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Abstract. An attempt has been made to assess the e� ciency of image data
compression by wavelet transform encoding using National Oceanic and
Atmospheric Administration (NOAA) Advanced Very High Resolution
Radiometer (AVHRR) images. Raw and derived images were compressed to
various levels and a number of parameters in the decompressed images compared
with those obtained using raw data as a yardstick against which to measure the
loss of information due to compression. Unsupervised classi� cation, Normalized
Di� erence Vegetation Index (NDVI) values and brightness temperatures appeared
to su� er little degradation and only for fractal dimensions was there signi� cant
loss of integrity at compressionrates of up to a factor of 32. The general conclusion
from a visual inspection of the e� ect of such compressions on arti� cially
generated geometrical imagettes con� rms the e� ectiveness of this method of
compression.

1. Introduction
Compression of remotely sensed data is attracting increased attention as modern

instruments (the Synthetic Aperture Radar (SAR) and the new generation of hyper-
spectral high-resolution scanners for example) produce increasingly large volumes of
data which have to be transmitted back to Earth. Even the analysis of standard
multitemporal and multisensor remotely sensed data is often hindered by the limited
memory and hard disk capacity of computers because of the enormous amounts of
data that have to be handled. Investigations involving large volumes of remotely
sensed data in, for example, a Geographic Information System (GIS) therefore
depend on further developments of data compression techniques. It is within this
framework that this investigation of data compression techniques based on the
wavelet transform to compress remotely sensed datasets at high compression ratios
whilst still preserving their geo-scienti� c value was undertaken.

Operational image processing software permits the use of various data compres-
sion techniques for raster data, for example, run length encoding which is suitable
for homogenous features like classi� cations and vectorization of nominal scaled
raster data. A common factor in the above methods is that the compression causes
no loss of information—they are thus called lossless methods. However, for many
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remote sensing raster datasets, no signi� cant reduction of the amount of data can

be achieved by these lossless methods because of the complex content of the images.

Many more possibilities for compression are available if a partial loss of information
is accepted when so called lossy methods can be used. A reduction in radiometric

resolution of data, e.g. the reduction of 16-bit data to 8-bit data, or a reduction of

the spatial resolution employing a subsampling algorithm, are easy ways to reduce

data volumes. The problems are obvious—even small reduction rates can cause

great loss of information.

More sophisticated methods include compression methods based on vector

quantization (Gersho and Gray 1991 ), fractal image compression (Fisher 1994 ) or

transform coding techniques, for example the JPEG coder of the Joint Photo-
graphic Experts Group that has been an ISO Standard since 1992 (see e.g. Gonzalez

and Woods 1992 ). In the same way that lossless methods may be used, any lossy

method can also be used within remote sensing applications. Some of these methods,

however, produce block structured artefacts in the compressed imagery (Triebfürst

et al. 1996 ). Consequently these methods should not be used unless their e� ects on

the geo-scienti� c content is fully understood. A central problem in remote sensing

technology, therefore, is to test the suitability of the various data compression
techniques for di� erent types of applications. In this context we evaluated the

suitability of wavelet compression as a special kind of transform coding based on

the wavelet transform and the subsequent compression by bitplane coding with the

zerotree method (Shapiro 1993 ) for the storage and classi� cation of Advanced Very

High Resolution Radiometer (AVHRR) data from the National Oceanographic and

Atmospheric Administration (NOAA) meteorological satellites. Other lossy com-

pression techniques, such as fractal compression and vector quantization, are not
considered here. The interested reader may � nd these methods referred to in works

by Fisher (1994 ), Saupe and Hamzoui (1994 ) and Gersho and Gray (1991 ).

The use of wavelet encoding for data compression has recently been compared

with a fractal encoding procedure and the JPEG standard by Triebfürst et al. (1996 )

on a SAR image of part of the Antarctic Peninsula. The distortion measure used in

this case was the peak signal-to-noise ratio. At all compression rates up to a value

of 50, the wavelet encoder returned the best overall results while retaining most

relevant features in the image. It was proved that all features that could be mapped
from the original image could still be detected at a compression rate of 32, while

speckle was removed from the image very e� ciently at the same time.

