
Evaluation of Bayesian Hyperspectral Image
Segmentation with a Discriminative Class Learning

Janete S. Borges and André R. S. Marçal
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Abstract—A Bayesian segmentation approach for hyperspec-
tral images is introduced in this paper. The method improves the
classification performance of discriminative classifiers by adding
contextual information in the form of spatial dependencies. The
technique herein presented builds the class densities based on
Fast Sparse Multinomial Logistic Regression and enforces spacial
continuity by adopting a Multi-Level Logistic Markov-Gibs prior.
State-of-art performance of the proposed approach is illustrated
in a set of experimental comparisons with recently introduced
hyperspectral classification/segmentation methods.

I. INTRODUCTION

The wide availability of hyperspectral images led to new
developments in the fields of image segmentation and clas-
sification. The detailed information about spectral signatures
provided by hyperspectral sensors has fostered the develop-
ment of new algorithms capable of properly handling the
high dimensionality of the data. The difficulties in learning
high dimensional densities from a limited number of training
samples (Hughes phenomenon) is one of the major problems
related with this type of data, and although many progresses
have been made, it is still an active area of research.

The discriminative approach in classification problems cir-
cumvents the difficulties in learning class densities by learn-
ing directly the densities of the labels given the features.
Discriminative approaches hold the state-of-the art in super-
vised hyperspectral image classification (see, e.g. [1]). These
approaches have proved to be successful in dealing with
small class distances, high dimensionality, and limited train-
ing sets characteristic of hyperspectral vectors. The Support
Vector Machines (SVMs) are one of the most consolidated
discriminative supervised classification tools. SVMs have been
successfully used for hyperspectral data classification due to
their ability to deal with large input spaces efficiently, and to
produce sparse solutions. One example of such an application
is the work developed by Camps-Valls et. al [1]. More recently,
algorithms that integrate spatial and spectral information have
been presented. Markov Random Field (MRF) models allow
contextual constraints to be incorporated and have been used
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extensively for various segmentation applications, including
hyperspectral data classification (see, e.g. [2]). Other tech-
niques using morphological profiles and segmentation hier-
archies have also been proposed and their capacities analised
[3].

In this work, a Bayesian segmentation approach for hyper-
spectral images is introduced. The method improves the clas-
sification performance of discriminative classifiers by adding
contextual information in the form of spatial dependencies.
Our approach is in the vein of the Discriminative Random
Fields (DRF) framework introduced in [4]. The major differ-
ence concerns the way the model parameters are learnt: in
DFRs, all model parameters are learnt simultaneously, leading
to hard and complex procedures still under investigation; on
the contrary, in the proposed approach, the multinomial and
the MLL parameters are learnt in two consecutive, but non-
simultaneous steps. As a consequence, the proposed method
leads to much lighter procedures, still displaying very good
results.

The Bayesian Hyperspectral Image Segmentation with
Discriminative Class Learning methodology used here en-
forces spatial dependencies by a Multi-Level Logistic (MLL)
Markov-Gibs prior. This density favors labeling in which
neighboring sites belong to the same class. The class densities
are build on the Fast Sparse Multinomial Regression (FSMLR)
[5], learned in a supervised fashion. The FSMLR is a sparse
classification algorithm capable of dealing with high dimen-
sionality datasets. In experiments performed with a bench-
marked dataset (Indian Pines from the AVIRIS spectrometer),
the method proved to be fast and efficient for the classification
of hyperspectral data [5]. To efficiently estimate the optimal
segmentation, the α-Expansion graph cut based algorithm [6]
is used. This algorithm is capable of achieving nearly optimum
solutions for the discrete optimization problem given by the
Maximum A posteriori Probability (MAP) segmentation.

In this work, the proposed Bayesian segmentation method
with discriminative class learning is applied to urban hyper-
spectral data from the town of Pavia, Italy, collected by the
ROSIS sensor in the framework of HySens project managed
by the DLR (German Aerospace Agency) [7]. The results are
compared with those obtained by Plaza et. al [3].

The paper is organized as follows. Section II presents the



methods used: the FSMLR classifier and the segmentation
based on the MLL Markov Gibs prior. The results are pre-
sented in section III and the concluding remark in section IV.

