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The revision of the 1995 land cover dataset for the Vale do Sousa region, in the

northwest of Portugal, was carried out by supervised classification of a multi-

spectral image from the Advanced Spaceborne Thermal Emission and

Reflectance Radiometer (ASTER) sensor. The nine reflective bands of ASTER

were used, covering the spectral range from 0.52–2.43 mm. The image was initially

ortho-rectified and segmented into 51 186 objects, with an average object size of

135 pixels (about 3 ha). A total of 582 of these objects were identified for training

nine land cover classes. The image was classified using an algorithm based on

a fuzzy classifier, Support Vector Machines (SVM), K Nearest Neighbours

(K-NN) and a Logistic Discrimination (LD) classifier. The results from the

classification were evaluated using a set of 277 validation sites, independently

gathered. The overall accuracy was 44.6% for the fuzzy classifier, 70.5% for the

SVM, 60.9% for the K-NN and 72.2% for the LD classifier. The difficulty in

discriminating between some of the forest land cover classes was examined by

separability analysis and unsupervised classification with hierarchical clustering.

The forest classes were found to overlap in the multi-spectral space defined by the

nine ASTER bands used.

1. Introduction

Up-to-date knowledge of land use and land cover is an important tool for the

various planning authorities with responsibilities for the management of territory at

a regional level. This is particularly true for forest planners, as forests have a

considerably higher temporal variability. This variability can be due to normal
events, such as re-forestation and vegetation growth, or due to external causes, such

as forest fires. The forest fires can be natural events or caused by human activities.

Remote sensing data can be a valuable tool for an efficient update of land cover/

land use maps. This is in fact one of the most common uses of multi-spectral satellite

images. For this type of application, the spatial resolution of the sensor is an

important parameter with direct implications on the scale of the derived maps. For

scales in the range 1 : 25 000 to 1 : 50 000, a satellite image with a pixel size of about

15–30 m is adequate. There are numerous examples of land cover maps derived from
multi-spectral satellite images from Landsat Thematic Mapper (TM) (Laba et al.

1997, Colby and Keating 1998) and Satellite pour l’Observation de la Terre (SPOT)

High Resolution Visible (HRV) (Gao and Skillcorn 1998). Both these sensors have

been providing high spatial resolution multi-spectral data for nearly 20 years. More
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recently, the Advanced Spaceborne Thermal Emission and Reflectance Radiometer

(ASTER) sensor has become a valuable alternative, with an increased spatial and

spectral resolution. The costs involved in using satellite images for land cover

updates have been greatly reduced in the last few years, due to changes in data

distribution policies and the developments in image processing equipment, both in

hardware and software. However, the production of accurate and meaningful land

cover maps is still a laborious task, mainly due to the need for identification of the

actual land cover in selected locations in the field.

The land cover maps produced from the satellite imagery are usually imported

into a Geographic Information System (GIS). One of the problems encountered in

this process has to do with the pixel resolution of the satellite image, which is not a

natural representation of the terrain. The most used approach is to classify each

image pixel as an independent observation, regardless of its spatial context. A

hardwoods forest parcel for example might have most of its pixels assigned to that

class, but a few pine trees might result in a number of pixels in that parcel assigned

to a different class. This is not a satisfactory result for the end user point of view. As

a consequence, land cover maps produced from satellite image classification need

to be extensively edited before they can be imported into a GIS. An alternative

approach to the usual pixel-by-pixel classification is to perform image segmentation.

The term segment refers to a cluster of adjacent pixels that represent a meaningful

object on the terrain, from the user point of view (Geneletti and Gorte 2003). The

multi-spectral image is first segmented into a set of objects that are then classified

according to their average signal in each of the spectral bands.

The objective of this work was to test the ability of a number of supervised

classification methods on a real situation, where the conditions are actually not very

favourable. Another objective was to produce updated land cover maps for the Vale

do Sousa region from ASTER data segmented into objects. An evaluation of the

performance of each of the classification methods used was carried out using a set of

validation sites. An evaluation of the similarities between the spectral signatures of

the land cover classes was also performed, using hierarchical clustering techniques

on unsupervised classification data.