Although the AVHRR does not generate nearly as much data as most of the

higher resolution instruments, the facts that it produces 10-bit data and that many

images can be collected per day pose similar problems of volume data handling that

would bene� t from similar solutions. For these reasons we have tried to investigate

the usefulness of wavelet compression by operating on both raw and compressed
AVHRR data, producing unsupervised classi� cations and calculating brightness

temperatures, Normalized Di� erence Vegetation Index (NDVI) values and fractal

dimensions. The image � les were compressed to various levels (up to 64) and then

decompressed. The calculated parameters were then compared with those obtained

from the reconstructed data on a pixel-by-pixel basis. In order to try to quantify the

loss of information, the same procedure of compression was carried out on some

arti� cial geometrical imagettes that could be inspected visually for signs of

degradation.
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2. Theory of transform coding
In transform coding a reversible linear transform, such as the Fourier transform,

is used to transform images in such a way that a signi� cant number of transform
coe� cients have a small magnitude. The coe� cients are quantized and coded, and
the small coe� cients are discarded or quantized very coarsely without a signi� cant
loss of image information.

Mathematically, in order to transform an image by a linear transform requires
the image to be regarded as a vector with respect to a new basis. The image can be
transformed blockwise as with the JPEG method, line-by-line as with the wavelet
transform, or as a whole. The JPEG method mentioned above is based on transform
coding by the discrete cosine transform (DCT). Here, the basis vectors are generated
by discrete samples of di� erent cosine functions (� gure 1(a)). Although here the
method used for image information packing is transform coding based on wavelet
functions, we will nevertheless, for illustration purposes, � rst consider a simple
example based on the DCT. For the wavelet transform the idea is similar but uses
other transform functions. Let us consider an image line

be = (1.9, 1.5, 2.1, Õ 1.5) (1)

which is a vector in the four-dimensional vector space R4 represented with respect
to the standard basis {e1 = (1,0,0,0); e2 = (0, 1, 0, 0); ...)} with

be = 1.9e1 +1.5e2 +2.1e3 Õ 1.5e4 (2)

The four-dimensional basis of the discrete cosine function derived from the continu-
ous cosine function is {c1 = 1/2(1, 1, 1, 1); c2 = 1/2(1, 0.71, 0, Õ 0.71 ); c3 = (1, 0, Õ 1,
0); c4 = (1, Õ 0.71, 0, 0.71 )}. Projection from the standard basis to the new basis yields

bc = +4.0c1 +4.02c2 Õ 0.2c3 Õ 0.22c4 (3)

by calculating the inner products of be with the four basis vectors of the DCT. The
coe� cients obtained may be quantized and we obtain (4, 4, 0, 0). Once we preserve
only information on the non-zero coe� cients we reduce the amount of storage needed
from four � oating point numbers respectively 16 bytes to 2 bytes. Performing the
inverse transform but using the remaining two integers only yields an image line with

be = (2, 1.4, 2, Õ 1.4) (4)

which is similar to the original but not exactly the same.
The fundamental idea of the discrete wavelet transform (DWT) uses a special

kind of basis functions rather than cosine functions which have provided an excellent
tool in many areas of signal processing. In the 1980s Grossman and Morlet (1984 )
de� ned the � rst wavelets in the � eld of quantum physics, but the underlying theory
had been discovered independently by several groups in the 1930s while looking
for new scale-varying basis functions to decompose other functions. An historical
overview is given by Meyer (1993 ).

Wavelet analysis can be considered a logical step from windowed Fourier analysis
using variable-sized regions rather than ones of � xed size. Larger sized windows are
used in regions where there is low-frequency information and smaller ones where
there is high-frequency information. This enables local analysis of large signals (or
images) to be performed. Hence wavelet analysis is in many ways more suitable than
Fourier analysis in the study of complex spatial images that contain a wide range of
frequency components. Figure 1(b) shows the � rst and simplest wavelet basis, the
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Figure 1. (a) Basis functions of the discrete cosine transform (DCT) and the discrete wavelet
transform (DWT) (b) as given by Haar (1910). Many other families of wavelets may be
used for image transformation. Eight basis functions are presented in this � gure. The
number of basis functions in the spatial domain, which corresponds to the length of the
original image line, is given by the number of pixels in the line. Since the number of
basis functions in each co-ordinate system must be equal when transforming from one
system to another the functions presented here correspond to an image line of 8 pixels.

