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Bayesian Hyperspectral Image Segmentation
With Discriminative Class Learning
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Abstract—This paper introduces a new supervised technique to
segment hyperspectral images: the Bayesian segmentation based
on discriminative classification and on multilevel logistic (MLL)
spatial prior. The approach is Bayesian and exploits both spectral
and spatial information. Given a spectral vector, the posterior
class probability distribution is modeled using multinomial logistic
regression (MLR) which, being a discriminative model, allows
to learn directly the boundaries between the decision regions
and, thus, to successfully deal with high-dimensionality data. To
control the machine complexity and, thus, its generalization ca-
pacity, the prior on the multinomial logistic vector is assumed
to follow a componentwise independent Laplacian density. The
vector of weights is computed via the fast sparse multinomial
logistic regression (FSMLR), a variation of the sparse multinomial
logistic regression (SMLR), conceived to deal with large data sets
beyond the reach of the SMLR. To avoid the high computational
complexity involved in estimating the Laplacian regularization
parameter, we have also considered the Jeffreys prior, as it does not
depend on any hyperparameter. The prior probability distribution
on the class-label image is an MLL Markov–Gibbs distribution,
which promotes segmentation results with equal neighboring class
labels. The α-expansion optimization algorithm, a powerful
graph-cut-based integer optimization tool, is used to compute
the maximum a posteriori segmentation. The effectiveness of the
proposed methodology is illustrated by comparing its performance
with the state-of-the-art methods on synthetic and real hyperspec-
tral image data sets. The reported results give clear evidence of
the relevance of using both spatial and spectral information in
hyperspectral image segmentation.

Index Terms—Bayesian methods, hyperspectral imaging, image
classification, image segmentation.

I. INTRODUCTION

HYPERSPECTRAL sensors acquire spectral information
in an almost continuous fashion, yielding a high discrim-

ination capacity between different land-cover classes. However,
the high dimensionality of hyperspectral images raises diffi-
culties frequently related with the Hughes phenomenon [1],
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which limits the range of applicable classification/segmentation
algorithms.

The supervised learning methods in high-dimensional spaces
require a large number of training samples to correctly estimate
the parameters of the underlying model. This brings about
two problems. First, the access to a consistent set with a
sufficient number of training samples is often impossible or
highly costly. Second, the use of large training sets in high-
dimensional spaces leads to expensive computational demands.
Several segmentation and classification methods are currently
being developed to address these problems [2]–[7].

A. Discriminative Approaches to Hyperspectral Classification

Discriminative class learning algorithms are usually less
complex than their generative counterparts because they model
directly the posterior class densities [8]–[10]. A conceptually
simpler approach to classification is to learn the so-called
discriminant functions which encode the boundary between
classes [10].

Discriminative approaches are among the state of the art in
the classification of high-dimensional data, such as hyperspec-
tral vectors. The multinomial logistic regression (MLR) [11],
which models the posterior class probability distributions, and
the support vector machines (SVMs) [12], which are discrimi-
nant functions, have been successfully applied to the classifica-
tion of high-dimensional data sets. SVMs are probably the most
popular discriminative approach applied to the classification
of remotely sensed data [7], [13]–[18], where the ability of
SVMs in dealing with large input spaces and producing sparse
solutions has been largely demonstrated. In this paper, however,
we use the MLR because this model yields the posterior class
probability distributions, which play a crucial role regarding the
introduction of spatial information. Although effective sparse
MLR (SMLR) methods are available [19], [20], their use in
remotely sensed data classification is not as popular as SVMs.

B. Exploiting Spatial Information

It is of common sense that neighboring pixels in remotely
sensed images very likely have the same class label. Therefore,
the classification of remotely sensed images, as well as any
other type of real-world images, is expected to improve when
some sort of spatial information is included in the inference of
the class labels. In this paper, we adopt a multilevel logistic
(MLL) Markov random field (MRF) [21] to model the piece-
wise smooth nature of the images of class labels. The work
presented here is a consequence of the works developed and
presented in [22] and [23].
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Although MRFs have been widely used in the remote sensing
community [2], [24], [25], its interest has reemerged recently
owing to the introduction of powerful integer optimization tools
based on graph-cut techniques. The ability of MRFs to integrate
spatial context into image classification problems has been
exploited by several authors. The integration of SVM tech-
niques within an MRF framework for accurate spectral–spatial
classification of remote sensing images was exploited by Farag
[26], Bruzzone [27], and Gong [28] research groups. The use
of an MRF framework to model the spatial neighborhood of
a pixel in hyperspectral images can be found in [6] and [24].
Tarabalka et al. [24] present an SVM- and MRF-based method
that comprises two steps: First, a probabilistic SVM pixelwise
classification of the hyperspectral image is performed, followed
by MRF-based regularization for incorporating spatial and
edge information into the classification. Another example of
a Markov-based classification framework is presented in [6]
where a neurofuzzy classifier is used to perform classification
in the spectral domain and compute a first approximation of
the posterior probabilities, and the resulting output is then fed
to an MRF spatial analysis stage combined with a maximum
likelihood (ML) probabilistic reclassification.