2. Study area and datasets

2.1 The study area

The Vale do Sousa region (River Sousa valley) is located in northwest Portugal, and

is crossed by the rivers Sousa and Douro in the south (figure 1). The region has an

area of 764 km2 (about 300 square miles) and ground altitudes ranging from 100 to

800 m above sea level. About two thirds of the region is covered by forests or

uncultivated soil. The uncultivated areas are mainly due to the numerous forest

fires. The main forest types are eucalyptus and areas with mixed eucalyptus and

pine (CNIG 1990). There is also agricultural and many small urban areas. The land

use is generally small private fields (5 ha or less) with the forest areas in much

larger portions of the land. The existing land cover dataset was produced by

photointerpretation in 1995. On this land cover dataset only areas above 0.5 ha were

classified. This dataset was out-of-date and not very reliable. The production of an

updated land cover dataset is helpful for forest planning, allowing, for example, for
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the detection of burned areas and the subsequent undesirable spread of species like

eucalyptus.

2.2 ASTER data selection and acquisition

The ASTER sensor provides multi-spectral images of the Earth with each image

granule covering roughly 60 km by 60 km on the ground. The ASTER images have

14 spectral bands, three in the visible and near-infrared (VNIR instrument, 0.52–

0.86 mm), six in the short-wave infrared (SWIR instrument, 1.60–2.43 mm) and five in

the thermal infrared (TIR instrument, 8.12–11.65 mm) (Yamaguchi et al. 1998). The

spatial resolution is 15 m (VNIR), 30 m (SWIR) and 90 m (TIR). Two ASTER

image granules were collected, covering the north (Path 205, Row 90, ID 408566)

and south (Path 205, Row 91, ID 408567) of the interest area. These two image

granules were acquired consecutively, at 11:42, 24 October 2001, with a view angle

of 7u. Both images are nearly 100% cloud free and combined provide complete

coverage of the whole Vale do Sousa region. Only the VNIR and SWIR image

bands were used, as the TIR data has a much lower spatial resolution and should

not provide useful information about vegetation cover.

Figure 1. Location of the Vale do Sousa region in the northwest of Portugal. The detached
area is 30.9 km by 50.1 km, and shows an RGB colour composite (bands 2/3/1) of the ASTER
mosaic file used; 24 October 2001, 11:42.
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2.3 Geometric correction of the ASTER data

A grid of reference points with latitude and longitude is provided on the header files

of ASTER data Level 1B. The accuracy of an image transformation based on these

reference points was evaluated. It was verified that an image rectification based on

these points alone is reasonably accurate for flat areas, except for a small offset that

can be easily fixed. However, in mountainous areas, such as the Vale do Sousa

region, the incorporation of an elevation model is required for the establishment

of an accurate geometric correction function—ortho-rectification. The ortho-

rectification of satellite images is a similar process to that applied to aerial photo-

graphs to produce ortho-photographs. The OrthoEngine Satellite Edition software

from PCI-Geomatics was used (PCI Geomatics 2000). Ground Control Points

(GCPs) were identified on each original ASTER image using 1 : 25 000 raster maps

(IGEOE 1998). A total of 11 GCPs were identified on the image ‘north’ and 10 GCPs

on the image ‘south’. The mean residual errors for a 2nd order model were 0.54/0.53

(‘north’) and 0.37/0.29 (‘south’), in pixel units. A Digital Elevation Model (DEM) of

the area with a 25-m grid was used. Each image was ortho-rectified into a 15-m pixel

geo-reference image file. Vector data with the roads network was also available,

derived from the 1 : 25 000 raster maps. Overlaying the road vector data tested the

accuracy of the ortho-rectified images. The differences between the roads on the

vector and image data were below or about the same size as the pixel.

The two ortho-rectified ASTER images were combined into a single multichannel

image file of 2060 by 3340 15-m pixels (30.9 km by 50.1 km), covering the whole of

the Vale do Sousa region. Data from the nine bands of the VNIR and SWIR

instruments were used, stored in this file with a 15 m615 m pixel. The ‘mosaic’

ASTER image is totally cloud free, although there are some non-observed areas

outside the Vale do Sousa region. About three quarters of the interest area was

provided by the ‘north’ image. Figure 1 shows an RGB colour composite of the

‘mosaic’ image.