so-called Haar-basis (Haar 1910 ). An example, analogous to the DCT example
above, would be the four-dimensional basis {h1 = 1/2(1, 1, 1, 1); h2 = 1/2(1, 1, Õ 1,
Õ 1); h3 = (0.71, Õ 0.71, 0, 0); h4 = (0, 0, 0.71, Õ 0.71 )} based on the Haar wavelet,
also derived by transforming the continuous Haar function into discrete function
values. Projection from the standard basis to the Haar-basis by calculating the inner
products yields

bHa ar = 2.00h1 +1.40h2 +2.40h3 +0.42h4 (5)

An orthogonal wavelet basis B is built up of functions y
m, n

generated by dilations
and translations of a special ‘mother wavelet function’ y=y0 , 0

B={y
m, n

|y
m, n

(x)=2 Õ m/2 y(2 Õ mx Õ n),m,n ×Z} (6)

By dilations (parameter m) we can consider the same function at di� erent scales (see
y0 , 0 , y1 , 0 , y2 , 0 , in � gure 1(b)). This leads to scale analysis of a signal similar to the
frequency analysis by cosine functions. By translation (parameter n) of the mother
wavelet we can analyse a signal in one scale at di� erent locations (see y0 , 0 , y0 , 1 ,



Data compression using a wavelet transform 599

y0 , 2 , in � gure 1(b)). All combinations of the parameters m and n result in decomposi-
tion of a signal (image) at di� erent scales (related to di� erent frequencies) depending
on the location in the image. Hence this method is called time-scale analysis . This
principle is illustrated in � gure 2. Each combination of scale and position of the
wavelet function provides one single basis function in the new wavelet basis. In the
example above, by dilation of the Haar-basis vector h2 = 1/2(1, 1, Õ 1, Õ 1) we get,
according to equation (6), the basis vector h3 = (0.71, Õ 0.71, 0, 0). By translation of
the basis vector h3 we get the basis vector h4 = (0, 0, 0.71, Õ 0.71 ), also according to
equation (6). The total number of basis functions is de� ned by the size of the image
line to be transformed, because the dimension of the vector relates to the length of
the image and therefore the number of basis functions must be the same in both
co-ordinate systems.

The two-dimensional wavelet transform based on such basis functions can be
implemented as an iterative process of low pass and high pass � ltering of the image
followed by a subsampling of the image by a factor of two. In a � rst step, each line
of the image is � ltered with the low pass kernel H and the high pass kernel G. In
the second pass the resulting image is � ltered again with these kernels, but this time
in each column. After subsampling an image composed of four parts is obtained.
Each part represents the image at lower resolution but in a speci� c combination of

Figure 2. Scaling and positioning of a wavelet along a one-dimensional signal in order to
transform this signal into the wavelet domain. The example shows a continuous
wavelet transform rather than a discrete wavelet transform. The concept can be
regarded as a � ve-step recipe. In (a) a selected wavelet (step 1) is compared to the � rst
section of the signal and a coe� cient is calculated (step 2) that is larger the more
similarity that is found between this part of the signal and the wavelet itself. In (b) the
wavelet is shifted along the signal until the whole signal is covered (step 3). (c) shows
the stretched wavelet (step 4) to which steps 2 to 3 have to be applied. Steps 1 to 4
must be repeated for all scales (step 5) until the whole signal is covered at all locations
with all scales. The DWT works in the same way but with discrete wavelets, making
it more suitable for rapid computation (adopted from Misiti et al. (1996)).
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high or low pass � ltering in columns or lines (� gure 3). Consider the example of the
single line used earlier. Instead of the whole wavelet basis we need use only a small
� lter pair of a low pass and a high pass � lter. For example the basis (h1 , ..., h4 ) can
be represented by the Haar-� lter pair G= (0.71, 0.71 ) ( low pass � lter) and H= (0.71,
Õ 0.71 ) (high pass � lter). In a � rst step the signal is � ltered with both � lter kernels
and the output signals are downsampled by a factor of two.