II. BAYESIAN SEGMENTATION METHODOLOGY

Let y = {yi}i∈S , where yi ∈ L = {1, 2, . . . ,K}, be an
image of labels and let x =

{
xi ∈ R

d, i ∈ S} be the observed
multi-dimensional images. The goal of the segmentation is to
estimate y, having observed x. In a Bayesian framework, this
estimation is done by maximizing the posterior distribution
p(y|x) ∝ p(x|y)p(y), where p(x|y) is the likelihood function
(or the probability of feature image given the labels) and p(y)
is the prior over the classes.

In the approach here presented, the class densities p(yi|xi)
are learned by the discriminative FSMLR classifier [5]. The
likelihood is then given by p(xi|yi) = p(yi|xi)p(xi)/p(yi).
Since p(xi) does not depend on the labeling y, we have

p(x|y) ∝
∏
i∈S

p(yi|xi)/p(yi), (1)

where conditional independence is understood.
In this approach, the classes are assumed as likely probable:

p(yi) = 1/K . Although this assumption may not be the ideal,
it still leads to very good results. Anyway, the class densities
can be tilted towards other distribution by using the method
described in [8].

A. Class Density Estimation

The estimation of class densities p(y|x) consists in assign-
ing to each xi the probability of belonging to each of the
K classes, yielding K sets of feature weights, one for each
class. If yi = [y(1), . . . , y(K)]T is a 1-of-K encoding of the
K classes, and if w(k) is the feature weight vector associated
with class k, the multinomial logistic regression gives us the
probability of y

(k)
i = 1 given xi:

P
(
y
(k)
i = 1|xi, w

)
=

exp
(
w(k)T

h(xi)
)

∑K
k=1 exp

(
w(k)T h(xi)

) , (2)

where w = [w(1)T

, . . . , w(K)T

]T and h(x) =
[h1(x), . . . , hl(x)]T is a vector of l fixed functions of
the input, often termed features. Possible choices for
this function are linear (i.e., h(xi) = [1, xi,1, . . . , xi,d]T ,
where xi,j is the jth component of xi) and kernel (i.e.,
h(x) = [1,K(x, x1), . . . ,K(x, xn)]T , where K(·, ·) is some
symmetric kernel function). Kernels are nonlinear mappings,
thus ensuring that the transformed samples are more likely
to be linearly separable. A popular kernel used in image
classification is the Gaussian Radial Basis Function (RBF):
K(x, z) = − exp(‖x − z‖2

/2σ2).
The Sparse Multinomial Logistic Regression (SMLR) algo-

rithm incorporates a Laplacian prior to promote the sparsity
in the estimate of w. The inclusion of the Laplacian prior lead
us to the MAP estimate of w:

ŵMAP = arg max
w

L(w) = arg max
w

[l(w) + log p(w)] , (3)

where l(w) is the log-likelihood function and p(w) ∝
exp(−λ‖w‖1); λ is a regularization parameter controlling the
degree of sparseness of ŵMAP . The weights w are learned
using bound optimization tools [9], which allow to perform
exact MAP multinomial logistic regression under a Laplacian
prior, with the same cost as the original iterative reweighted
least squares algorithm for maximum likelihood estimation
(see [10]).

The SMLR reveals a weak point when applied to large
datasets like hyperspectral images. Its practical application
to this kind of data is often computationally prohibitive.
The FSMLR algorithm tackles this limitation by replacing
the solution of a sequence large linear system of equations
with a sequence of block Gauss-Seidel iterations [10]. More
specifically, in each iteration, instead of solving the complete
set of weights, only blocks corresponding to the weights
belonging to the same class are solved [5]. The gain in number
of floating point operations is of the order of O(K2), where
K is the number of classes.

B. Segmentation procedure

The segmentation process includes the spatial information
so that the piecewise smooth of real world images can be
considered. The MLL prior is a MRF that favors neighboring
labels of the same class.

