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All rings in this note are considered to be associative and unital unless otherwise stated. Ring homomorphisms
are supposed to be unital, meaning that the identity element of one ring is mapped to the identity element of
the other.

1. LECTURE: REPRESENTATIONS OF LIE ALGEBRAS G AND THEIR ENVELOPING ALGEBRA U(G)

Let K be a field. A ring A is called a K-algebra, if there exists a ring homomorphism  : K — Z(A), where
Z(A) denotes the center of the ring A. Then A becomes a vector space over K with scalar multiplication given
by
(1) A-a :=n(A)a,
for all A € K and a € A. We will usually suppress  and write simply Aa to denote A - a. The field K itself is
of course a K-algebra, with n = idg. Also any field extension E of K is a K-algebra, where  : K C E is the
inclusion map. Furthermore, if A is a K-algebra, then also polynomial rings A[xy, ..., X, | and matrix rings M,(A)

are K-algebras.
We will introduce now Lie algebras and a good reference on that subject is the book by Erdmann and Wildon

[1].
Definition 1.1 (Lie Algebra). Let K be a field. A Lie algebra over K is an K-vector space L, together with a bilinear
map, the Lie bracket [, | : L x L — L, satisfying the following properties:
(L1) [x,x] =0, forallx € L
(L2) [x,[y.z]] + [y, [z, x]] + [z, [x, y]] = 0, forall x,y,z € L
Condition (L2) is known as the Jacobi identity. As the Lie bracket [—, —] is bilinear, we have
2) 0=[x+y.x+yl=[xx]+[xy]+[y.x]+[y.y] =[x y] + [y, x].
Hence condition (L1) implies
(LT) [x,y] = —[y,x], forall x,y € L.
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In case char(K) = 2, then (L1”) implies (L1) by choosing x = y.

Definition 1.2 (Homomorphism of Lie algebras). Given a K-linear map f : Ly — L, between to Lie algebras
(L1, [, 1) and (Ly, [, |2) is said to be a homomorphism of Lie algebras if f preserves the brackets, i.e.

(3) [f G, fD]2 = f(lx y]0):
forallx,y € L.

Example 1.3 (Abelian Lie algebra). Any vector space L can be made into a Lie algebra by setting [x, y]| = 0, for
all x,y € L (where 0 shall denote the zero vector of L).

Example 1.4 (Vector Product). Let L = R® and consider the vector product[,] : R*xR?* — R® with [u,v] := uxuv,
for vectors u,v € R®. In coordinates, u = (uy, uz,u3) and v = (vy, vy, v3) this means:

(4) [U, U] 1= u x v = (Upv3 — U3V2, UsVy — U1V3, U1ly — UDy).

Clearly [u,u] = 0 holds. One checksu x (v xw) = (u-w)v — (u-v)w, where u -v is the scalar product, and concludes
the Jacobi identity. Thus (R3,x) is a Lie algebra. For the canonical basis vectors eq, €, €3 of R3 we have

(5) [e1, e2] = es, [e1, e3] = —ez, [e2, e3] = ey.

Example 1.5 (Algebra as Lie algebra with Commutator). Let A be any K-algebra. Then (A,[,]) is a Lie algebra,
where [, ] is the commutator bracket, i.e.

(6) [a,b] = ab — ba,
foralla,b € A. Clearly, [a,a] = 0 holds and the Jacobi identity holds because for all a,b,c € A:
[a, [b,c]] + [b,[c,a] + [c, [a,b]] a(bec — cb) — (be — cb)a + b(ca — ac) — (ca — ac)b + c(ab — ba) — (ab — ba)c
abc — ach — bca + cba + beca — bac — cab + acb + cab — cba — abc + bac
= 0.

Example 1.6 (Matrix Lie algebras). Consider A = M,(K), the vector space of n x n-matrices with entries in K.
Since A is also an associative algebra, A is a Lie algebra with commutator bracket. Note that a K-basis of A is given
by the elementary matrices E;j, with 1 < i, j < n. One easily checks

(7) [Eij, Ext] = EijEx — EiEij = 8 jxEiy — O1iExj,

where §;; denotes the Kronecker symbol with 6;; = 1 ifi = j and 6;; = 0 otherwise. This Lie algebra is usually
denoted by gl,(K) or gl(n,K) and called general linear Lie algebra. For n = 2, we have the 4 basis elements
x = Eq1,e = Eqg, f = Ez1,y = Eg. Hence the non-zero brackets are given by

(®) le. fl=x-y, leyl=e=I[xel.  [f.x]=f=1[yf]

Example 1.7 (Special linear algebra). A subspace of gl,(K) is the space sl,(K) of all matrices with zero trace.
Recall that the trace tr(x) of a matrix x = (x;;) is the sum of entries of the main diagonal and that tr(xy) = tr(yx)
for two n x n-matrices x and y. Thus tr([x, y]) = 0. Hence the restriction of the commutator bracket to sl,,(K) turns
this space into a Lie algebra, called special linear algebra.

For example, if n = 2, then a basis for sl,(K) is given by

S A

The non-zero brackets of these elements are given by the Serre relations:

(10) le.f1=h.  [hel=2e,  [h f]=-2f.
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Example 1.8 (Strictly upper triangular matrices). A subspace of sl,(K) is the space T,(K) of all strictly upper
triangular matrices, i.e.
(11) Zn(]K)=span{E,~j : i<j}.

Then T,(KK) becomes a Lie algebra with the commutator bracket. The three dimensional Heisenberg Lie algebra is
defined as by := T3(K), which has basis

010 00 0 00 1
(12) x=[0 0 0, y=[0o o0 1/, z=[0 0 0
000 000 000

The brackets are given by

(13) [x.y]=2z  [xzl=0, [yz]l=0.

Definition 1.9 (Derivations). A derivation of a K-algebra A is a K-linear map § : A — A that satisfies the
Leibniz rule

(14) 6(ab) = ad(b) + 6(a)b,

foralla,b € A.

_ Note that if J is a derivation of a K-algebra A and ¢ € Z(A) is an element of A, then S := ¢d defined as
d(x) = cd(x) is again a derivation, because for a,b € A:

S(ab) = c(ab) = c (ad(b) + 5(a)b) = ad(b) + 5(a)b

using that ¢ commutes with a. In particular, given scalars A;, 4, € K and derivations J;, §, of A it is easy to
verify that 1,81 + 1,9, is again a derivation of A.

Definition 1.10 (Lie algebra of derivations). Let A be a K-algebra and Derk(A) the space of all derivations
of A. Then Derk(A) is a Lie algebra with the commutator bracket (using the composition of functions), i.e. for
51, 52 c DCI']K(A):

(15) [01,82] = 81082 — 6201

Example 1.11 (Derivations in Polynomial rings). Let A = K[xy, ..., x,] be the polynomial ring in n variables.
Then the usual partial derivations %,forl < i < n, are derivations of A. Let fi, ..., f, € A be polynomials, then

J J
1 S S
(16) O=hoetmtho

is a derivation, since A is commutative. Moreover, given any é € Derx(A) we set f; := 5(x;). Then by induction,
using the Leibniz rule, one shows that 5(x*) = mx™ ' f; = f=2-(x). For an arbitrary monomial w = x| - x™
one concludes similarly

(17 88) = fi (o) + =+ foz ()

n

Thus Derg(A) = Y., Aaix,» is a finitely generated as A-module (actually free of rank n for a polynomial ring).

Example 1.12. In contrast to the last example, the Skolem-Noether Theorem says that the Lie algebra of derivation
Derg(A), for A = M,(K) consists only of inner derivations, i.e. derivations of the form §(a) = [a, x] = ax — xa,
for some element x € A.

Definition 1.13 (Representations of Lie algebras). Given a Lie algebra g over a field K. A representation of g on
a vector space V is a homomorphism of Lie algebras p : g — End(V'), where End(V) is seen as a Lie algebra with
commutator bracket. In case V is finite dimensional one can identify the Lie algebra End(V') with the general linear
algebra gl(n,K) =: gl(V).
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Example 1.14 (the adjoint map). The adjoint map of a (finite dimensional) Lie algebra g is

(18) ad : g - gl(g), x> (adx) : [y~ [x,y]]
This map is a homomorphism of Lie algebras, due to the Jacobi identity:

(19) [(adx). (ady)](2) = [x. [y. z]] = [y, [x. 2]] = [2. [y, x]] = [[x. y]. z] = (ad[x, y])(2).

