝑓 𝜖𝑖)𝑖∈𝐼(80)

A map 𝑓 ∶ 𝑈 × 𝑉 → 𝑊 is called bilinear if it is additive satisfying

𝑓 (𝜆𝑢, 𝑣) = 𝑓 (𝑢, 𝜆𝑣) = 𝜆𝑓 (𝑢, 𝑣)

for all 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 , 𝜆 ∈ 𝕂. The space of bilinear maps from 𝑈 × 𝑉 to a third vector space 𝑊 is denoted by
Bil(𝑈 × 𝑉 ,𝑊 ).

Definition A.1 (Tensor Product). The tensor product of 𝑈 and 𝑉 is a pair (𝑇 , 𝑖0), where 𝑇 is a vector space and
𝑖0 ∶ 𝑈 × 𝑉 → 𝑇 is bilinear such that for any vector space 𝑊 and 𝑔 ∈ Bil(𝑈 × 𝑉 ,𝑊 ) there exists a unique linear map
ℎ ∶ 𝑇 → 𝑊 with 𝑔 = ℎ𝑖0.

𝑈 × 𝑉

𝑖0 ##

𝑔 //
𝑊

𝑇

𝑔

OO

In other words the map
Hom(𝑇 , 𝑊 ) ⟶ Bil(𝑈 × 𝑉 ,𝑊 ) , ℎ ↦ ℎ𝑖0

is a bijection.

Obviously, if a tensor product 𝑇 exists it is unique up to isomorphisms since for two pairs (𝑇 , 𝑖0) and (𝑇
′
, 𝑗0),

there are unique linear maps ℎ ∶ 𝑇 → 𝑇
′ and ℎ′ ∶ 𝑇 ′ → 𝑇 such that 𝑗0 = ℎ𝑖0 and 𝑖0 = ℎ

′
𝑗0. Thus 𝑖0 = (ℎ

′
ℎ)𝑖0 and

𝑗0 = (ℎℎ
′
)𝑗0. By the uniqueness of the factorization we get 𝑖𝑑𝑇 = ℎ

′
ℎ and 𝑖𝑑𝑇 ′ = ℎℎ

′.

Let 𝐹 = ⨁
(𝑢,𝑣)∈𝑈×𝑉

𝕂𝑏𝑢,𝑣 be a vector space with basis 𝑏𝑢,𝑣, for all (𝑢, 𝑣) ∈ 𝑈 ×𝑉 . Define the subspace 𝑆 generated
by all elements

𝑏𝑢+𝑢′,𝑣 − 𝑏𝑢,𝑣 − 𝑏𝑢′,𝑣,

𝑏𝑢,𝑣+𝑣′ − 𝑏𝑢,𝑣 − 𝑏𝑢,𝑣′ ,

𝜆𝑏𝑢,𝑣 − 𝑏𝜆𝑢,𝑣,

𝜆𝑏𝑢,𝑣 − 𝑏𝑢,𝜆𝑣

for all 𝑢, 𝑢′ ∈ 𝑈 , 𝑣, 𝑣′ ∈ 𝑉 , 𝜆 ∈ 𝕂. Set 𝑇 ∶= 𝐹/𝑆 and denote by 𝑢 ⊗ 𝑣 the equivalence class of the element 𝑏𝑢,𝑣
in 𝑇 . Check that the map 𝑖0 ∶ 𝑈 × 𝑉 → 𝑇 sending 𝑖0(𝑢, 𝑣) ∶= 𝑢 ⊗ 𝑣 is bilinear. Moreover any bilinear map
𝑔 ∶ 𝑈 × 𝑉 → 𝑊 extends to a linear map 𝑔 ∶ 𝐹 → 𝑊 sending 𝑏𝑢,𝑣 ↦ 𝑔(𝑢, 𝑣). Due to the bilinearity of 𝑔 , 𝑔(𝑆) = 0

and hence we have an induced map ℎ ∶ 𝑇 = 𝐹/𝑆 → 𝑊 . Thus

ℎ𝑖0(𝑢, 𝑣) = ℎ(𝑢 ⊗ 𝑣) = 𝑔(𝑏𝑢,𝑣) = 𝑔(𝑢, 𝑣).