2.4 Image segmentation into objects

The segmentation of an image allows for groups of pixels to be considered as a

single unit, or an object, within the image. The image segmentation was performed

using eCognition software (Baatz et al. 2001). This multi-resolution segmentation is

a bottom-up two region-merging technique starting with one-pixel objects. In

numerous subsequent steps, smaller image objects are merged into bigger ones.

Throughout this pairwise clustering process, the underlying optimization procedure

minimizes the weighted heterogeneity nh of resulting image objects, where n is the

size of a segment and h an arbitrary definition of heterogeneity. In each step, that

pair of adjacent image objects is merged which stands for the smallest growth of the

defined heterogeneity. If the smallest growth exceeds the threshold defined by the

scale parameter, the process stops. Doing so, multi-resolution segmentation is a

local optimization procedure.

There are three criteria for heterogeneity, and they can be applied in a mixed

form. The first criterion has to do with spectral or colour heterogeneity, the second

and the third ones have to do with spatial heterogeneity. It is useful to mix these

criteria in order to avoid a fractal shaping of objects. The scale parameter is a

measure of the maximum change in heterogeneity that may occur when merging two

image objects. Internally, this value is squared and serves as the threshold that
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terminates the segmentation algorithm. When the merger of a pair of image objects

is examined, a fusion value between those objects is calculated and compared to the

squared scale parameter. Throughout the segmentation procedure, the whole image

is segmented and image objects are generated based upon several adjustable criteria

of homogeneity or heterogeneity in colour and shape. Adjusting the so-called scale

parameter indirectly influences the average object size: a larger value leads to bigger

objects and vice versa. Additionally the influence of shape as well as the image’s

channels on the object’s homogeneity can be adjusted. During the segmentation

process all generated image objects are linked to each other automatically.

A set of segmentation parameters was established after visual inspection of a

number of segmented images with different parameters, and prior knowledge of the

study area. The ASTER bands 1, 2 and 3 were given a weighting factor of 1 and the

remaining bands were given a weighting factor of 0.1. These values were chosen to

account for the different spatial resolution of the VNIR and SWIR images. The

eCognition software was used to produce segmented images with five different

levels, hierarchically structured. Figure 2 shows a section of the segmented image at

levels 1 (top), 3 (middle) and 5 (bottom) overlaid on a RGB colour composite of the

ASTER VNIR bands (R:3/2, G:1/2, B:1; 3/2 means the average of bands 3 and 2).

The whole image was segmented into a total of 51 186 objects in level 1, with an

average size of 135 pixels, that is about 30 000 m2 or 3 ha. The level 2 segmentation

produced 14 133 objects, with an average size of 487 pixels (11 ha). The segmentation

levels 3, 4 and 5 produced 4857, 2269 and 651 objects, with an average object size of

1417 pixels (32 ha), 3032 pixels (68 ha), 10 569 pixels (238 ha). Taking into account

the size of the forest areas and small parcelling of land in this part of the country,

segmentation levels 1 and 2 should be the most appropriate.

2.5 Land cover classes

The land cover classes were chosen according to the Portuguese national forest

inventory (Tomé et al. 2002). A total of six main classes are used: AG, Agriculture;

FL, Forest; IC, Uncultivated; IP, Non-productive; SC, Urban/Residential; HH,

Water. The class Agriculture is divided into five sub-classes and the class Forest is

divided into 13 sub-classes. For the purpose of the study and for the study area, a

different set of land cover classes was thought to be more adequate. A new class was

added: ‘Burned areas’ (FG). The class ‘Forest’ was divided into only four subclasses

and the class IC used here also includes non-productive areas. A total of nine land

cover classes were therefore considered. Figure 3 shows a sample photograph for

each land cover class. A short description of these classes is presented in table 1. A

void class was also used, to account for those pixels that were not observed in any of

the two ASTER images (black areas in the RGB image of figure 1).