Hence ad turns g into a representation over g

2. LECTURE: REPRESENTING U(g) AS RING EXTENSIONS FOR SMALL EXAMPLES

Definition 2.1 (Free Algebra). The free algebra over a set X is the vector space T(X) over K with basis the
words w = xy -+ X, with letters x; € X, The multiplication is given by concatenation of words, i.e. for words
U =Xy Xy andw = y; -y, of length m and n one defines the word vw = x1 -+ X Y1 -+ Yo Of length n + m as their
product. By definition there exists an empty word w, i.e. a word of length 0, which serves as identity element of the
multiplication

Theorem 2.2 (Universal Property of the free algebra). For any set X, algebra A and function f : X — A, there
exists a unique algebra homomorphism f : T(X) — A, such that f(x) = f(x), for all x € X.

Proof. Defne ]7 : T(X) » Aby f(xl e Xm) 1= f(x1) -+ f(xp), for all words x; -+ xp, in X. One checks f(vw) =
fG) - fGm)fOn) = fm) = f@)f(w), for w = x1 %, and w = y; - y,. The uniqueness is left to the
reader. O
Definition 2.3 (Enveloping Algebra). Let g be a finite dimensional Lie algebra with bracket [—, —] and basis X.
The universal enveloping algebra of g is defined as

T(X)
(xy—yx—[xy]: x,yeX)

Moreover, i : g — U(g) withi(x) =X, forx € g, is a Lie algebra homomorphism.

(20) Ug) =

Suppose g has basis X = {xi, ..., x,}. Note that if g is Abelian, i.e. [-, —] = 0, then U(g) = K[xy, ..., x,] is the
commutative polynomial ring in n variables, which as a vector space has an ordered basis {x" - x/™ : m; > 0}.
In general, if j > i, then x;x; = x;x; + [x}, x;]. Hence any element x;x; of length 2 can be reordered to x;x;, with
i < j, plus an element of length 1. Therefore it is clear that the set {x"' ---x™ : m; > 0}, consisting of so-called
standard monomials is always a generating set of U(g) as K-vector space. Although it is not obvious, that this set
is also a basis, the Poincaré-Birkhoff-Witt Theorem says exactly that, namely that the set of standard monomials
is always a basis of U(g) as K-vector space, independent of g being Abelian or not. As a consequence, one
concludes that i : g — U(g) is injective and that we can identify the elements of g with their representatives in

U(g). The universal enveloping algebra has the following universal property:

Theorem 2.4 (Universal Property of U(g)). Let g be a Lie algebra and A an associative algebra. For any
homomorphism of Lie algebras f : g — A, where A is considered a Lie algebra with commutator bracket, there
exists a unique homomorphism of associative algebras f : U(g) — A such that f(x) = f(x), for allx € g.

Proof. Let X be a basis of g. By the universal property of the free algebra T(X), Theorem there exists a
unique algebra homomorphism f : T(X) — A, extending f. For any x, y € g we calculate:

(21) Fley —yx =[x y]) = FEOf ) = FO)F@) = flxy]) = [£&), f3)] - f(x.y]) =0,

IThe free algebra is nothing but the monoid algebra of the monoid of words in X over K.
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since f is a homomorphism of Lie algebras. Hence f(I) = 0, for I = (xy — yx — [x,y] : x,y € g) and there
exists a unique (well-defined) algebra homomorphism f : U(g) = T(g)/I — A with f(w +1) = f(w), for words

— ~

w, and which satisfies, f(x +1) = f(x) = f(x). O

Theorem 2.5 (Representations of Lie algebras as modules over U(g)). LetV be a vector space.

(1) If p : g = End(V) is a representation over g, then by the universal property of U(g) there exists a unique
homomorphism of associative algebras p : U(g) — End(V), which turnsV into a (left) U(g)-module, by

(22) h-v =p(h)),

forallv € V and h € U(g).
(2) Conversely, if V is a left U(g)-module, then we define

(23) p:g—>EndV),  p(x)=[vrx-v]

Proof. (1) is clear, since a ring homomorphism p : U(g) — End(V) turns V into a left U(g)-module.
(2) Note that given x, y € g, then in U(g) we have xy — yx = [x, y]. Hence for all v € V:

(24) [p(), p(WI(@) = (p(X)p(y) = PPN W) = x -y v =y - x-v =[x, y]-v = p([x, yD().
This shows that p is a representation of g. O

Theorem 2.6 (Tensor product). Let g be a Lie algebra.
(1) There exist unique algebra homomorphisms A : U(g) — U(g) @ U(g) and e : U(g) — K, such that

(25) AX)=1®x+x®1, e(x) =0,

forallx € g.
(2) Given two left U(g)-modules M, N their tensor product M ® N is again a left U(g)-module by

(26) x-(men)=(x-m)n+me® (x-n)
forallx e g,me M andn € N.

Proof. (1) Consider the linear map A’ : g — U(g) ® U(g) defined by (25), then A’ is a homomorphism of Lie
algebras, because for all x,y € g:

[A"(x), A ()]

1®x+x31D)(1®y+y®1)—-(10y+y1)(1®x+x®1)

= (1®xy+y®x+xQ®y+xy®1)—-(1Qyx+x®y+yQ®x+yx®1)

= 1®(xy—yx)+xy—yx®1

= N([xyD.
By the universal property of U(g), Theorem there exists a unique algebra homomorphism A : U(g) —
U(g) ® U(g) extending A’.

Similarly, if we let €’ : g — K be the linear map that sends x to 0, then €’ is a homomorphism of Lie algebras
and there exists a unique algebra homomorphism € : U(g) — K extending €’.

(2) Since [x, y]-m = (xy — yx) - m, for any m of an U(g)-module M and x, y € g, we conclude [x,y]-(m®n) =
(xy —yx)-(m®n), forall x,y € g, m € M and n € N. This shows that the action- : g - End(M ® N)
given by is a homomorphism of Lie algebras and hence there exists a unique algebra homomorphism
- : U(g) » End(M ® N) that defines a left U(g)-module structure on M ® N. O

Theorem 2.7 (Enveloping algebras of finite dimensional Lie algebras are Noetherian). The enveloping algebra
U(g) of a finite dimensional Lie algebra g is Noetherian domain.
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Proof. (sketch) U(g) is filtered by the total degree of the standard monomials, i.e.

n
F := span{x{"1 e Zmi :k}.
i=1

Then Fy = K, F; = g. In particular FFy C Fiyy, F; C F;, for i < j and |J Fe = U(g). Thus {Fi}k> is a filtration of
U(g). One can therefore form the associated graded ring

(27) grU(g) = P Fe/Fit,

k>0

where F_; := {0}. An element a € U(g) is said to have degree k if a € F; \ F,_;. We calla = a + F._; € grU(g)
the leading term of a. Note that @ = 0 if and only if a = 0. Let b € U(g) be an element of degree [, then we define

ab :=ab+ Fe_q.
We easily see that K[x, ..., x,] = grU(g), as algebras, where the isomorphism is given by
= x;nl x;n" + Fm1+“.+mn.

my cee Mn
xl xn

Thus, grU(g) is a Noetherian domain of Krull dimension equal to dim(g). The general Theory on graded rings
tells us that if the associated graded ring grU(g) is Noetherian, then so is the graded ring U(g) (see [5} 1.6.9]).
Moreover, if ab = 0 in U(g), then ab = @b in grU(g) = K[xi,...,x,]. Hencea = 0 or b = 0, i.e. U(g) is a
domain. O

Open Problem 2.8. It is not known whether given a field K and a Lie algebra g such that U(g) is Noetherian, g
must be finite dimensional.

Representing U(g) as Ore extensions. Let o be an automorphism of an algebra R. A linear map § : R - R
is called a o-derivation if for all a,b € R:

(28) 6(ab) = o(a)6(b) + 6(a)b.
Clear § is a derivation if and only if it is an id-derivation.

Theorem 2.9 (Ore extension). Given an algebra R, an automorphism o € Aut(R) and a o-derivation §, there
exists a ring S = R[x;0,0], such that S is free as left R-module with basis {x' : i > 0}, such that

(29) xa = o(a)x + 6(a)
foralla € R. The ring R[x;0,6] is called an Ore extension of R.

Ore extensions can be realized as a subring of the abelian group of Z-endomorphisms of R[x] (see [5, 1.2.3].
Furthermore, it is known that Ore extensions of Noetherian domains are Noetherian domains. The proof is very
similar to Hilbert’s basis theorem (see [5}, 1.2.9]).

Example 2.10 (Two dimensional Lie algebras). Suppose char(K) # 2 and let g = span(x, y) be a Lie algebra
with basis {x, y}. Then

(30) [x,y] = ax + by,

fora,b e K. Ifa=b =0, then g is abelian and U(g) = K[x, y].
Suppose b # OSet x' :=blx andy’ = ab 'x +y, then

(31) [x",y'1=b2alx,x] +b ' [x,y] =ab 'x +y =y’

%ifb = 0 and a # 0, then we can simply exchange x and y.
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Hence, after a change of basis from {x, y} to {x’, y’}, we can assume that any non-abelian two dimensional Lie
algebra g has a basis {x, y} with [x,y] = y. The enveloping algebra U(g) can be described as an Ore extension
where R =K[y], o =id and 6 = y% is the derivation of R sending y to y (check that this is a derivation of R):

(32) Ue) = Klyllx: id,y;y].