The tensor product of 𝑈 and 𝑉 is denoted by 𝑈 ⊗ 𝑉 . By definition we have the bijection

(81) Hom(𝑈 ⊗ 𝑉 ,𝑊 ) ≃ Bil(𝑈 × 𝑉 ,𝑊 )

Lemma A.2. Let 𝑈 , 𝑈 ′
, 𝑉 , 𝑉

′ be vector spaces and let 𝑓 ∶ 𝑈 → 𝑈
′ and 𝑔 ∶ 𝑉 → 𝑉

′ be linear maps.
(1) there exists a unique map

𝑓 ⊗ 𝑔 ∶ 𝑈 ⊗ 𝑉 → 𝑈
′
⊗ 𝑉

′

with (𝑓 ⊗ 𝑔)(𝑢 ⊗ 𝑣) = 𝑓 (𝑢) ⊗ 𝑔(𝑣).
(2) if 𝑓 and 𝑔 are surjective, then 𝑓 ⊗ 𝑔 is surjective and Ker𝑓 ⊗ 𝑔 = Ker𝑓 ⊗ 𝑉 + 𝑈 ⊗ Ker𝑔 .
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Proof. (1) Define 𝑓 × 𝑔 ∶ 𝑈 × 𝑉 → 𝑈
′
⊗ 𝑉

′ by (𝑢, 𝑣) ↦ 𝑓 (𝑢) ⊗ 𝑔(𝑣), which is bilinear. By the universal property
of the tensor product, there exists a unique map 𝑓 ⊗ 𝑔 ∶ 𝑈 ⊗ 𝑉 → 𝑈

′
⊗ 𝑉

′.
(2) If 𝑢 ∈ Ker𝑓 and 𝑣 ∈ Ker𝑔 and 𝑎 ∈ 𝑈 , 𝑏 ∈ 𝑉 are arbitrary, then

(𝑓 ⊗ 𝑔)(𝑢 ⊗ 𝑎 + 𝑏 ⊗ 𝑣) = 0 ⊗ 𝑔(𝑎) + 𝑔(𝑏) ⊗ 0 = 0𝑈 ′
⊗𝑉

′ ,

so 𝐻 ∶= Ker𝑓 ⊗ 𝑉 + 𝑈 ⊗ Ker𝑔 ⊆ Ker𝑓 ⊗ 𝑔 . Hence 𝑓 ⊗ 𝑔 factors through 𝐻 , i.e. there exists a (surjective) map
𝜙 ∶ (𝑈 ⊗𝑉 )/𝐻 → 𝑈

′
⊗𝑉

′ such that 𝑓 ⊗𝑔 = 𝜙𝜋𝐻 , where 𝜋𝐻 is the canonical projection. Define now a map from
𝑈
′
⊗ 𝑉

′
→ (𝑈 ⊗ 𝑉 )/𝐻 as follows. For each pair (𝑥, 𝑦) ∈ 𝑈 ′

× 𝑉
′ choose a pair (𝑢, 𝑣) ∈ 𝑈 × 𝑉 such that 𝑓 (𝑢) = 𝑥

and 𝑔(𝑣) = 𝑦 and define the map 𝜓 ∶ 𝑈
′
× 𝑉

′
→ (𝑈 ⊗ 𝑉 )/𝐻 by 𝜓(𝑥, 𝑦) = 𝑢 ⊗ 𝑣 + 𝐻 . This map is independent

from the choice we made, because if (𝑢2, 𝑣2) is another pair such that 𝑓 (𝑢2) = 𝑥 and 𝑔(𝑣2) = 𝑦, then
𝑢 ⊗ 𝑣 − 𝑢2 ⊗ 𝑣2 = (𝑢 − 𝑢2) ⊗ 𝑣 + 𝑢2 ⊗ (𝑣 − 𝑣2) ∈ 𝐻

since 𝑓 (𝑢 − 𝑢2) = 0 and 𝑔(𝑣 − 𝑣2) = 0. Since this map is bilinear, by the universal property of the tensor
product, there exists a (unique) map 𝜓 ∶ 𝑈