2.5.1 Training areas. Training areas were identified on the segmented image at

level 1. In an initial stage, the existing land cover vector dataset, produced by air-

photograph interpretation in 1995, was used. The polygons from this dataset that

matched the segmented image polygons by at least 75% were selected as candidates

for training. Ground surveys were then made to confirm the land cover of some of

these objects. For practical reasons the training areas were chosen in two areas, one

located in the southwest and the other on the northeast of the Vale do Sousa region.

A total of 582 objects were identified for training. Table 1 shows the average size and

number of objects used for training each class. Unfortunately only a small number
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Figure 2. Section of the segmented image at levels 1 (a), 3 (b) and 5 (c), overlaid on a RGB
colour composite of ASTER VNIR bands (R:3/2, G:1/2, B:1; 3/2 means the average of bands
3 and 2).
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of objects were available for some of the classes, because some types of land cover

appear sparsely in the study area.

2.5.2 Validation sites. An inspection of the existing cartography showed that the

class ‘Water’ identified on the classified image perfectly matches the existing rivers

on the Vale do Sousa region. However, the existing cartography was inadequate for

the evaluation of the classification results for all other land cover classes. A number

of independent test sites (point locations) were selected on the image. These sites

were chosen in two areas of the Vale do Sousa region by applying a rectangular grid

with intervals of around 800 m. In a first stage 176 sites were selected, all assigned to

one of the forest classes on the 1995 land cover survey. In a second stage 101 sites

were randomly selected, following the relative distribution of each land cover class.

Figure 3. Photographs illustrating the nine land cover classes used: SC, Urban/residential;
HH, Water; FG, Burned areas; FlEc, Forest/Eucalyptus; Flmix, Forest/mixed; FlFd, Forest/
hardwoods; FlPb, Forest/Pinus; IC, Uncultivated/non-productive; AG, Agriculture.
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A total of 277 test sites were used for validation. This set of sites provides a uniform

distribution for the land cover classes, except for the forest areas that were over

sampled. The land cover of each of these sites was obtained by field surveys carried

out in 2002. The time gap between the satellite image acquisition and the field

surveys carried for validation were between a few months and one year. This time

gap might be responsible for a few wrong site attributions, mainly due to forest fires

occurring in 2002.

3. Methods

A total of four supervised classification methods were used: an algorithm based on a

fuzzy classifier, Support Vector Machines (SVM), K Nearest Neighbours (K-NN)

and a Logistic Discrimination classifier (LD).

3.1 Fuzzy classifier

The eCognition software uses a supervised classification algorithm based on fuzzy

logic (Baatz et al. 2001). A given object is assigned a probability value (pi) to belong

to class i. The probability value is computed by membership functions, which can be

defined manually or automatically on eCognition software (Baatz et al. 2001). The

membership functions used were defined automatically, based exclusively on the

training data. The object will have information about the three classes most likely to

belong to (i1st, i2nd, i3rd) and the corresponding probability values (p1st, p2nd, p3rd).

The class assigned will be that with highest probability. The value of p1st is one

indication of the reliability of the classification. Another and perhaps more

consistent indicator is the stability measure, Dp5p1st2p2nd. In the best-case scenario

we would have p1st51 and pi50 for all the other classes (i?i1st). That would result in

a categorical choice of the object class and the value for Dp would be 1. On the

opposite case we would have p1st5p2nd and that would result in Dp50. Although this

is a good concept, the end user is usually interested in a single class assignment for

each object, and often only the highest scoring class is in fact used.

3.2 Support Vector Machines

The Support Vector Machine (SVM) classifier is an extension to the optimum

margin algorithm. This extension is made by mapping the input space, X, into

Table 1. Land cover classes, number of objects and average object size (ha) for the training
areas of each class.

Class
identification Class label Class description

No. of
objects

Average size
(ha)

1 SC Urban/residential areas 222 1.9
2 HH Water 13 15.5
3 FG Burned areas 65 3.4
4 FlEc Forest—Eucalyptus 35 6.4
5 Flmix Forest—mixed 70 5.8
6 FlFd Forest—hardwoods 12 2.6
7 FlPb Forest—Pinus 16 4.3
8 IC Uncultivated/non-productive 58 5.6
9 AG Agricultural areas 91 3.6
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another one of higher dimension (eventually infinite): the feature space H (Vapnik

1998).