Alternatively, we could set R = K[x] and consider the automorphism o of K[x] defined by o(x) = x — 1. Then
[x,y] = y is equivalent to yx = (x — 1)y = o(x)y. Thus, we obtain

(33) U(g) = K[x][y; 0,0].

Example 2.11 (Heisenberg Lie algebra) The three dimensional Heisenberg Lie algebra by can be seen as the Lie
algebra with basis x, y, z such that [x, y]| = z. It can be realized as a Lie algebra of matrices, where

0 1 0 0 0 0 0 0 1
(34) =lo o 1|, z=lo 0 ol.
0 0 0 0 O
Let R = K|y, z] and set o = id and ai Then §(y) = z and
d
35 U = Kly, rz—|.
9 (0) = Ky, 2llxiz

Although the description of U(h) looks very similar to U(g), with g the two-dimensional non-abelian Lie algebra,
they are quite different. For instance, by is a so-called nilpotent Lie algebra, i.e. [h,[h,h]] = 0, while g is not, since
[g,9] = Ky and [g,Ky] = K[y]. Note, that Z(U(h)) = K|[z], while Z(U(g)) = K.

Example 2.12 (sl,). The three dimensional special linear Lie algebra sl, can be seen as the Lie algebra with basis
e, f,h such that the Serre relation hold (see Example[1.7):

(36) le. f1=h,  [hel=2e,  [h f]=-2f.
Our aim is to express U(sly) as an iterated Ore extension. Set R = K[h] and define the automorphism o of K[h] by
o(h) = h—2. Then[h,e] = 2e is equivalent toeh = he—2e = o(h)e. Let S = K[h][e; o] and define an automorphism
7 of S by setting t(h) = h + 2 and t(e) = e. In order to guarantee that there exists such an automorphism, we
must assure t(eh) = (o (h)e). We have on the left side t(eh) = e(h + 2) = he — 2e + 2e = he, while on the right
side we have t(c(h)e) = t(he — 2e) = (h + 2)e — 2e = he. Thus, t(eg) = t(c(h)e) holds and we can define the
automorphism t.

Furthermore, we define a t-derivation § as 5(h) = 0 and 6(e) = —h, i.e. § = —h%. We need to check that § is
indeed a t-derivation and will do so only on the generators:

S(eh) = 7(e)5(h) + 5(e)h = —h? = (h + 2)(=h) — 2(—h) = 7(h)8(e) + 5(h)e — 25(e) = 8(a(h)e).

Hence we can form the Ore extension S| f;7,8] and have that fe = t(e)f + &(e) = ef — h, which is equivalent to
le, f1 = h. We also have fh = t(h)f + 6(h) = (h+ 2) f, which is equivalent to [h, f] = —2f. Thus we can establish
an isomorphism

(37) U(sly) = K[h][e; o]l f; 7. 6]

3. LECTURE: GROUP REPRESENTATIONS AND GROUP ALGEBRAS.

Definition 3.1 (Semigroup ring). Given a ring R and a semigroup S. The semigroup ring R[S] is defined as
follows:



ERASMUS MINI-COURSE ON HOPF ALGEBRAS’ 8

(1) As set, R[S] is equal to the direct sum R, which is the set of elements f = (r)ses such that there
exists a finite subset F C S withry = 0 for all s € S\ F. The support of such element f is defined as
sup(f) = {s € S | r; # 0}. Elements of R[S] are written as finite sums f = ). riS, wheres is a placeholder for
the coefficient r; and where it is understood, that only finitely many coefficients rs are non-zero.

(2) The addition of two elements f = Y. a;s and g = Y, bss in R[S] is defined as

(38) frg=)(a+b.
(3) The multiplication of two elements f =Y, ass and g = Y, bss in R[S] is defined as

(39) fg= ch§, with = ( Z aslb32>

$182=$
Since sup(f) and sup(g) are finite, there are only finitely many coefficients cs that are non-zero and each
coefficient c, = Y ¢ o s as,bs, has only a finite number of non-zero summands.

If R is unital, with neutral element 1 and S is a monoid, with neutral element e, then R[S] is unital with neutral
element 1e.

Example 3.2. Let R be a ring.

(1) Let S = {e} be the trivial semigroup. Then R[S] = {a€ | a € R} is isomorphic to R.
(2) Let S = N = {x" | n > 0} and multiplication x"x™ = x"*™ for all numbers n,m > 0. Then

(40) R[N] = {Z a,x" | a, € R and only finitely many a, are non—zero} =: R[x]

n=0

is the polynomial ring over R in one variable. Note that the multiplication is given by

and Ch = inxj:xn a,-bj = Z?:O aibn_i.
(3) Let S = NF = {x[" - x* | n; > 0} be the monoide with (x{" = x*) (x[™ -+ x[™) = %™ - X7 then

R[NF] = [ Z Z Alny.. ) X1 X | An,. ) € R and ag, ) = 0 for almost all]
n=0 ng=0
=: R[xp,.... %]

Theorem 3.3 (Universal property of the semigroup ring). Let S be a semigroup and R a ring. For any ring
homomorphism f : R — R’ from R to another ring R’ and for any function of semigroups g : S — R’ between
S and the semigroup (R’,-) such that f(r)g(s) = g(s)f(r) forallr € R and s € S. There exists a unique ring
homomorphism f : R[S] — R’ such that f(rs) = f(r)g(s). If f and g are unital, then so is f.

Proof. Since any element of R[S] can be uniquely written as y = ) ¢ 1S with only finitely many coefficients
non-zero, we can define f : R[S] — R’ by

(42) @) =) fGr)g(s).
s€S

Since f is already defined to preserve sums, it is a homomorphism of the additive groups of R[S] and R’. Hence,
it is only necessary to check the multiplicativity of f at elements of the form r5. Letry,r, € Rand sy, s, € S. Then

F((r5)(r252)) frrsisz)
frir2)g(s1s2) by definition of f
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flr)f(r)g(s1)glsz) since f and g are multiplicative

flr)g(s) f(r2)f(s2) by hypothesis the images of f and g commute

Fris) f(r52).

Suppose there exists another ring homomorphism h : R[S] — R’ such that h(rs) = f(r)g(s), then for any
Y = DeesTsS € R[S] also

(43) h(y) = Y h(rs) = Y. f(r)g(s) = f@).

seS seS

Hence h = f. O

Note that if R is commutative and f : R — Z(R’) is any ring homomorphism from R to the center of R’, then
the hypothesis f(r)g(s) = g(s) f(r) is automatically satisfied.

Definition 3.4 (Polycyclic-by-finite groups). A polycyclic-by-finite group is a group G that admits a normal series
(44) 1=Gy<G; <--<4G, =G,

such that G; is normal in Gi41 and Gi11/G; is infinite cyclic with G, /Gy,—; being finite.

Theorem 3.5. If R is a left Noetherian ring and G is polycyclic-by-finite group, then R[G] is left Noetherian.
Proof. see [5] O

Open Problem 3.6. It is not known whether given a field K and a group G such that K[G] is Noetherian, G must
be polycyclic-by-finite.

Definition 3.7 (Group representation). Let G be a finite group and K a field. A representation of G on a vector
spaceV is a group homomorphism p : G —» GL(V) ={f : V. > V : f is a linear isomorphism }.

Example 3.8. For example if G = Z4 = (g : g* = e), then a representation of G on V = R? is for example given

(1) —01 > € GL(R?), i.e. p : G — GL(R?) with p(g) = A, p(g?) = A%, p(g) = A3
and p(e) being the identity matrix.

by the rotation matrix A =

Representations of a group G on a vector space V turns V into a left K[G]-module by defining

(45) A:K[G]xV >V, (Z agg,v) — Z agp(g)(v)
Conversely, any left K[G]-module structure A on V defines a representation of G on V, by setting
(46) P(QW) :=Agv) =: g v,

forallge GandveV.
Hence, if one wants to study group representations, one can equally consider modules over the group algebra.

Theorem 3.9. Let K be a field, G a group and K[G] its group algebra.
(1) There exist unique algebra homomorphisms A : K[G] - K[G] ® K[G] and € : K[G] — K defined by

(47) Ag)=g®g  e@=1
forallg € G.
(2) For any left K[G]-modules, M and N, the tensor product M ® N is a left K|G]-module using A, i.e.
(48) g-m®n)=Ag)men)=(g-m)®(g-n)

forallge Gme M,neN.
Proof. left to the reader. ]
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4. LECTURE: MASCHKE’S THEOREM FOR GROUP ALGEBRAS AND BLOCK DECOMPOSITION.