bG : = (G*be ) (̄ 2)= (2.40, 0.42 ) (7)

bH : = (H*be ) (̄ 2)= (0.28, 2.54) (8)

where * represents the convolution operator and ¯ the downsampling operator.
The high pass � ltered signal (bH ) represents the highest frequency parts of the

signal. bH is the same as the inner product of be with h3 and of be with h4 . In a
second step the low pass � ltered signal (bG ) is � ltered again with G and H. Now we
obtain a high-frequency part (bHG ) (but not as high as in the � rst � ltering step) and
a low-frequency part (bG G ):

bHG : = (H*bG ) (̄ 2)= (1.4) (9)

bG G : = (G*bG ) (̄ 2)= (2.0) (10)

bHG corresponds to the inner product of be with h2 and bG G represents the inner
product of be with h1 . This iterative � ltering and downsampling process is much

Figure 3. The computational scheme of the DWT implemented with the wavelets derived by
Daubechies (1992) as subsequential � ltering with high and low pass � lters separately
in image lines and image rows. Filtering is followed by a subsampling of two, resulting
in an image of the same size in the wavelet domain with four parts each composed of
a combination of the result from high or low pass � ltering in vertical or horizontal
directions. Only the transform is illustrated here. Further steps (described in the text)
are necessary to encode and compress the resulting wavelet coe� cients.
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easier to calculate than the inner products of the original signal with the Haar-basis

vectors. Depending on the signal length the � ltering process can be repeated again
and again. This is an added advantage for the popularity of the DWT because the

computational costs are only related to N for a signal of length N. This is much less

than the computational cost of the Fast DCT, which is related to (N logN ).
Calculating all of the necessary inner products would result in computational costs

of N2 .
A detailed description of this wavelet transform is given by Daubechies (1992 )

and Strang and Nguyen (1996 ). To compress the transformed image we have to

consider the magnitude of the coe� cients of the transformed image. As with principal

component analysis (PCA) the magnitude of most of the coe� cients is very small.

Only a few of the coe� cients—those of high magnitude —contain most of the image
information. These coe� cients are concentrated in the lowest frequency scales. To

compress the transformed image the coe� cients of small magnitude are eliminated

and the others must be quantized.

A common method to quantize the coe� cients is to divide the transformed image

into several bitplanes. Each bitplane may be separately coded by an entropy-coder

(Gonzalez and Woods 1992 ). Shapiro (1993 ) improved this method by using the

redundancy between single-frequency bands with the zerotree coding method.
There are two options for the use of wavelet-based transformations. The system

may be used solely for data compression and the results from this lossy method can

be tested against the original data in terms of classi� cation, segmentation or visual

interpretation as performed for NOAA AVHRR data in this paper. Furthermore,

the wavelet encoding procedure may o� er new methods of image analysis itself. By

transforming an image into the wavelet domain, data can be accessed in di� erent

frequency scales. The use of � ltering of remotely sensed data in the frequency domain,
for example to generalize classi� ed data as land use maps, is extended by the

possibility of applying the � lter at speci� c locations only. Classi� cations obtained

from optical remote sensing data, for example, can be generalized locally, depending

on the surface type or any other statistical, textural or structural parameter. Triebfürst

et al. (1997 ) showed that, with this method, forest classes as obtained from Landsat

Thematic Mapper (TM) data could be generalized, while high-frequency features in

neighbouring urban areas were still preserved.

3. Data compression test

3.1. T est imagettes

In an attempt to try to quantify the level at which the loss of information

produced by compression occurs, a series of geometrical shapes and patterns were

generated (� gure 4). The data were stored in 8-bit format, although the top imagette
only uses two levels of grey. These 64 Ö 64 pixel imagettes were reconstructed after

performing the compression process using the wavelet method with rates of 4, 8, 16,

32 and 64. The � gure shows that, up to compression by a factor of 8, the reconstructed

images are virtually identical to the originals, with perhaps just a small loss of clarity

in the diagonal lines. At compression level 16, a certain amount of fuzziness and

shadowing becomes apparent, but even the high-frequency spacings are still quite

evident. The main features are still reasonably clear at level 32, but the � ner detail
has gone by level 64. The shadowing e� ect is a manifestation of the pseudo-Gibbs
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Figure 4. Geometrical imagettes, each 64 pixels by 64 pixels, used to test the e� ect of di� erent
compression levels.

phenomenon showing the inability of wavelets to represent step functions at high
compression rates. This is an oscillatory e� ect which appears near edges due to the
coarse quantization of the wavelet coe� cients.