Consider the training set as {(xi, yi); xi g RP; yi g {21, 1}, i51, …, 1}. The

optimum margin algorithm searches for a linear boundary given by a hyper plane

w ? x + b50 that separates the two classes. In this way, the decision function is given

by f(x)5w ? x + b. The separating hyperplane is the one that maximizes the margin

between the two classes. The solution can be achieved by solving the convex
optimization problem:

min wk k2

subject to yi w : xizbð Þ¢1, i~1, . . . , l
ð1Þ

Using Lagrange Multipliers ai to solve this problem, the decision function is given

by

f xð Þ~sign
X

i~1, ..., 1

aiyi xi
: xð Þzb

 !
ð2Þ

To build a SVM, we need to define a feature space H, with higher dimension than

X. To do so, we need a function w: X R H that maps the initial space X into H. This

mapping will lead us to a higher space H where it will be possible to apply the

optimum margin algorithm to get a linear classifier. The separating hyperplane in H

will thus be given by:
X

i~1, ..., 1

aiyi w xið Þ:w xð Þð ÞzbÞ~0 ð3Þ

By using a kernel function K(x, y), such that K(x, y)5w(x)w(y), the linear boundary
on H will correspond to a nonlinear one in input space X. Doing this, we do not

need to specify the space H nor the mapping w(x). The decision function in the input

space is given by:

f xð Þ~sign
X

i~1, ..., 1

aiyiK xi, xð Þzb

 !
ð4Þ

The most commonly used kernels to build SVM for classification are the Gaussian,

K(x, y)5e2%x2y%2/2s2

and polynomial K(x, y)5(cxy + b)p kernels.

For each classification problem, the user must choose a kernel function and the
associated parameters. This choice is crucial for the accuracy of the final

classification. In principal, SVMs can only solve binary classification problems.

One commonly used technique that allows for multi-class classification is the one-

against-one method. This method fits a total of k(k 2 1)/2 binary sub-classifiers and

finds the correct class by a voting mechanism. The one-against-all method is an

alternative approach, in which k SVM models are constructed. The ith SVM is

trained with all members of i having positive labels, and all remaining members

having negative labels. The one-against-one method was used here, as it has been
shown that it performs better than the one-against-all method (Platt et al. 2000).

3.3 K Nearest Neighbours classifier

The K Nearest Neighbours (K-NN) classifier is a simple, well known method

frequently used in various types of classification problems. Nonparametric K-NN
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algorithms have been used to produce estimates of various forest parameters over

large areas in Sweden, using optical satellite data (Reese et al. 2002, Tomppo et al.

2002). The K-NN classifier does not require the fitting of a model, it is a memory-

based method (Fukunaga 1990). Given a new observation to be classified, x0, this

algorithm finds the K closest observations in distance to x0. The set of K closest

observations in distance are the K nearest neighbours. The class most frequent in the

set of the K nearest neighbours is the one to be assigned to the observation x0. The

Euclidean distance is used to measure the proximity of the observations. Each time a

new object is classified, the K-NN classifier needs to compute the distance of that

object to all other objects in the training set. This requires that all objects are stored

in memory, while other methods only need to have the training set available in

memory to build the classifier. The training objects are usually no longer required

once the classifier is established. This is therefore a disadvantage of the K-NN

classifier.

3.4 Logistic discrimination classifier

The classification performed by logistic discrimination methodology is based on

Bayes rule, this means that posterior probabilities, P(Class5k|X5x), are needed

(Hastie et al. 2001). The model estimates posterior probabilities of the C classes via

linear functions in x (vector in the feature space), ensuring that they sum up to 1,

and are kept within the range 0 to 1. The model is then specified in terms of K21

logit transformations. This leads to the following estimators:

P Class~k X~xjð Þ~ exp b0zbkxð Þ
1z

P
i~1, ..., C{1

exp bi0zbikxð Þ , k~1, . . . , C{1 ð5Þ

P Class~C X~xjð Þ~ 1

1z
P

i~1, ..., C{1

exp bi0zbikxð Þ ð6Þ

The rule is assign to x0 (new observation) the class k that maximizes the posterior

probability P(Class5k|X5x0). To achieve the maximizing probability, the coeffi-

cients bk are determined by maximum likelihood method. As a consequence, the

user does not need to define any values for the parameters.