Definition 4.1 (semisimple Modules). A module M is semisimple if any submodule N of M has a complement in
M, i.e. there exists a submodule L of M such that M = N @ L.

It is a standard fact that a left R-module M is semisimple if and only if any short exact sequence
(49) 0>N->M->L—->0

splits. In particular, a ring R is called (left) semisimple if and only if every left (and right) R-module is semisimple.
The Wedderburn-Artin Theorem characterizes semisimple rings as finite products of matrix rings over
division rings.

Theorem 4.2 (Wedderburn-Artin Theorem). The following statements are equivalent for a ring R:

(1) Every left R-module is semisimple, i.e. R is semisimple.
(2) R is a left Artinian ring and Jac(R) = 0.
(3) R is isomorphic to a finite direct product of matrix rings over division rings.

Recall that the Jacobson radical of a ring R is defined as
Jac(R) = ﬂ{M : M is a left maximal ideal of R}.

Maschke’s Theorem tells us precisely, when a group ring K[G] is semisimple. Note that for that G has to be
finite. The reason is that if K[G] is semisimple, the trivial K[G]-module K, with g - 1x = 1k, for all g € G, is
projective. Hence the augmentation map € : K[G] — K given by e(g) = 1 splits and there exists y : K — K[G]
and in particular an element t = Y1, L;h; = y(1k) € K[G], with A; # 0, for all i. Let g € G and set f = ghy'.
Then

(50) ME+ ), ight'hi = ghi't = y(ght' - 1x) = y(1x) = Y, Aihs.

i=2 i=1

In particular, as the group elements form a basis of K[G], we have that g = h;, for some i. In other words
G = {hy,..., hy} and G is finite. Hence, suppose G is finite. Identify |G| = |G|1x € K. If char(K) { |G|, then |G|
is non-zero in K and hence invertible, i.e. ﬁ € K. Let § : V — W be any surjective homomprhism of K[G]-
modules. Since f is also K-linear, and since V and W are vector spaces, there exists a K-linear sectiony : W — V
such that the composition fy = idy . If we could define a section as left K[G]-module homomorphism, we would
show that any short exact sequence splits and hence K[G] would be semisimple. This is what we are going to
do in case char(K) { |G|. Define an averagingfunction Y : W —>Vby

Zg v (E@-w), vweW.
g€G

G T =

Then ¥ is K-linear and also K[G ]-linear because for any h € Gand w € W we have:

)= = Y g Ty (gh-w) = = Y Rk = Fiy(w),
6l & 6l £
g g
where we use that the multiplication of an element with h yields a permutation of the elements of the group.
Furthermore,
pao) = (= XETr@w
[EF=
8

|G|Zg-1 Bly(@ w) = |G|Zg-1 € w) = <Zg-1g>

g€eG geG g€eG
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This means, that ¥ splits . Hence we proved that if char(K) { |G|, then any short exact sequence of K[G]-modules
splits and K[G] is semisimple. In the language of group representations, a representations V is called irreducible
if it is simple as K[G]-module. V is called completely reducible if and only if V is a semisimple K[G]-module.

Theorem 4.3 (Maschk. Let K be a field. Then K[G] is semisimple, i.e. every representation over G is completely
reducible, if and only if G is finite and char(K) { |G|.

Proof. We have already shown that if char(K) { |G| and G is finite, then K[G] is semisimple. Conversely, assume
K[G] is semisimple. We have already seen that G has to be finite. Consider the left ideal I = ), g€G K[G](g —®).
Then K[G]/I = K(e + I) = K is one-dimensional. Moreover,

h-e+D=h+I=¢e+1, vh € G.
Suppose K[G] is semisimple, then the canonical map € : K[G] — K[G]/I splits and there exists § : K[G]/I —
K[G] such thate+1 = e(f(e+1)). Let x = f(e+1I). Then x = deG ayg for some ag € K. Since h-(e+1) =e+1,
also hx = x. This means that
(52) Zagg: x = hx = Zagﬁz Zah—lgg.
geG geG geG

Therefore, all the coefficients of x are equal, i.e. aj, = a,, forany h € H. Let A = a.. Then x = 1), gec 8- Applying
€ yields

geG

e+I:e(x):)L<Zg+I> = MG + D).

This shows that 1 = A|G| and in particular |G| # 0 in K, i.e. char(K) { |G|. O

Example 4.4. Combining Maschke’s Theorem with the Wedderburn-Artin Theorem, we have that any group ring
K[G] of a finite group G over a field K with char(K) { |G| must be isomorphic to a direct sum of matrix rings over
division rings, i.e.

(53) K[G] = My, (D1) % -+ x My (D).

The matrix rings My, (D;) are called the blocks of K[G]. Moreover, up to isomorphism there are only k non-isomorphic
simple K[G]-modules, i.e. irreducible representations, of dimension ni[D; : K], ...,ni[Dy : K]. Note that there
exists always at least one 1-dimensional representation of G, i.e. we must have D; = K and n; = 1 for some .

Some examples: Let G = Cy = (g : g* = e) be the cyclic group of order 4 and K = Q. Then Q[C,] = Q xQ x Q(i),
because Q[C4] = Q[x]/(x*—1) sending g to the coset of x modulo x*—1. Sincex*—1 = (x—1)(x+1)(x*>+1) € Q[x],
we get (using the Chinese reminder theorem)

(54) Q[Ca] = Qlx]/(x = 1) x Qx]/(x + 1) x Qx]/(x* + 1) = Q x Q x Q(i).
If instead of Q we take the group ring over C, then x* + 1 decomposes further an we obtain C[C4] = Cx C x C x C.

As the smallest non-commutative example we might take G = S3 and K = C. Then C[Ss] is semisimple and
must decompose into a direct product of matrix rings M,,(C) (note that as C is algebraically closed, D; = C). In
particular the sum of dimensions of the matrix rings n? must be equal to 6 and since Ss is non-Abelian, not all n;
can be equal to 1. Hence the only possibility of dimensions is 1 + 1 + 22 = 6, i.e. C[S3] = C x C x M,(C). We can
also read off from this decomposition, that there any irreducible Ss-representation has dimension 1 or 2 and that
there exist exactly two non-isomorphic 1-dimensional irreducible S3-modules and exactly one 2-dimensional one.

3Heinrich Maschke (1853-1908), Biography: MacTutor


https://mathshistory.st-andrews.ac.uk/Biographies/Maschke/
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The number of conjugacy classes and the dimensions of the centres of finite dimensional division algebras
allows us to estimate the number of different blocks of a group ring K[G]. Recall that the relation
x~y e 3geG: y=gxg

is an equivalence relation ~ on a group G and partitions the group into equivalence classes, called conjugacy
classes.

Lemma 4.5. Let K be a field and G a finite group.
(1) For any conjugacy class C = [x]. = {gxg™" : g € G}, the element
c=>73
yeC

is a central element of the group ring, i.e. C € Z(K[G]).
(2) Let Cy,...,Ck be the set of all conjugacy classes of G. Then (Cy, -+, Cy) is a K-basis of the centre Z(K[G]) of
K[G].

Proof. (1) Let h € G. For any y = gxg~! € C we have hyh™! =y’ € C,i.e. hy = y’h. Thus hC = Ch and

(55) hC = hy= ) y'h=Ch.
yeC y'eC
Hence, C is central in K[G].
(2) The elements {g : g € G} form an K-basis of K[G]. Thus {C, ..., G} is a K-linearly independent set and
we only need to show that it is also a generating set of Z(KK[G]). Let x € Z(K[G]). Then x can be written as:

k
(56) x = Z <Z ri,yy> , riy € K.
i=1 yeC;
For all h € G we have hx = xh, i.e.
k k k
(57) Z (Z ri,yy> =x=hxh1= Z <Z r,;yhyh1> = Z < Z rl-’yzy’> .
i=1 \ yeC; i=1 \ yeC; i=1 \y’ehC;h~!

Since C; = hC;h™', we have that all coefficients r;,, of the same conjugacy class are equal, i.e. there exists r; € K
with r; = r;, for all y € C;. Hence x = Zf:l riCi, showing that (Cy, ..., Cy) is an K-basis for Z(K[G]). O

As a Corollary we can estimate the number of blocks of K[G] in the semisimple case.

Corollary 4.6. Let G be a finite group and K a field such that char(K) { |G| and

(58) R = My, (D1) x -+ x My (Dy)
with finite dimensional division algebras Dy, ..., Dy. Let m be the number of different conjugacy classes. Then
(59) m=[Z(Dy) : K]+ -+ [Z(Dy) : K],

where [Z(D) : K] denotes the dimension of the centre Z(D) of D as a K-vector space. In particular, the number
of blocks, e.g. the number of non-isomorphic irreducible representations, is bounded by the number of conjugacy
classes, with equality if Z(D;) = K for alli.