According to the Hammersly-Clifford theorem, the density
associated with a MRF is a Gibb’s distribution [11]. Therefore,
the prior model for segmentation has the structure

p(y) =
1
Z

exp

(
−
∑
c∈C

Vc(y)

)
, (4)

where Z is the normalizing constant and the sum is over the
prior potentials Vc(y) for the set of cliques1 C over the image,
and

−Vc(y) =




αyi
if |c| = 1 (single clique)

βc if |c| > 1 and ∀i,j∈c yi = yj

−βc if |c| > 1 and ∃i,j∈c yi �= yj

(5)

where βc is a nonnegative constant.
Equation (4) can be written as

p(y) =
1
Z

eβn(y) (6)

where n(y) denotes the number of cliques having the same
label, if we let αk = α and βc = 1

2β > 0. This choice gives
no preference to any label nor to any direction.

The conditional probability p(yi = k|yj , j ∈ S − i) is then
given by

p(yi = k|yNi
) =

eβni(k)∑K
k=1 eβni(k)

, (7)

where ni(k) is the number of sites in the neighborhood of site
i, Ni, having the label k.

1A clique is a set of pixels that are neighbours of one another.



The MAP segmentation is given by

ŷ = arg max
y

p(x|y)p(y)

= arg max
y

∑
i∈S

log p(xi|yi) + βn(y)

= arg min
y

∑
i∈S

− log p(xi|yi) − β
∑
i,j∈c

δ(yi − yj), (8)

where p(x|y) ∝ ∏
i p(yi|xi) was learned using the FSMLR

algorithm. The minimization of (8) is a hard combinatorial
optimization problem. However, it is possible to achieve a
very good approximation using the graph cut α-Expansion
based algorithm [6]. This algorithm can be applied because
the pairwise interaction term on the right hand side of (8) is
equivalent to a metric2.

III. EXPERIMENTAL RESULTS

The proposed MAP segmentation was applied to three urban
hyperspectral images over the town of Pavia, Italy. This section
describes the datasets and the experiments performed. the
results are presented as well as a discussion and a comparison
with the results presented in [3].

A. Data Description

The data used in this work was collected by the ROSIS
sensor in the framework of HySens project managed by
DLR (German Aerospace Agency) [7]. The images have 115
spectral bands with a spectral coverage from 0.43 to 0.86 µm,
and a spatial resolution of 1.3m. Two scenes over Pavia were
made availabe, a scene over the city centre and another over
Pavia University. We consider three different subsets of the
full data similarly to the work presented in [3]:

• Dataset 1 - Image over Pavia city centre with 492 by
1096 pixel in size (Fig.1(a)), 102 spectral bands (without
the noisy bands) and nine ground-truth classes distributed
by 5536 training samples and 103539 validation samples.

• Dataset 2 - Image over Pavia University with 310 by 340
pixel in size (Fig.1(b)), 103 spectral bands (without the
noisy bands) and nine ground-truth classes distributed by
3921 training samples and 42776 validation samples.

• Dataset 3 - Superset of the scene over Pavia city centre,
including a dense residential area, with 715 by 1096 pixel
in size (Fig.1(c)) and nine ground-truth classes distributed
by 7456 training samples and 148152 validation samples.

B. Experimental Setup and Results Discussion

Experiments were carried out to access the efficiency of the
presented segmentation procedure when compared to recent
algorithms developed for processing hyperspectral imagery,
presented in [3].

The class densities estimation described in section II.A.
involves the choice of a kernel function. In this work, linear
and RBF kernels were used in different conditions.

Linear kernels were used in the segmentation of Dataset
1 and Dataset 3 using the complete training set to learn the

2A metric is obtained by adding β to terms −βδ(yi − yj)

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Fig. 1. Datasets used

TABLE I
OVERALL ACCURACIES OF THE MRF SEGMENTATION WITH LINEAR

MAPPING, AND THE RESULTS FROM [3], USING THE COMPLETE TRAINING

SET.

Dataset 1 Dataset 3

MRFSeg 98.18% 98.46%

Results from [3] 96.03% 97.27%

TABLE II
OVERALL ACCURACIES OF THE MRF SEGMENTATION WITH LINEAR

MAPPING, USING DIFFERENT SUBSETS OF THE TRAINING SET.