3.5 Jeffries-Matusita distance

The Jeffries-Matusita (J-M) distance is a good indicator of the separability between

classes often used. The J-M distance between a pair of probability distributions

(spectral classes) converges asymptotically to 2.0 as a function of the distance

between class means (Richards and Jia 1999). In general, the larger the separability

values between classes, the better the classification results should be. As a commonly

used rule, the separability between two classes is considered good when the J-M

distance is above 1.90. Two classes are considered to be very poorly separated when

the J-M distance is below 1.0 (Richards and Jia 1999).

4. Results and discussion

The segmented ASTER image was classified using the 582 objects as training for the

nine land cover classes (table 1). A total of 19 features were used—the mean and
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standard deviation values from ASTER bands 1–9, and an additional feature with

the object density (related with its shape). These features were exported from the

eCognition software for all 51 186 objects. The K-NN, LD and SVM classifiers were

implemented using R project software (http://www.r-project.org/). The K value was

set to 4 for the K-NN classifier, as this was the value in the range 2 to 200 that

minimized the error estimate. The fuzzy classifier was implemented on eCognition.

A section of the classified image by the fuzzy classifier is presented in figure 4,

together with a number of validation sites (numbered black dots).

4.1 Image classification results

An evaluation of the classification methods was performed for the SVM, K-NN and

LD methods using a cross validation technique. These classifiers were applied using

90% of the training objects, and the remaining 10% were used for validation

purposes. This process was repeated 10 times, changing the subset of the training

areas selected for validation. The overall accuracy of the cross validation was 81.8%

for SVM and 79.7% for K-NN and 82.8% for LD.

An efficient projection method to reduce the dimensionality of the data is the

canonical variates transformation. The canonical variates are the variables resulting

from the linear discriminant analysis developed by Fisher (Hastie et al. 2001). A

canonical variates transformation was applied to the original dataset in order to

improve the classification results achieved by the SVM, K-NN and LD methods.

Figure 4. Section of the classified image (fuzzy method) with several validation sites (black
dots with a numeric identifier).
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After the canonical variates transformation, the cross validation results were

improved to 85.4% for SVM, 84.0% for K-NN and 84.0% for LD.

The classification results were also evaluated using 277 validation sites, obtained

independently of the training areas. The percentage of correctly classified sites for

each land cover class is presented in table 2 for each of the four methods used. The

last line on this table is the average accuracy for all the validation sites. A perhaps

more statistically meaningful average accuracy could be obtained using the relative

incidence of each land cover class used. However, as the main concern of this work

was to classify different types of forest, a decision was made to over sample these

classes in the validation process. The average accuracy would nevertheless be

improved if this over sample was not used, as the classification results are generally

worst for all of the forest classes. Overall, the fuzzy classifier is the worst performer

with only 44.6% of the sites correctly classified. The K-NN method classified 60.9%

of the sites accurately. The best methods were the SVM (70.9% sites correct) and LD

classifiers (72.2% sites correct). The results obtained were somehow disappointing.

In a related work, Zhu and Blumberg (2002) reported a classification accuracy of

nearly 90% using a SVM classifier on an ASTER image. However, only six classes

were considered for the urban area of that study and the classes were likely to be

spectrally more diverse than those considered here.

4.2 Evaluation of the spectral signature of land cover classes

The poor results from the classification methods are probably linked with a

difficulty in separating the spectral signal of the various classes. The J-M distance

was computed for the nine classes using the training areas, with the results presented

in table 3. As expected, the separability between ‘Water’ (HH) and all the other

classes is excellent. The class ‘Burned’ (FG) is also well separated from most classes.