Proof. By Lemma [4.5] dim(Z(K[G]) = m and by the Wedderburn-Artin decomposition
(60) Z(K[G]) = Z(Mp,(D1)) x -+ x Z(Mp,(Dy)) = Z(D1) x -+ x Z(Dx)

we conclude that m = dim(Z(K[G])) = le[Z (D;) : K]. Since the number k of blocks is the number of
non-isomorphic simple K[G]-modules and since [Z(D;) : K] > 1 the last statement follows. O
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Example 4.7. Let G be a finite Abelian group. Then two group elements are conjugated if and only if they are equal.
Hence the number of conjugacy classes is |G|. However, the number of blocks of K|G] = Z(K[G]) also depends on
the finite field extensions of K.

(1) C[G] = C x - x C = C", wheren = |G|, since C is algebraically closed.

(2) R[G] = RF x C™ such thatn = k + 2m, for somem > 0 and k > 1, since R and C are the only finite field
extensions. For example, if G = Cy is the cyclic group of 4 elements, then R[C4] = C x R x R, in which case
we have that the number of non-isomorphic simples is strictly less than the conjugacy classes of the group.

(3) There are many finite field extension of K = Q as well as of a finite field K = GF(p"), which may occur in
the Wedderburn decomposition of a group ring. For example if G = Cs is the cyclic group of order 5, then
Q[Cs] = Q(a)xQ, where « is a primitive 5th root of unity. A similar situation occurs if K = Fy is the field of
two elements, since then x° —1 = (x — 1)(x* + x* + x? + x + 1) is a factorisation into irreducible plynomials
and hence F,[Cs] = Fy(a) x F, for a primitive 5th root of unity a over F,. However, if K = GF(4) is the
field with 4 elements, then K[Cs] = K(a) x K(f) x K decomposes into three fields, where K(a) and K(f)
are field extensions of degree 2 over K.

Example 4.8. Let G = S3 = {id, a, B, B?, a8, a %} be the group of permutations on three letters, with a = (12) and
B = (123), then S; has three conjugacy classes: [id] = {id}, [a] = {a, a, af?*} and [B] = {B, B*}. Hence C[S3] has
three blocks and their sizes ny, ny, ns must satisfy n? + n3 + n3 = 6. Thus only one of the n/s can be different from 1,
Le.

(61) C[S3] = M»(C) x C x C.

Example 4.9. Let G = Dy = {id, 7,7, 7%, a, ar, at?, ar’} be the dihedral group Dy, i.e. the symmetry group on the
square, with a = (12)(34) and t = (1234), then D, has five conjugacy classes: [id], (] = {a, ar?}, [ar] = {ar, ar®},
[z] = {z,7°} and [r?] = {r?}. Hence C[D] has five blocks and their sizes ny, ny, ns, nq, ns must satisfy ¥, n? = 8.
Since C[Dy] has at leasy one 1-dimensional representation, at least one of the n/s must be 1 and the only possibility
is that one of the ns is equal to 2, while the rest is equal to 1, i.e.

(62) C[D4] = My(C)xCxC x C x C.
5. LECTURE: INTRODUCTION TO HOPF ALGEBRAS BIALGEBRAS, CONVOLUTION PRODUCT.

A Hopf algebra is an algebra and a coalgebra such that their structures are compatible. Recall that the
multiplication and the identity of a K-algebra A can be understood as having K-linear homomorphisms
pu:A—> A®Aandn : K — A such that y is associative and (1) is the identity of A with respect to the
multiplication. In diagrams this means

pid n®id id®n
ARARA——=ARA KQA—ARRA<—AQK
id@“l J{” \“l/
A®AH—>A A

Definition 5.1. A coassociative coalgebra with counit is a K-vector space C with K -linear maps
A : C — C ® C the comultiplication, ¢ : C — K the counit,
such that the following diagrams are commutative:

C A Lcec Kec< coc®® cok

I RS

C®CT@;'>(1C®C®C C
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We will use the so-called Sweedler-notation for the comultiplication of an element c:
(63) Ac)=) c1®c;€CRC.
(©

If C is a K-coalgebra and A is a K-algebra, then Homg(C, A) becomes a K-algebra by the convolution product:

(64) (f * )(e) = ., flen)g(ea)
©

for all f, g € Hom(C, A) and ¢ € C. If ¢ is the counit of C and  : K — A the unit of A, then 5o ¢ € Hom(C, A) is
the unit of this algebra. In particular C* = Hom(C, K) is a K-algebra with unit «.

Definition 5.2. A K-algebra B is called K-bialgebra if B is a K-coalgebra such that the comultiplication and
counit are algebra maps. A K-bialgebra H is called Hopfalgebra, if the identity id € End(H) has an inverse S w.r.t.
the convolution product. S is called the antipode of H. and one has

D hiS(hy) = e(h) = ) S(hodhs.
(h) h)
Example 5.3. We list some examples of Hopf algebras
(1) Let G be a group. Then K[G] is a Hopf algebra with A(§) = § ® § and (g) = 1 and S(g) = g ! for all
€ G.
2) fet)((; be a set. Then the free algebra K(X) is a Hopf algebra with
Ax)=10x+x®1, e(x) =0, S(x) = —x,

for any x € X. In particular, if g is a Lie algebra over K. Then H = U(g) is a Hopf algebra with the same
coalgebra structure as the free algebra.
(3) Let G be an algebraic group and H = O(G) its coordinate ring. Then

A OG) - OGxG) = O(G) x O(G) = [(g.h)— f(gh)]

e: OG) > K e(f) = F(1)
e : OG) - OG) felg— flg™hl
Proposition 5.4. Let H be a bialgebra and M, N left H-module. Then M ® N is a left H-module by the action
(65) h-(m®n) := A(R)(m®n) := Y (hy-m)® (hz - n),
Q]

foranym € M,n € N and h € H, where A(h) = Z(h) hy ® hy in Sweedler’s notation.
Proof. There exists a unique algebra homomorphism ¢ : End(M) ® End(N) — End(M ® N) given by
(66) Y(f ® gd(m®n) := f(m) ® g(n).

Let AM : H — End(M) denote the algebra homomorphisms associated to the left H-module structure on M, i.e.
AM(h)(m) = h-m, form € M and h € H. Similarly, let AN : H — End(N) denote the H-action on N. Then the
composition of the algebra homomorphisms

(67) YoM @pN)eA : H— H®H — End(M) ® End(N) — End(M ® N)

is an algebra homomorphism. Explicitly, for m € M,n € N and h € H we calculate:

(68) (o (M@ pN) o A) (men) = Y. pM(h)(m) ® pN(ha)(n) = Y (hy - m) & (hy - n).
(h) (h)
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Note that the field K is also a left H-module, called the trivial H-module, with H-action A - 1x = e(h). For
any left H-module M we define:

M ={meM|vheH : h-m=eh)m}.

We have an isomorphism of vector spaces Homy (K, M) — M, given by f — f(1), which is actually a
functorial isomorphism between Homp (K, —) and (—).

For M = H, we set jl'H =HY ={t e H : vh € H : ht = e(h)t}. Using the right H-module action, we set
S ={teH :vheH : th=eh)}.

6. LECTURE: REPRESENTATIONS OF HOPF ALGEBRAS AND TENSOR CATEGORIES.

Definition 6.1. Let H be a Hopf algebra over K. AXK-moduleV is called a (right) Hopf module for H, if it satisfies
the three conditions:

(1) V is a right H-module.

(2) V is a right H-comodule.

(3) Compatibility condition: Ay(v-h) = Y,(vo - h1) ® (v1 - hy), Yhe Hiv e V.
IfV,W are Hopf modules,a K-linear map f : V. — W is said to be a Hopf module map if it is both a module and
comodule map.

The compatibility condition for a Hopf module says that Ay : V — V ® H is a morphism of right H-modules,
with V ® H carrying the right H-module structure as above. Denote by M the category of right H-Hopf
modules. The fundamental theorem of Hopf algebras, proved by Larson and Sweedler in 1969, says that M is
equivalent to the category of all K-vector spaces (see [3]]).

If V is a right Hopf module, the invariant and covariant submodules of V' are defined, respectively, to be and

(69) VE={veV :v-h=e(h),vhe H} Vel =y eV 2 Av(v) =v ® 14}

Given a K-module W, the tensor product W ® H can be made into a H-Hopf module by setting

(70) w®h)-g=w®hg, YweW,h,ge€ H Awen = idy ® Ag.

Hopf modules of that form are called trivial The following theorem asserts that all Hopf modules are trivial.

Theorem 6.2 (Fundamental Theorem of Hopf modules (Larson-Sweedler, 1969)). Let V be a right H-Hopf
module. Then the multiplication map

(71) p:VlQH SV, vQhw—uv-h
is an isomorphism of Hopf modules, where V°° ® H is considered a trivial Hopf module.