3.2. AVHRR data test
A NOAA-14 AVHRR image, taken 14 September 1995, was selected for pro-

cessing. The raw image was recti� ed into a 512 Ö 512 pixel geo-referenced dataset,
with 1 km pixel size. All � ve AVHRR channels were used, as well as NDVI and
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Brightness Temperature (BT) images from channels 3, 4 and 5. The � ve AVHRR
channels and the NDVI were stored in 16-bit format � les and the three BT images
in 8-bit format. The compression/decompression process using the wavelet method
with compression rates of 4, 8, 16, 32 and 64 was performed on these nine � les. A
total of 54 � les was produced. The analysis of the e� ects of compression was carried
in three distinct parts: NDVI and BT images; unsupervised classi� cation; and fractal
dimension.

3.2.1. NDVI and Brightness T emperature
The e� ects of compression on NDVI and BT images can be seen in � gures 5 and

6 respectively. In both � gures, the top left-hand image is the original and the other
three are reconstructed images after compression to rates 4 (top right), 16 (bottom
left) and 64 (bottom right). There are virtually no di� erences between the original
and the reconstructed images at compression rate 4. For the higher compression
rates the di� erences start to become noticeable, in particular for rate 64.

The di� erences between the original and reconstructed images were computed
on a pixel-by-pixel basis. The error in each reconstructed image in relation to the
original image was calculated for each pixel as a percentage value. To avoid an
in� nite percentage error when the original values were near zero, only NDVI values
of at least 0.020 (60 463 pixels) and BT values of at least 2 ß C were used (196 824
pixels for BT4, 191 408 pixels for BT5).

Figure 7 shows a plot of the mean error of NDVI, BT4 and BT5 as a function
of compression rate. The mean error for BT is low for all levels of compression,
reaching only 6.8% for a compression level of 64. The mean error of the NDVI is
considerably higher, reaching 14.9% for a compression rate of 32 and 23.3% for
compression rate of 64.

Image data produced by combining two or more AVHRR channels, such as
NDVI and (BT4–BT5) (which is often used for atmospheric corrections), were found
to be less a� ected when calculated before compression than after compression. It is
therefore advisable to produce additional images with the required processing, NDVI
and (BT4–BT5) for example, before performing data compression.

Another way of examining the percentage errors is presented in � gure 8—the

fraction of pixels on the NDVI and BT4 images having errors of < 1%, < 5% and

< 10% are displayed as a function of compression rate. 81.5% of pixels in the BT4
image have an error < 10% after compression at rate 64. For the same compression
rate, only 42.3% of the NDVI pixels have an error of less than 10% when compared
with the original image.

3.2.2. Unsupervised classi� cation
An isocluster unsupervised classi� cation was performed, using AVHRR channels

1 and 2, BT3, BT4 and BT5, and NDVI images. The classi� cation was run, with the
same statistical parameters, on the original images and on those that underwent
each of the � ve levels of compression.

Between 20 and 50 classes were allowed, but in all six classi� cation processes the

number of classes was found to be 40. This number was then reduced to 12 by
inspection of each individual class. A brief description of the 12 main classes, as well
as the number of pixels in each class on the original data, is presented in table 1.
Classes E, F and G were later merged into class E ¾ and classes H, I, J and K into
class H ¾ . The percentage of pixels from each original class that were classi� ed in the
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Figure 5. Normalized Di� erence Vegetation Index (NDVI) imagery derived from AVHRR
datasets. Original (top left) and compression rates of 4:1 (top right), 16:1 (bottom left)
and 64:1 (bottom right).

same class using the compressed data is also presented in table 1. From the 63 938
pixels classi� ed as water (class C) using the original images, 99.89% of those pixels
were still classi� ed as water using images with a compression of 8, but only 82.86%
were classi� ed as water when using images with a compression of 64.

Figure 9 shows the classi� cation results using as inputs the original images (top
left), and the reconstructed images after a process of compression to rates 4 (top right),
16 (bottom left) and 64 (bottom right). There are subtle variations at the boundaries
between classes, with their distinction � rst lost at around level 32. This is consistent
with results from the imagette compression test.
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Figure 6. Brightness temperature (BT) calculated from AVHRR channel 4. Original (top
left) and compression rates of 4:1 (top right), 16:1 (bottom left) and 64:1 (bottom right).