In addition to MRF-based approaches, extended morpholog-
ical profiles were also considered to integrate spatial informa-
tion in the classification of hyperspectral images [6], as well
as a composite kernel methodology [29]. Another approach
considered consists in performing segmentation and pixelwise
classification independently and then combining the results
using a majority voting rule, for example, in [30], where a
watershed technique has been used to perform segmentation
and an SVM pixelwise classification is performed, followed by
majority voting in the watershed regions.

More recently, graph-based methods have also been pro-
posed for spectral–spatial classification of hyperspectral im-
ages [31] by constructing a minimum spanning forest rooted
on the markers selected by using pixelwise classification
results.

C. Proposed Approach

In this paper, we present a Bayesian segmentation procedure
based on the MLR discriminative classifier, which accounts for
the spectral information, and on the MLL prior, which accounts
for the spatial information. Accordingly, we term the method
Bayesian segmentation based on discriminative classification
and on MLL spatial prior (BSD-MLL). The BSD-MLL method
comprises two parts: 1) the estimation of the MLR regressors
and 2) the segmentation of the images by computing the
maximum a posteriori (MAP) labeling based on the posterior
MLR and on the MLL spatial prior. The parameters required
for each part of the process are learned in two consecutive, but
nonsimultaneous, steps. Although this procedure is suboptimal,
it is much lighter than the optimal one, and nevertheless, as we
will give evidence, it yields state-of-the-art results.

The MLR regressors are estimated using a new algorithm that
is inspired in the SMLR [19] but much faster and able to cope
with data sets far beyond the reach of the SMLR. Accordingly,
we name this algorithm fast SMLR (FSMLR).

To enforce sparsity and, in this way, control the classifier
complexity, the SMLR uses a Laplacian prior for the regressors.

This prior depends on a parameter which plays the role of
the regularization parameter. The inference of this parameter
is usually complex from the computational point of view. To
sidestep this difficulty, the noninformative Jeffreys prior [32]
is also considered in this paper because, while still leading to
sparse solutions, it does not depend on any parameter yielding,
therefore, lighter estimation procedures.

In computing the MAP segmentation, one faces a hard inte-
ger optimization problem, which we solve by using the pow-
erful graph-cut-based α-expansion algorithm [33]. It yields an
exact solution in the binary case and a very good approximation
when there are more than two classes.

The performance of the proposed BSD-MLL algorithm is
illustrated in a set of experiments carried out in different
conditions with synthetic and simulated data, regarding the size
of the training set. Both the step for the estimation of MLR
regressors and the segmentation step are evaluated separately,
and the results are compared with state-of-the-art hyperspectral
classification/segmentation methods.

In addition to the fact that the BSD-MLL algorithm is com-
petitive with state-of-the-art classification methods for hyper-
spectral images, it is important to emphasize that the proposed
algorithm reveals other important advantages: 1) It models ac-
curately the piecewise continuous nature of the image elements
by means of the MLL spatial prior, and 2) it is efficient (from
the computational point of view) and provides high-quality
approximate solutions to the hard integer optimization problem
through the use of the α-expansion algorithm.

This paper is organized in four sections, with Section I being
the Introduction. Section II presents the problem formulation
where we start by reviewing the core concepts of the SMLR
in Section II-A with both the Laplacian (see Section II-A1)
and Jeffreys priors (see Section II-A2), and then, the FSMLR
is proposed in Section II-A3. Section II carries on with the
inclusion of contextual information in the classification process,
achieved through the introduction of an MLL Markov–Gibbs
prior (see Section II-B). The problem formulation section is
concluded with the MAP segmentation description with the
α-expansion algorithm (see Section II-C). Section III presents
the results of the application of the proposed algorithms
(FSMLR for classification and BSD-MLL for segmentation)
(considering different conditions based on the type of prior,
the type of input function, and the inclusion of contextual
information) to simulated data sets (see Section III-A) and
Indian Pines (see Section III-B) and Pavia (see Section III-C)
benchmarked data sets. The final discussions and conclusions
are presented in Section IV.