′
⊗ 𝑉

′
→ (𝑈 ⊗ 𝑉 )/𝐻 . This map satisfies 𝜋𝐻 = 𝜓(𝑓 ⊗ 𝑔). Thus

Ker𝑓 ⊗ 𝑔 ⊆ Ker𝜋𝐻 = 𝐻 .
□

Proposition A.3. Let 𝑈 , 𝑉 ,𝑊 vector spaces and (𝑈𝑖)𝑖∈𝐼 and (𝑉𝑖)𝑖∈𝐼 be families of vector spaces.
(1) Hom(𝑈 ⊗ 𝑉 ,𝑊 ) ≃ Hom(𝑈 ,Hom(𝑉 ,𝑊 )) by 𝑓 ↦ [𝑢 ↦ [𝑣 ↦ 𝑓 (𝑢 ⊗ 𝑣)]].

(2) (𝑈 ⊗ 𝑉 ) ⊗𝑊 ≃ 𝑈 ⊗ (𝑉 ⊗ 𝑊 ) with (𝑢 ⊗ 𝑣) ⊗ 𝑤 ↦ 𝑢 ⊗ (𝑣 ⊗ 𝑊 ).
(3) 𝜏𝑈 ,𝑉 ∶ 𝑈 ⊗ 𝑉 ≃ 𝑉 ⊗ 𝑈 with 𝑢 ⊗ 𝑣 ↦ 𝑣 ⊗ 𝑢.
(4) (⨁𝑖∈𝐼

𝑈𝑖) ⊗ 𝑉 ≃ ⨁
𝑖∈𝐼

(𝑈𝑖 ⊗ 𝑉 ) with (𝑢𝑖)𝑖∈𝐼 ⊗ 𝑣 ↦ (𝑢𝑖 ⊗ 𝑣)𝑖∈𝐼

(5) 𝕂𝑥 ⊗ 𝑈 ≃ 𝑈 with 𝜆𝑥 ⊗ 𝑢 ↦ 𝜆𝑢.
(6) If 𝑋 and 𝑌 are bases for 𝑈 and 𝑉 resp., then {𝑥 ⊗ 𝑦 ∣ (𝑥, 𝑦) ∈ 𝑋 × 𝑌 } is a basis for 𝑈 ⊗ 𝑉 . In particular

dim(𝑈 ⊗ 𝑉 ) ≃ dim(𝑈 ) dim(𝑉 ).

Proof. We leave (1-3) to the reader.
For (4) we get for all 𝑗 ∈ 𝐼 and projections 𝜋𝑗 ∶ ⨁

𝑖∈𝐼
𝑈𝑖 → 𝑈𝑗 using Lemma A.2 the homomorphisms

(𝜋𝑗 ⊗ 𝐼 ) ∶

(

⨁

𝑖∈𝐼

𝑈𝑖

)

⊗ 𝑉 → 𝑈𝑗 ⊗ 𝑉 .

Using the inclusions 𝜖𝑗 ∶ 𝑈𝑗 ⊗ 𝑉 → ⨁
𝑖∈𝐼
(𝑈𝑖 ⊗ 𝑉 ) we have a linear map

∑

𝑖∈𝐼

𝜖𝑖(𝜋𝑖 ⊗ 𝐼 ) ∶

(

⨁

𝑖∈𝐼

𝑈𝑖

)

⊗ 𝑉 → ⨁

𝑖∈𝐼

(𝑈𝑖 ⊗ 𝑉 )

sending (𝑢𝑖)𝑖∈𝐼 ⊗ 𝑣 to (𝑢𝑖 ⊗ 𝑣)𝑖∈𝐼 .
For (6) we use (5) and (4) to show that if 𝑈 = ⨁

𝑥∈𝑋
𝕂𝑥 and 𝑉 = ⨁

𝑦∈𝑌
𝕂𝑦 then

(82) 𝑈 ⊗ 𝑉 =

(

⨁

𝑥∈𝑋

𝕂𝑥

)

⊗ 𝑉 ≃ ⨁

𝑥∈𝑋

(𝕂𝑥 ⊗ 𝑉 ) ≃ ⨁

𝑥∈𝑋

⨁

𝑦∈𝑌

(𝕂𝑥 ⊗ 𝕂𝑦) ≃ 𝕂
𝑋×𝑌

□
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