Proof. The map ¢ : V — V<l with ¢(v) = Y vy - S(v1) is well defined.
For v € V we calculate:

AN = Y Av(uy - S00) = Y 0y Sws) @ 115w2) = 3 b0y - S(02) @ (1) = (0) - 1) ® 1y = $(v) @ 1
Hence, ¢(v) € V°H. Furthermore, (¢ ® id)Ay : V — V°f ® H is the inverse of p, because for v € V, we have
p e (¢ ®id)Ay(v) = ¢p(v()) cotvy = vg) - S(v1)v2 = v()e(v1) = v.
Ifv € V°H and h € H, then
G @id)Ay o plo®h) = Y $((v-h)o)® W -h)1 =Y, ¢p-h)®hy = Y v-hiS(hp)hs = v @ h.
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Let H be a finite dimensional Hopf algebra. We have seen that any right H-comodule is a left H*-module.
In case H is finite dimensional, then H*-module is a also a H-comodule, by Ay« : H* — H* ® H given by
Ag=(f) = X fio) ® fiif and only if (p = f)(h) = Y, p(fi) fio)(h), for all p € H*,h € H. On the other hand, we
have that H* is a right H-module, via (f - h)(g) := f(gS(h))), for all f € H* and h, g € H.

Theorem 6.3 (Larson - Sweedler, 1969). . Let H be a finite dimensional Hopf algebra over K. Then
(1) H* is a right Hopf module.
(2) dim " = dim [ =1
(3) The antipode S is bl]ectlve and S(/ )= /
(4) Forany0 + A € f , the map H — H*, given by h — h + A, is an isomorphism of left H-modules.

Proof. (1) is left to the reader.

(2+3) Consider the Hopf module structure on H*. By the fundamental theorem we have (H*)*°f ® H ~ H*.
And, as H is finite dimensional, we get dim((H*)®H) = 1. Note that f € (H*)*°H if and only if Ag+(f) = f ® 1x
if and only ifforallpe H*andh e H: (p « f)(h) = p(l)f(h) = eg+(p) f(h), which is saying p * f = eg-(p)f,
ie. f e f . Replacing H* by H we also have dim( f )=1.

By the Fundamental Theorem we have the isomorphism fl ®H — H” by multiplication, i.e. AQ h — A+ h.
If h € Ker(S), then A« h = S(h)-h = 0. Thus h = 0, which shows that S is injective and as H is finite dimensional,
S is bijective.

Since S(/H) C f as well as S(f ) C f S injective and dlm(f )=1, we obtaln S(f )= f

(4) The Fundamental Theorem and dim( f ) = 1 shows again for any 0 # A € f cH*=A+H=S(H)-A.
As S is bijective, H - A = H*. (]

The existence of the isomorphism H — H* says that H is a Frobenius Algebras.

Let K be a field, G a finite group and R = K[G] its group ring. The linear functional ¢ : K[G] — K defined
by ¢ (Z g€G )ng) = A satisfies that it does not contain any non-zero left (nor right) ideal of K[G]. Because for
all x = 3 .5 4,8 € Ker(p) and h € G we have

0=gh x)=¢ (ZA h1 > (Z/lhkk>
geG keG

The importance of this map is that it establishes an isomorphism between K[G] and K[G]* : = Hom(K[G], K).
Given an algebra A over a field K, A* becomes a left and right A-module by

(a- f)(x) := f(xa), (f - a)(x) = f(ax), VfeA,ax€A

With these actions, A* becomes actually an injective left and right A-module, because if I is a right ideal of A
and f : [ - A* is a right A-linear map. Considering I as a subspace of A, we have a decomposition A=1& I’
for some subspace I’. Define ¢ € A* by ¢(a) = f(a)(1) ifa € I and ¢(a) = 0 if a € I’. Then for any a € I using
the A-linearity of f:

f@)) = (f(a) - x)(1) = flax)(1) = p(ax) = (¢ - a)(x),  Vx €A
Hence f(a) = ¢ - a, for any a € I. By Baer’s criterion, A* is an injective right A-module. A similar argument
shows that A" is an injective left A-module.
Theorem 6.4 (Brauer-Nesbitt-Nakayama). Let A be a finite dimensional algebra over a field K. The following
statements are equivalent:

(a) There exists a K-linear map ¢ : A — K such that Ker(¢) does not contain any non-zero right ideal.
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(b) There exists an isomorphism © : A — A* of right A-modules.

(c) There exists a bilinear map  : Ax A — K that is non-degenerated and associative, i.e. f(ab,c) = f(a, bc),
foralla,bc € A.

(d) Any of the statement (a),(b) holds with “right" being replaced by “left".

Proof. (a) = (¢) Define f : Ax A — Kby p(a,b) := ¢(ab). Then f is bilinear and f(ab, c) = ¢(abc) = p(a, bc)
holds for all a,b,c € A. Moreover if f(a, A) = 0 for some a € A, then ¢(aA) = f(a, A) = 0 implies aA is a right
ideal contained in Ker(¢) and hence zero, i.e. a = 0. Since A is finite dimensional, a result in Linear Algebra
shows that any left non-degenerated bilinear form is also right non-degenerated. Hence f is non-degenerated.

(¢c) = (b) Define ® : A - A* by ©(a) := p(a,—) : [b — p(a,b)]. Then © is well-defined and K-linear.
Moreover, ©(a) = 0 implies f(a, A) = ©(a)(A) = 0. Since f is non-degenerated, a = 0, i.e. © is injective and as
dim(A) = dim(A*), © is bijective. Furthermore, for any a,a’ € A:

O(ad’)(b) = B(ad’,b) = B(a,a’b) = O(a)(a’b) = (©(a) - a’)(b), vb € A.

shows ©(aa’) = O(a) - @’. Hence O is an isomorphism of right A-modules.
(b) = (a) Define ¢ : A — K by ¢(a) := ©(1)(a), for all a € A. Then ¢ is K-linear. For any a # 0 we have
©(a) # 0. Hence there exists b € A such that

¢(ab) = ©(1)(ab) = (6(1) - a)(b) = B(a)(b) # 0.

Hence, aA ¢ Ker(p).
(¢) © (d) Since (c) is independent from one side, properties (a) and (b) can be obtained analogously for “left"
instead of “right". For instance in (¢) = (b) we could have defined ® : A > A* with ®(a) := f(—,a) : [b—

p(b, a)l.
O

Definition 6.5. A finite dimensional algebra A is called a Frobenius algebra if it satisfies any of the conditions of
the Brauer-Nesbritt-Nakayama Theorem.

The Larson-Sweedler Theorem says that for any finite dimensional Hopf algebra H there exist an isomorphism
of H-modules H = H*. Hence H is Frobenius.

Corollary 6.6. A finite dimensional Frobenius algebra is left and right self-injective. In particular, any finite
dimensional Hopf algebra, e.g. a group ring of a finite group over a field, is left and right self-injective.

7. LECTURE: MASCHKE’S THEOREM FOR HOPF ALGEBRAS AND LARSON-SWEEDLER THEOREM

It is known that finite dimensional Frobenius algebras have global dimension 0 or infinite. Algebras of global
dimension 0 are semisimple.

Theorem 7.1 (Maschke’s Theorem for Hopf algebras). The following statements are equivalent for a Hopf algebra
H over a field K:

(a) H is a semisimple artinian K-algebra;
(b) (=) is an exact functor;
(c) 3t € le such that e(t) = 1.

In this case H is finite dimensional.

Proof. (a) = (b) We have seen already that for a left H-module M, Homy (K, M) = M, given by f + f(1). In
particular, the functors (—)# and Homp (K, —) are isomorphic. If H is semisimple, then Homp (K, —) is exact.
(b) = (c) For M = H, the exactness means that € : H — K splits, i.e. there exists y € Homg(K, H), such that

e(y(1)) = 1. Sett = y(1) € [, then e(t) = 1.
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(¢) = (a) Let M, N be left H-modules and f : M — N an epimorphism of left H-modules that splits. Since

M and N are vector spaces, there exists a linear map g : N — M such that fg = idy. Lett € le with e(t) = 1
and define § : N — M given by

(72) §n) =) tig(Stz) - n),  VneN.
Then one can check that g is left H-linear. Moreover, using the H-linearity of f, we have for n € N:
fG@Em) =Y tfg(St) n) =Y tS(tz) - n=e(t)n =n.
0

Theorem 7.2 (Larson-Radford, 1988). Let H be a finite dimensional Hopf algebra. Suppose char(K) = 0. Then H
is semisimple if and only if H is semisimple if and only if $? = id.