II. PROBLEM FORMULATION

Let x = {xi ∈ Rd, i ∈ S} denote an observed hyperspectral
image, also termed the image of features, where d is the number
of spectral bands and S is the set of pixels in the scene. The goal
of classification is to assign a label yi ∈ L = {1, 2, . . . ,K} to
each i ∈ S , based on the vector xi, resulting in an image of
class labels y = {yi|i ∈ S}. We call this assignment a labeling.
The goal of segmentation is, based on the observed image x, to
compute a partition S = ∪iSi of the set S such that the pixels in
each element of the partition share some common property, for
example, to belong to the same land-cover type. Notice that,



BORGES et al.: BAYESIAN HYPERSPECTRAL IMAGE SEGMENTATION 2153

given a labeling y, the collection Sk = {i ∈ S|yi = k}, for
k = 1, . . . ,K, is a partition of S . On the other hand, given the
segmentation Sk, for k = 1, . . . ,K, the image {yi|yi = k if i ∈
Sk, i ∈ S} is a labeling. There is, therefore, a one-to-one rela-
tion between labelings and segmentations. Nevertheless, in this
paper, we use the term classification when there is no spatial
information and segmentation when the spatial prior is being
considered.

In a Bayesian framework, the estimation of y having ob-
served x is done by maximizing the posterior distribution1

p(y|x) ∝ p(x|y)p(y) (1)

where p(x|y) is the likelihood function (i.e., the probability of
the feature image x given the labeling y) and p(y) is the prior
over the class labels.

Discriminative classifiers learn directly p(y|x), the posterior
class-label probability distribution, given the features. In this
paper, we develop a fast version of the SMLR classifier [34],
which we name FSMLR, to learn the posterior class probability
distribution p(yi|xi). The FSMLR is suited to problems with
many classes and is able to cope with problems far beyond the
reach of the SMLR.

The likelihood function is given by p(xi|yi) =
p(yi|xi)p(xi)/p(yi). Since p(xi) does not depend on the
labeling y, we have

p(x|y) ∝
∏
i∈S

p(yi|xi)/p(yi) (2)

where conditional independence is understood.
In this approach, the classes are assumed as likely probable:

p(yi) = 1/K. Although this assumption may not be the ideal,
it still leads to very good results. The class probability distri-
butions may be tilted, if required, toward other distributions by
using the method described in [35].

A. Estimation of the Class Probability Distributions
Using SMLR

In this section, we briefly review the core concepts of the
SMLR. We follow closely [19]. The SMLR algorithm learns
a multiclass classifier based on the MLR. By incorporating a
prior, this method simultaneously performs feature selection to
identify a small subset of the most relevant features and learns
the classifier itself.

Let x ≡ [x1, . . . , xd]
T ∈ Rd be d observed features. The

goal of the MLR is to assign to each xi, for i ∈ S , the
probability of belonging to each of the K classes. Let y ≡
[y(1), . . . , y(K)]

T
denote a 1-of-K encoding vector of the K

classes, such that y(k) = 1 if xi corresponds to an exam-
ple belonging to class k and y(k) = 0 otherwise, and w ≡
[w(1)T , . . . ,w(K)T ]

T
denotes the so-called regression of the

feature weight vector composed of K feature regression vectors

1To keep the notation light, we denote both probability densities and proba-
bility distributions with p(·). Furthermore, the random variable to which p(·)
refers is to be understood from the context.

w(k), for k = 1, . . . ,K. With these definitions in place, the
probability that a given sample xi belongs to class k is given by

p
(
y(k) = 1|xi,w

)
=

exp
(
w(k)Th(xi)

)
∑K

k=1 exp
(
w(k)Th(xi)

) (3)

where h(xi) = [h1(xi), . . . , hl(xi)]
T [(·)T denotes the

transpose operation] is a vector of l fixed functions of the
input, often termed features. Since p(y(k) = 1|xi,w) does not
depend on a translation on w, we set w(K) ≡ 0.

Possible choices for function h are linear (i.e., h(xi) =
[1, xi,1, . . . , xi,d]

T , where xi,j is the jth component of xi)
and kernel (i.e., h(x) = [1, K(x,x1), . . . , K(x,xm)]T , where
K(·, ·) is some symmetric kernel function). Kernels are nonlin-
ear mappings, thus ensuring that the transformed samples are
more likely to be linearly separable. A popular kernel used in
image classification is the Gaussian radial basis function (RBF):
K(x, z) = − exp(|x− z|2/(2σ2

h)).
In a supervised learning context, the components of

w are estimated from the training data D ≡ {(xi1 ,yi1),
. . . , (xim ,yim)}. Usually, this estimation is done using the ML
procedure to obtain the components of w from the training data,
i.e., the ML estimate ŵML is obtained by maximizing the log-
likelihood function [36]

l(w) =

m∑
i=1

[
K∑

k=1

y
(k)
i w(k)Txi − log

K∑
k=1

exp
(
w(k)Txi

)]
.