Training set size 10% 20% 40% 60% 80%

Overall Accuracy 94.03% 96.14% 95.85% 96.16% 96.75%

segmentation algorithm, and the complete set of validation
samples was used to estimate the Overall Accuracies (OA)
(Table I).

The results from [3] presented in table I for Dataset 1 were
achieved with a SVM with a Poly kernel; results for Dataset
3 are a product of a MRF-based spatial characterization where
a discriminant analysis feature extraction was applied before
in order to increase spectral separability. The application of
our segmentation method with a linear mapping managed to
improve the results under the same conditions, without any
pre-processing to increase the spectral separability.

In order to evaluate the performance of our segmentation
method when small training samples are considered, we ran-
domly selected 5 subsets from the training set of Dataset 1,
with 10%, 20%, 40%, 60% and 80% of each class to learn
the segmentation algorithm, using a five-fold cross-validation
method to access the parameters of the FSMLR algorithm for
class densities estimation and the segmentation method. The
OAs were evaluated on the complete validation set (Table II).

From tables I and II we can observe that using 60% of



TABLE III
OVERALL ACCURACIES (%) OF THE MRF SEGMENTATION WITH

DIFFERENT MAPPINGS, USING DIFFERENT SUBSETS OF THE TRAINING SET,
AND RESULTS FROM [3].

Training set size 10 20 40 60 80 100

MRFSeg RBF 97.04 96.33 96.54 97.37 97.97 97.90

SVM-RBF [3] 93.85 94.51 94.51 94.71 95.36 95.29

the training set, the MRF segmentation method achieved the
same OA than the SVM used by [3], and using only 10% of
the training set and a linear kernel we manage to get an OA
above 94%.

When a RBF kernel is considered, the computational com-
plexity increases and the process of finding the kernel parame-
ters that gives the highest OA becomes a very slow task when
a large training set is used. Considering the Dataset 2, we
randomly selected a subset with 10% of each class present in
the training samples to learn the segmentation algorithm, and
measured the OA over the complete validation set. With 10%
of the training set, we achieved an OA of 91.81%, 6.59% more
than the OA from [3] over the same dataset, using a method
that also includes spectral and spatial information (Extended
Morphological Profile).

The MRF segmentation method proposed using RBF kernels
in the class density estimation, was also evaluated using the
Dataset 1. Subsets with 10, 20, 40, 60, 80 and 100 samples of
each class were randomly selected from the training set, and
the OAs were calculated over the complete test set. The results
are presented on table III, where it is possible to observe
that, regardless of the size of the training set, the MRF-
Segmentation outperforms the SVM-RBF algorithm used in
[3]. The advantage of using a method that includes spatial
information is well shown by the comparison of the OAs
achieved by both methods: with only 90 samples, the MRF-
Segmentation yielded an OA of 97.04%, while the SVM-RBF
with the complete training set (5536 samples) achieved an OA
of 96.45%.

IV. CONCLUSION

This paper proposes a segmentation method that uses the
FSMLR method to estimate the class densities used to perform
a MLL Markov-Gibs prior based segmentation.

Benchmarked datasets were used to access the performance
of the segmentation method, both in terms of accuracy as well
as in terms of generalization capacity. Results were compared
with the results from [3], where recent classification and
segmentation techniques were applied to the same datasets.
The proposed segmentation method outperformed the results
presented in [3] in all cases, with the experiments carried out
in similar conditions.

It is well known that one of the major problems in dealing
with hyperspectral imagery is the high dimensionality of the
data to be processed, leading us the Hughes phenomenon.
The segmentation method proposed gives excellent OA results
when small training samples are used, showing high general-
ization capacity.

The possibility of choosing different kernels to estimate
the class densities gives the user the possibility to better
handle the computational expense of processing hyperspectral
images. The use of linear kernels result in less computational
demanding learning algorithms and are capable of achieving
very good accuracies. It is possible to choose between a
simpler model and use all the available training samples to
learn the algorithm, or adopt a more complex model with RBF
kernels, using a small set of training samples. In both ways
high accuracies in the segmentation of the hyperspectral image
are yielded.
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