The classes IC and SC are reasonably separated from each other, as is SC and the

four forest classes. The main problems occur between the various forest classes and

between these and IC.

A less common investigation on the spectral similarities between classes was

carried out. An unsupervised classification algorithm was applied to the ASTER

image on a pixel-by-pixel basis. The algorithm used is based, with minor

modifications, on the ISODATA method (Tou and Gonzalez 1974). The

ISODATA method is similar in principle to the K-means procedure in the sense

Table 2. Summary of the evaluation of the classification results. Percentage of correctly
classified validation sites for each method—Fuzzy classifier, Support Vector Machine (SVM),

K Nearest Neighbours classifier (K-NN) and Logistic Discrimination classifier (LD).

Class No. of sites Fuzzy SVM K-NN LD

1. SC 36 56% 81% 75% 75%
2. HH 1 100% 100% 100% 100%
3. FG 3 100% 66% 66% 66%
4. FlEc 79 34% 77% 44% 68%
5. Flmix 88 48% 55% 71% 74%
6. FlFd 4 50% 50% 0% 25%
7. FlPb 15 7% 62% 18% 68%
8. IC 20 55% 88% 73% 73%
9. AG 31 52% 81% 74% 81%

Total 277 44.6% 70.5% 60.9% 72.2%
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that cluster centres are iteratively determined sampled means. Unlike the latter

algorithm, however, ISODATA represents a fairly comprehensive set of additional

heuristic procedures that have been incorporated into an interactive scheme (PCI

Geomatics 2001), allowing, for example, for the number of clusters to vary between

a predefined range. The ISODATA classifier was run using PCI software (PCI

Geomatics 2001). The process converged after 147 iterations, resulting in 33 classes.

These classes can be thought of as probability density clusters in the 9-dimensional

multi-spectral space. Ideally each one of the classes characterized in the training

areas would correspond to one of these clusters, or perhaps more than one cluster

close together in the multi-spectral space.

A comparison between the nine land cover classes and the clusters from the

unsupervised classification was carried out to evaluate the spectral similarity

between classes. The 33 clusters were structured hierarchically according to their

relative distance in the multi-spectral space (Duda et al. 2001). Figure 5 shows the

hierarchical tree for 25 clusters, labelled A to Y. The cluster X is an aggregation of

four original clusters, all related to non-observed areas of the image. The reason that

non-observed pixels were assigned four different clusters has to do with slightly

different coverage by the VNIR and SWIR instruments. Another seven clusters

Table 3. Jeffries-Matusita distance (dJ-M) between the land cover classes.

dJ-M SC HH FG FlEc Flmix FlFd FlPb IC

HH 2.00
FG 1.68 2.00
FlEc 1.95 2.00 1.95
Flmix 1.89 2.00 1.88 0.42
FlFd 1.85 2.00 1.91 1.25 0.84
FlPb 1.90 2.00 1.82 1.49 1.02 1.63
IC 1.82 2.00 1.75 1.40 0.96 1.06 1.36
AG 1.57 2.00 1.91 1.92 1.74 1.58 1.88 1.71

Figure 5. Hierarchical structure of clusters identified by unsupervised classification and
correspondence between these clusters and the land cover classes searched for, according to
the training areas.
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from the original 33 were aggregated into clusters W and Y, as the number of pixels

from the training areas in these clusters was negligible. Figure 5 also shows the

correspondence between the land cover classes, based on the training areas, and

the clusters identified by the unsupervised classification. For example, 8790 of the

8936 pixels (98.4%) identified as ‘Water’ in training belong to cluster I. This is

represented in figure 5 in blue with a solid square (90–100%). The class ‘Water’ is

very well defined in the multi-spectral space, not only because it is mostly associated

with a single cluster, but also because this cluster only merges with others at a high

level in the hierarchy tree. Another example of a class spectrally well defined is

‘Agricultural’ (AG). Most of the pixels identified in this class in training (74.4%)

belong not to one but to four different clusters (O, P, Q and R). However, these

clusters merge together before they mix with other classes, as can be easily seen in

the hierarchical tree.