(4)

A sparsity-promoting prior p(w) is incorporated in the infer-
ence of vector w in order to achieve sparsity in the estimate of
w. The prior will control the classifier complexity and, there-
fore, its generalization capacity. In addition, the introduction of
a prior on w will also prevent the unbounded growth of the log-
likelihood function when the training data are separable.

With the inclusion of a prior on w, the MAP criterion is used
instead of the popular ML one for the MLR. The estimate of w
is then given by

ŵMAP = argmax
w

L(w) (5)

= argmax
w

[l(w) + log p(w)] . (6)

Several works on MLR [2], [19] have adopted the zero-mean
Laplacian prior

p(w) ∝ exp (−λ‖w‖1)

where

‖w‖1 =

d(K−1)∑
i=1

|wi|

denotes the �1 norm of w and λ is a hyperparameter playing
the role of the regularization parameter, controlling the degree
of sparseness of the estimates obtained. The inclusion of the
�1 norm in (6) yields sparse regressors ŵMAP, i.e., regressors
with many components set to zero [19]. In this way, the com-
plexity of the machine is controlled, ensuring its generalization
capability. We note that the nonzero coefficients select features
(bands) in the case of linear kernels or support vectors in the
cases of nonlinear kernels.
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The process of selecting the optimum λ is usually done
by cross validation through the training process. In high-
dimensional data sets, such as hyperspectral images, this search
often becomes a time-consuming task. In order to mitigate this
computational burden, we also consider the Jeffreys prior [32]

p(w) ∝
d(K−1)∏

i=1

1

|wi|
(7)

which, as the Laplacian prior, also enforces sparseness but does
not depend on any parameter to tune, thus leading to a lighter
learning algorithm.

We start by briefly describing the SMLR algorithm proposed
in [19], and then, we introduce our FSMLR approach to infer
the regression vector w, both for the Laplacian and Jeffreys
priors.

1) SMLR With Laplacian Prior: The �1 norm is nonsmooth,
preventing the use of standard optimization tools based on
derivatives. The bound optimization [37] framework supplies
adequate tools to address nonsmooth optimization. The central
concept in bound optimization is the replacement of a difficult
optimization problem, in this case, L(w) = l(w) + log p(w),
with a sequence of surrogate functions simpler to optimize [37].
Let Q(w|w(t)) denote the surrogate function, where w(t) is
the regression vector computed at iteration t. This function is
designed such that the difference

L(w)−Q
(
w|w(t)

)
(8)

is minimized at w = w(t). Let

w(t+1) = argmax
w

Q
(
w|ŵ(t)

)
. (9)

A straightforward calculus leads to the conclusion that

L
(
w(t+1)

)
≥ L

(
w(t)

)
(10)

i.e., the sequence {L(w(t+1)), t = 0, 1, . . .} is nondecreasing.
Under suitable conditions, this sequence converges to the max-
imum of L [37].

As previously stated, function Q should be easy to optimize,
and thus, quadratic functions come immediately to mind. Since
l(w) is concave and belongs to C2, a surrogate function for l,
denoted as Ql(w|ŵ′), can be determined using a bound on its
Hessian H. Let

B ≡ −1

2
[I− 11T /K]⊗

m∑
i=1

xix
T
i (11)

where 1 ≡ [1, 1, . . . , 1]T and ⊗ denote the Kronecker product.
Matrix B is nonpositive, and H(w)−B is positive semidefi-
nite, i.e., H(w) 
 B for any w [11]. A valid surrogate function
for l is then

Q
(
w|ŵ(t)

)
≡

(
w − ŵ(t)

)T
g
(
ŵ(t)

)
+

1

2

(
w − ŵ(t)

)T
B

(
w − ŵ(t)

)
(12)

= wT
(
g
(
ŵ(t)

)
−Bŵ(t)

)
+

1

2
wTBw + c (13)

where c is an irrelevant constant and g is the gradient of l
given by

g(w) =
m∑
i=1

(y′
i − pi(w))⊗ xi (14)

with y′
i≡ [y

(1)
i , y

(2)
i , . . . , y

(K−1)
i ]

T
and pi(w)≡ [p

(1)
i (w), . . . ,

p
(K−1)
i (w)]T , where p

(k)
i (w) ≡ p(y

(k)
i = 1|xi,w).