3.2.3. Fractal dimension
Unlike the previous parameters tested, the fractal dimension of a region of an

image re� ects the spatial relationship between pixels, and gives an indication of the
texture in that region. A dimension of three would imply a perfectly three-dimensional
structure whereas a dimension of two implies a � at plane. Typically, the fractal
dimensions of satellite images are somewhere between two and three. Three homo-
geneous sub-sections of the image (each 64 pixels by 64 lines) were selected to test
the e� ect of compression on fractal dimension. The sub-sections covering land, sea
and cloud were processed independently for the relevant image channels. The e� ect
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Figure 7. Mean errors on NDVI and BTs from channels 4 and 5, as a functionof compression
rate.

Figure 8. Number of pixels which di� er from those in the original NDVI and BT images by
up to 1%, 5% and 10%, as a function of compression rate.

of compression on the fractal dimension of land can be seen in � gure 10 for AVHRR
channels 1 and 2, BT from channel 4 and NDVI. The fractal dimension decreases
steadily with increasing compression rate, suggesting that some high-frequency
textural information is lost in the compression process. Fractal dimension variation
as a function of compression rate for cloud and sea can be seen in � gures 11 and 12
respectively, for AVHRR channels 1 and 2, and BT from channel 4 (for sea only).
The anomaly at compression rate 4 for all parameters over the sea is due to their
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Table 1. Percentage of pixels from each original class which were subsequently classi� ed in
the same class after compression at various levels.

Fraction of pixels classi� ed as in the
original image (%)

No. pixels
Description Class (Original image) 4:1 8:1 16:1 32:1 64:1

Area not covered A 27493 100.00 100.00 100.00 99.98 99.81
by satellite pass

Cloud I B 20784 99.87 97.97 98.61 96.95 92.92
Water C 63938 99.71 99.89 84.85 87.94 82.86
Land D 34570 99.43 94.36 91.71 89.04 86.82
Coastlines, lakes, E 23072 97.71 75.91 94.43 84.00 63.49

partially cloudy
areas

Partially cloudy F 13941 97.30 84.87 87.57 72.23 59.85
pixels on land

Low % of cloud G 13671 98.71 93.01 87.73 70.57 70.84
cover on land

High % of cloud H 20620 98.90 72.12 83.27 73.61 73.61
cover

Partially cloudy I 20773 99.20 82.92 91.16 86.43 79.29
pixels on sea

Very high % of J 11228 98.74 98.24 87.28 74.92 58.86
cloud cover I

Very high % of K 2479 96.77 87.45 80.96 65.91 45.58
cloud cover II

Cloud II L 9575 98.65 95.02 90.76 85.16 77.41

(E < F < G) 98.76 89.13 96.27 90.04 81.82
(H < I< J< K) 99.45 87.85 91.98 87.25 84.49

very small variability in such a region, and also possibly due to loss of spatial
coherence in random noise.

4. Conclusion
It has been shown that, for the parameters tested using AVHRR data, the use of

wavelet compression techniques provides a method for data reduction without the
loss of too much geophysical information. The classi� cation test results indicate that
there is greater loss in the boundaries between classes and in mixed pixel areas.
Simple pixel-related parameters such as brightness temperatures retained their integ-
rity quite well up to a rate of compression of 64, whereas parameters that depend
on more than one band (NDVI and classi� cation), as well as those related to spatial
variability (fractal dimension), lost information at lower compression rates. Therefore
standard products such as NDVI and (BT4–BT5) used for atmospheric corrections
should preferably be calculated from original data with subsequent compression of
the result. This yields better results than calculation of these secondary products
from compressed data. For archiving large amounts of data, these products could
be added to the original bands of the imagery and then compressed. For the NOAA
AVHRR image of Scotland with two additional bands and a compression of 32 a
reduction of storage volume of a factor by approximately 30 could still be obtained.
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Figure 9. Unsupervised classi� cation using the � ve AVHRR channels and NDVI. Results
using the original images (top left) and compression rates of 4:1 (top right), 16:1
(bottom left) and 64:1 (bottom right) (see table 1 for class description).

With this substantial reduction in storage volume achievable, data compression
based on wavelet transforms could prove to be a valuable tool in the handling of
remotely sensed data within computational networks and archiving facilities.
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Figure 12. E� ect of compression rate on the fractal dimension of an image sub-section
covering exclusively sea.
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