An example of a class poorly characterized spectrally is ‘Burned areas’ (FG). Over

91% of the pixels from the training of this class belong to four clusters (B, F, G and

M), but, unlike ‘Agricultural’, these clusters are far apart in the hierarchical tree. In

order to have them all merged together an aggregation of 18 clusters would have to

be done. Furthermore, cluster B is shared with several other classes.

As shown in figure 5, the forest classes are reasonably well defined in the multi-

spectral space, but the problem with these classes is that they share areas (and

clusters) in the multi-spectral space. This analysis shows that it is almost impossible

to properly discriminate objects in the various forest classes. This is consistent both

with the ground validation results and the analysis of the J-M distance between

classes.

5. Conclusions

The wider availability of high quality multi-spectral satellite images, such as

ASTER, should allow for more frequent updates of land cover maps, at reduced

costs. The accuracy of these maps is nevertheless dependent on ground truth data,

which is a time consuming task. One of the problems in importing satellite derived

land cover maps into a GIS is the fixed pixel resolution of the images. The

segmentation of an image into a set of objects should provide a more realistic

result, from the end user perspective, than treating pixels as individual observa-

tions independently from their neighbourhood. Furthermore, some of the most

sophisticated classifiers (such as SVM) are very intensive computationally and are

not applicable on a pixel-by-pixel basis on very large multi-spectral images. The data

reduction achieved by the initial image segmentation is therefore a crucial stage in

order for those classifiers to be used.

A practical application of object based supervised classification for land cover

update was undertaken on an ASTER satellite image. The land cover classes

searched for and the characteristics of the Vale do Sousa region were a major test for

the classification methods. The classification accuracy was checked by cross

validation analysis and by a total of 277 validation sites obtained from independent

field surveys.

The Support Vector Machines (SVM) and Logistic Discrimination (LD)

classifiers provided the best results, both with over 70% of the validation sites

accurately classified. SVMs are a very powerful technique for classification. The

main problem with this method is the choice of the right parameters. We carried

out extensive experimentation in order to estimate the parameters for the SVM,

1360 A. R. S. Marçal et al.



which resulted in a low classification error. Logistic Discrimination (LD) is a linear

method of classification, which makes weaker assumptions than Linear Dis-

criminant Analysis. This means that for a large class of problems, this method

provides either the best classifier or close to best. This is probably the case for our

recognition problem, as the results obtained with LD were good. The K Nearest

Neighbours (K-NN) only classified 60.9% of sites accurately and the fuzzy classifiers

performed even worst (44.6%). The results would have been slightly better if the

relative incidence of each land cover class in the region was used for the selection of

validation sites.

The land cover classes with different forest types were found to be difficult to

discriminate between. The main reason for this was the spectral similarity between

these classes, according to the analysis performed on the training data. The

unsupervised classification with hierarchical clustering showed that most classes

were composed of several clusters in the multi-spectral space, and that some of the

classes shared the same clusters. This analysis proved quite effective in identifying

the possible limitations in the land cover classification with this specific dataset.
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Geográfica, Lisboa, Portugal.

COLBY, J.D. and KEATING, P.L., 1998, Land cover classification using Landsat TM imagery

in the Tropical Highlands: the influence of anisotropic reflectance. International

Journal of Remote Sensing, 19, pp. 1479–1500.

DUDA, R.O., HART, P.E. and STORK, D.G., 2001, Pattern Classification, 2nd edn (New York:

John Wiley and Sons).

FUKUNAGA, K., 1990, Introduction to Statistical Pattern Recognition, 2nd edn (New York:

Academic Press).

GAO, J. and SKILLCORN, D., 1998, Capability of SPOT XS data in producing detailed land

cover maps at the urban-rural periphery. International Journal of Remote Sensing, 19,

pp. 2877–2891.

GENELETTI, D. and GORTE, B.G.H., 2003, A method for object-oriented land cover

classification combining Landsat TM data and aerial photographs. International

Journal of Remote Sensing, 24, pp. 1273–1286.

HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J., 2001, The Elements of Statistical Learning:

Data Mining, Inference, and Prediction (Berlin: Springer Verlag).
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