Proof. see [2]] O

Corollary 7.3 (Finite dimensional commutative or cocommutative Hopf algebras are semisimple). Let H be a
finite dimensional semisimple Hopf algebra over K.

(1) H is cocommutative if and only if H = K|[G], for some group G.
(2) H is commutative if and only if H = K[G]*, for some group G.

Semisimple Hopf algebras that are commutative or cocommutative are called trivial

8. LECTURE: CONSTRUCTING SEMISIMPLE HOPF ALGEBRAS
This last part is based on my preprint [4]. We will assume char(K) = 0.
Definition 8.1 (Kac-Paljutkin algebra). Hg is the algebra generated by x, y, z over K subject to

Xy = yx, xt=1=y~% Xz =zy, Yz =zx

1
zz=§(1+x+y—xy)

with coalgebra structure given by x and y group-like and
1
A(z):5(1®1+x®1+1®y—x®y)(z®z), e(z) =1, S(z) = z.

Definition 8.2 (Pansera’s algebra). H,,: is the algebra generated by x,y, z over K subject to

Xy = yx, x"=1=y", Xz = zy, yz = zx

/=
22 _ = Z q—l]xlyj ,
n P
i,j=0

where q is a primitive nth root of unity. The coalgebra structure is given by x and y being group-like and

1=
Az) =~ (Z qgx'® y]) (z®2), e(z) =1, S(z) = z.
n\ 4
1,j=0
Proposition 8.3 (Skew-polynomial ring as bialgebra). Let B be an bialgebra, c an automorphism of B and
J € B® B an invertible element. Then the following statements are equivalent:
(a) Blz; 0] is a bialgebra with B a subalgebra and A(z) = J(z ® z), e(z) = 1;
(b) (0,]) is a twisted automorphism, i.e.
(@ (A®id)(NU ®1) = (deA)1e))
(b) (e®id)(J) =1=(d ®€)(J)
(c) A(o(b)) = J (o ® 0)A(b)], for allb € B
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(d) ec =€

Definition 8.4 (Drinfeld twist). An invertible element ] € B ® B is called a Drinfeld twist if

(1) (A@id)(NU®1) =>1de )1 ))
2) (e®id)(J) =1=(id ® €)(J)

Let 3, denote the symmetric group on m letters. The standard generators sy, ..., sp—1 of X, i.e. the transposi-
tions s; = (i,i + 1), generate a free monoid M = (5y,...,5,,—1) that acts on R = B®™, with B = KZ,, and allows
to consider the skew monoid algebra R#M, which in the case m = 2 corresponds to the skew polynomial ring
R[z;0]. The comultiplication of 5; can be defined as A(5;) = Ji(5; ® 5;), for a suitable twist J; € R ® R. Under
further assumptions on these twists J;, we define a Hopf structure on the quotient R#M /I, where I is the ideal
generated by the usual relations of the symmetric group, 5;5i415; = 5i415;5i+1 and 5;5; = 5;5; for [i — j| > 1, but
with 52 = t; := pr(J;), where pig is the multiplication of R. The obtained Hopf algebra H is an extension of KZ,,
by R and can be considered a crossed product R#,,, for a suitable 2-cocycle y : %, x X, — R*. For B = K[Z,]
and K containing a primitive nth root of unity, we provide twists J; that satisfy all our assumptions and yield a
family of semisimple Hopf algebras H,, , = K[Z,]®™#,%,, of dimension n™m!. The original Kac-Paljutkin Hopf
algebra appears as H; ;, while Pansera’s algebras appear as H, 2.

Definition 8.5 (Skew Monoid algebras). Given a ring R and a monoid M, such that there exists a homomorphism
of monoids p : M — End(R) with p(m) being a ring endomorphism of R. Then S = R ® K[M] carries an algebra
structure given by

(a®m)(b ®n) = ap(m)(b) ® mn,

fora,b € R,m,m € M. The algebra S is denoted by R#M and called the skew monoid algebra. We will denote the
action of M on R by ™a =: p(m)(a).

Let B = K[Z,] and q a primitive nth root of unity in K. Set
1 n—1
== ix'®x/ ¢ B®B
J " Z q 'x' ®x ®
i,j=0
then J is a Drinfeld twist of B.
For 1 < i < m consider the embedding /" : B — B®™,

Lemma 8.6. (¢]" ® e]')(J) is a twist for B¥™ @ B®™, forany1<i< j<m.

Theorem 8.7 (Extension by the symmetric group). Letn,m > 1, B = K[Z,], withZ, = (x : x" = 1),q a
primitive nth root of unity and J = % ?J_:lo q x' ® x/. Consider the free monoid M on X = {sy, ..., Sy—1}, where
s; = (i,i + 1) is the transposition in the symmetric group %,,. Set R = B®™.
(1) R#M is a bialgebra with
AG:) = Ji(i ®51), e(:) =1,
for1<i<mand];=(e" ®e")(J).
(2) The ideal I of R#M generated by

_2 _— — o _ L. . .
S; — 1, $iSi+15i — Si+15iSi+1s $iS; —5;5i, vi, j with [i — j| > 1.

is a biideal of R#M.
(3) H = (R#M)/I is a Hopf algebra of dimension dim(R)"n! with Hopf subalgebra R®" and Hopf quotient K3,,.

Furthermore,
(a) {w : w € X} is an R-basis of H;
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(b) there exists a 2-cocycley : %p x Ep — Z(R)* such that H = R#,%,, with multiplication given by
(73) (a#w)(b#0) = ao,(b)y(w, v)#wo.
foralla,b € R and w,v € X, where y(w,v) is a product of elements o,(t;), for someu € 3, and s € X.

(c) e(y(w,v)) =1, forallw,v € %,.
(d) H is semisimple with integral [ Y., s W, where [ is the integral of R.

Proof. See [4]]. O

Example 8.8 (Case m = 3). Let q be a primitive third root of unity. Write x for the generator of B = KZ, and
R = B® = KZ, ® KZ, ® KZ,. Elements of R are linear combinations of monomials xixéxé‘, where x; stands for
X ®1® 1, xp stands for 1 ® x ® 1 and x3 stands for 1 ® 1 ® x. The transpositions s; = (12) and sp = (23) are
generators of X3. Write o; = oy, for the corresponding automorphism of R. The twist ] = zj —o € ® x! forKZ,
yields two twists

n—1 n—1
ij ij
an x1®x2 and an x2®x3
i,j=0 i,j=0
for R. Set z; :=57 and z; :=3; for the generator of the free monoid M = (s1,5;). The Hopf algebra
(74) Hny3 = (R#M)/<Zl t1, 22 b, 212921 — 222122> = (]KZ,I)@)S # 23

has therefore generators xi, x, x3, 21, Zo subject to x;xj = xjx; and x' = 1, for alli, j and
Z1X1 = X221, Z1X2 = X1Z1,  Z21X3 = X321

Z2X1 = X122, szz = X322, Z2X3 = X223

2 . —i 2 _ . —i
212221 = 222122, Zi =1t 1= — Z q fxlxz, Z5 =1y 1= Z q Jx2x3
l] 0 l] =0

While the x; are group-like, we have

1 . e A
N(zy) = (n Z q7x® x{) (z1®z1) A=) = <n Z q ' ®x3 | (22 ® z2).

j=0 i,j=0

H,3 has dimension 6n® and basis {xixgxéfw :0<i,j,l<n we{l, 21,22,2122,2221,212221}} The 2-cocycley is

determined by the multiplication in Hy 3 and given by y(id, w) = y(w,id) = 1, for w € 23, and the following table.
Note that 0105(t;) =ty and o1(t;) = o3(t;) = l ?] 2 q_”xlx3

Y S1 S2 $182 $281 515251
$1 tl 1 t1 1 tl
S2 1 tz 1 tg tz
5182 1 oa(ty) A tioa(t1)  tioa(ty)
s281 | o1(t2) 1 tao1(ts) t2 tao1(t2)
$18251 12 51 tro1(ty) tioa(t) titaoo(ty)

Remark 8.9. We see, that H, ; embeds into H, 5 by sending x, y, z of H, 2 to the corresponding elements x1, x2, z1 in
H, 3. More generally, for n,m > 2, the algebra R = KZ®™ embeds into R’ = KZ2™*! by sending a; ® - ® a,, into
a; ® - ® ap, ® 1p. Similarly, 3, can be considered a subgroup of .11, where we identify the generators sy, ..., Sm—1
with the first m — 1 generators of Zp+1. Hence, if x1, ..., X, denotes the basis of R = KZ®™ and z1, ...,z
the remaining algebra generators of H, », and if x1, ..., x,.; denote the basis of R’ and z1, ..., z},,,, the remaining
generators of Hy 41, then mapping x; to x and z; to z] yields an algebra embedding of Hy n, into Hy 41, which is
also an embedding of Hopf algebras.
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Remark 8.10. Let H = H,,, and w € X,. We claim that the comultiplication of w in H looks like A(w) =
J(w)(W ® W) for an invertible element J(w) € R ® R with e(ur(J(w))) = 1. We will prove this by induction on the
length of the chosen representation w = s;, ... s;, in the generators sy, ... sy—1. Fork = 1, we have w = s;, for some i
and by definition A(z;) = Ji(z; ® z;) forz; =5; and J; = J, = (e]" ® et )(J), which is invertible, since ] is invertible.
Moreover, ur(J;) = ef,,(J) = t; and e(t;) = 1. Now suppose that w = s has length greater than 1, wherev € %,
and there exists J(v) € R ® R such that A(D) = J(v)(T ® U). Then

(75) AWw) = Ji(zi ® z)] ()0 ® V) = JiJ ()" (W @ W),

where we denote by J(w)°i = (0; @ 0;)(J(w)). Setting J(w) = J(siw) = JiJ(@)% proves our claim, since also

prUW)) = tioi(pr(UJ(v))) has counit 1.
Thus, given a subgroup N of X,,, we can consider the Hopf subalgebra of H generated by R and {w : w € N},

which we shall denote by R#,N. Since for any w € N, A(w) = J(w)(w ® W) € (R#,N) ® (R#,N) we conclude that
the subalgebra R# N is a semisimple Hopf subalgebra of H.

Example 8.11. Consider Hy,,, = R#,%,, with generators as above and consider 0, the product of all z{s, i.e.
0 = z1 - zZm—1. Let H be the subalgebra of H,, , generated by R and 0. We claim that H is equal to R#,(s), where

s = (12+-m) is the cycle of length m. Clearly, 0 = s and we claim that 0% = ( s y(si,s)) sk, for2 <k <m,
since inductively, if@k = cksT‘, for some ¢, € R*, then gF+l = cksTVE = cky(sk,s)skﬁ. Thus H = R#/s), as
( ;:11 y(si,s)) € R*. Note that 0™ = ( m ! y(si,s)) =: t € R*. Hence H = R[0;0]/(0™ —t), where ¢ = o5. In
particular, H is generated by xy, ..., X, and 0 subject to 0x; = xy;)0 and 0™ = t. While A(0) = J(s)(0 ® 0), with
J(s) asin Remark Note that 0™ =t s™1, fort = ty(s™1,s)7. Since s™! = s™! we obtain

(76) O =5 =F 2y 21 = 1S(O).

Hence S(0) = t710™1 =t 1y(s™1,5)0™"'. The dimension of H is mn™. For m = 2, we obtain H' = H,,.

APPENDIX A. TENSOR PrRoDUCTS

All vector spaces are considered over K. Denote by Hom(U, V) the set of linear maps from U to V and
End(U) = Hom(U, U). Let {U}ie; be a family of vector spaces. The direct product [],; U; of this family is the
cartesian product of the U;’s equipped with the componentwise addition and scalar multiplication. By definition
the elements of [],¢; U; are functions f : I+ | J;;; U; such that f(i) € U; for any i € I and we will write (x;);er to
represent the function f(i) = x;. For each j € I, there exist projections

Tt HUi—>U' , (%)ier = x;

iel
which yields the isomorphism
(77) Hom(W, H Uu) — H Hom(W, U;)
iel iel
(78) f o= (fda

With this notation we have that the direct sum of the {U;};¢; of all functions that are non-zero just for finitely
many i € I.
@ U; :={(x)ie; | 3F C I such that F is finite and Vi e I \ F : x; = 0}.
i€l
For each j € I, there exist an embedding
€j:Uj— @Ui . x> (6ij%)ier
i€l

which yields the isomorphism
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(79) Hom(@ u,w) — 1_[ Hom(U;, W)
iel i€l
(80) f — (fedia

Amap f : UxV — W is called bilinear if it is additive satisfying
f(Au,v) = f(u, Av) = Af(u,v)

for allu € U,v € V,A € K. The space of bilinear maps from U x V to a third vector space W is denoted by
Bil(U x V,W).

Definition A.1 (Tensor Product). The tensor product of U andV is a pair (T, iy), where T is a vector space and
io : UxV — T is bilinear such that for any vector space W and g € Bil(U x V, W) there exists a unique linear map
h: T — W with g = hi,.

U><V4>g w

In other words the map
Hom(T,W) — Bil(U xV,W) , h > hi,

is a bijection.

Obviously, if a tensor product T exists it is unique up to isomorphisms since for two pairs (T, i) and (T, jp),
there are unique linear maps h : T — T” and ' : T/ — T such that j, = hiy and iy = h’ jo. Thus iy = (h’h)iy and
Jjo = (hh")jy. By the uniqueness of the factorization we get idr = h’h and id» = hh'.

Let F = @, )cu~v Kby, be a vector space with basis by, for all (u,v) € UxV. Define the subspace S generated
by all elements
bu+u’,v - bu,v - bu’,ua

bu,v+v’ - bu,v - bu,v’:

Abu,u - b/lu,m

Abu,u - bu,/h)
for all u,u’ € U,v,0" € V,1 € K. Set T := F/S and denote by u ® v the equivalence class of the element b,
in T. Check that the map iy : U xV — T sending ip(u,v) := u ® v is bilinear. Moreover any bilinear map

g : UxV — W extends to a linear map g : F — W sending b,, — g(u,v). Due to the bilinearity of g, g(S) =0
and hence we have an induced map h : T = F/S — W. Thus

hig(u,v) = h(u ® v) = g(b,,) = gu,v).
The tensor product of U and V is denoted by U ® V. By definition we have the bijection
(81) Hom(U ® V,W) = Bil(U x V,W)

Lemma A.2. LetU,U’,V,V’ be vector spaces and let f : U > U’ and g : V — V’ be linear maps.
(1) there exists a unique map
f®g: UV ->UQV’

with (f ® g)(u ®v) = £(u) ® gv).
(2) if f and g are surjective, then f ® g is surjective and Kerf ® g = Kerf ® V + U ® Kerg.
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Proof. (1) Define f x g : UxV — U’ ® V/ by (u,v) — f(u) ® g(v), which is bilinear. By the universal property
of the tensor product, there exists a unique map f® g : UQV - U’ ® V.
(2)Ifu eKerf andv € Kerg and a € U,b € V are arbitrary, then

(fegu®a+b®v)=0® gla)+ g) ®0 = 0ygy,
soH :=Kerf ® V+U ®Kerg C Kerf ® g. Hence f ® g factors through H, i.e. there exists a (surjective) map
¢ : (UQV)/H - U’ ®V’ such that f ® g = ¢y, where 7y is the canonical projection. Define now a map from
U'®V’' — (U®V)/H as follows. For each pair (x,y) € U’ x V’ choose a pair (u,v) € U x V such that f(u) = x

and g(v) = y and define the map ¢ : U’ xV/ — (U ® V)/H by ¥/(x,y) = u ® v + H. This map is independent
from the choice we made, because if (uz, v;) is another pair such that f(u,) = x and g(v,) = y, then

URV—u, Qv =(U—u)) Qv+ u, ® (v—vy) €H

since f(u —uy) = 0 and g(v — v2) = 0. Since this map is bilinear, by the universal property of the tensor
product, there exists a (unique) map ¢ : U’ ® V/ — (U ® V)/H. This map satisfies 7y = ¢(f ® g). Thus
Kerf ® g C Kernyg = H.

O

Proposition A.3. Let U,V,W wvector spaces and (U;)ier and (V;);e; be families of vector spaces.
(1) Hom(U ® V,W) = Hom(U, Hom(V,W)) by f = [u— [v — f(u®v)]].
@2 URV)OW=U® VW) with(u®v)®wr u® (v ® W).
(3) tyy UV =VRUWwithu®v—vQu
(4) (Bt Ui) ®V = Py (Ui ® V) with (u)ier ® v > (i ® 0)jer
(5) Kx U =U withAx @ u — Au.
(6) If X and Y are bases for U andV resp., then{x ® y | (x,y) € X xY} is a basis forU ® V. In particular
dim(U ® V) = dim(U) dim(V).

Proof. We leave (1-3) to the reader.
For (4) we get for all j € I and projections 7; : &D;; Ui — U; using Lemma [A.2|the homomorphisms

(;®1) : <@Ui>®V—>Uj®V.

i€l

Using the inclusions €; : U; ® V — @,;¢;(U; ® V) we have a linear map

Y eam®l : <@U> ®V - Puiev)
i€l il i€l
sending (u;)ier ® v to (u; ® v)jer.

For (6) we use (5) and (4) to show that if U = (P,cx Kx and V = P,y Ky then

(82) U®V:<@1Kx>®V:@(]Kx@V):@@(JKx@]Ky):]KXXY

x€X x€X x€X yeY
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