Concerning the �1 norm |w|1 =
∑

i |wi|, we note that for
wi,(t) �= 0

−|wi| ≥ −1

2

w2
i∣∣wi,(t)

∣∣ + cte (15)

where cte is a constant. Thus, both terms of L(w) have a
quadratic bound. Since the sum of functions is lower bounded
by the sum of the correspondent lower bounds, we have a
quadratic bound for L(w) given by

Q
(
w|ŵ(t)

)
= wT

(
g
(
ŵ(t)

)
−Bŵ(t)

)
+

1

2
wTBw +

1

2
wTΛ(t)w (16)

where

Λ(t) ≡ diag
{∣∣ŵ1,(t)

∣∣−1
, . . . ,

∣∣ŵd(K−1),(t)

∣∣−1
}
. (17)

The maximization of (16) leads to

ŵ(t+1) =
(
B− λΛ(t)

)−1 (
Bŵ(t) − g

(
ŵ(t)

))
. (18)

The terms |ŵi,(t)|−1, present in the diagonal of matrix Λ(t),
tend to infinity when ŵi,(t) approaches to zero. We can thus
foresee numerical problems in the successive computations of
(18) because the �1 norm does enforce many elements of w to
be zero. These numerical difficulties are, however, sidestepped
by computing (18) using the following equivalent expression:

ŵ(t+1) = Γ(t)

(
Γ(t)BΓ(t) − λI

)−1
Γ(t)

(
Bŵ(t) − g(ŵ(t))

)
(19)

where

Γ(t) ≡ diag
{∣∣ŵ1,(t)

∣∣1/2 , . . . , ∣∣ŵd(K−1),(t)

∣∣1/2} . (20)

Notice that (19) is well defined since matrix Γ(t)BΓ(t) − λI is
negative definite.

The algorithm just presented is reminiscent of the iterative
reweighted least squares (IRLS) used for the ML estimation
of the vector w (see [38]). In fact, each IRLS iteration has the
same computational complexity of (19). We, thus, compute the
exact MAP MLR under a Laplacian prior with the same cost as
the original IRLS algorithm for ML estimation.

An important issue remains: the adjustment of the sparseness
parameter λ in (19). As previously referred, this adjustment
should be done by cross validation, which results in a time-
consuming task. To avoid this, a Jeffreys prior on the weights is
also considered. We next describe how the MLR is performed
with this prior.
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2) SMLR With Jeffreys Prior: The Jeffreys prior given in (7)
leads the objective function

L(w) = l(w)−
d(K−1)∑

i=1

log |wi|. (21)

In place of the term λ|wi| that we had in the Laplace prior, we
have now the term log |wi| for the Jeffreys prior. Given that,
from small perturbations of wi about w′

i, we have log |wi| �
|wi|/|w′

i|+ c, we conclude that the Jeffreys prior acts as the
Laplacian one with an adaptive parameter λ = 1/|w′

i|, thus
forcing aggressively the small elements of the regressor w to
be zero. The Jeffreys prior is in fact known as a strong sparsity-
promoting prior [39]. This characteristic will be evident also in
the experiments reported in Section III.

To maximize L(w), we use, as before, the bound optimiza-
tion framework. In this way, the surrogate function Q(w|ŵ(t))
for l(w) given by (13) is kept. Concerning the logarithm of the
Jeffreys prior, a straightforward calculus leads to the inequality

− log |wi| ≥ −1

2

w2
i∣∣wi,(t)

∣∣2 + cte (22)

where cte denotes a constant depending only on wi,(t). Since
the minimum of − log |wi| − (−1/2w2

i /|wi,(t)|2) is reached
at wi = wi,(t), then −1/2w2

i /|wi,(t)|2 is a valid surrogate
function for − log |wi|, and by comparing (22) with (15), we
conclude that ŵ(t+1) is the same as that in (18), where the
matrix Λ(t) is now given by

Λ(t) ≡ diag
{∣∣ŵ1,(t)

∣∣−2
, . . . ,

∣∣ŵd(K−1),(t)

∣∣−2
}
. (23)

As with the Laplacian prior, we may write

ŵ(t+1) = Γ(t)

(
Γ(t)BΓ(t) − I

)−1
Γ(t)

(
Bŵ(t) − g

(
ŵ(t)

))
(24)

where

Γ(t) ≡ diag
{∣∣ŵ1,(t)

∣∣ , . . . , ∣∣ŵd(K−1),(t)

∣∣} . (25)

The terms − log |wi| present in (21) are nonconcave, and
therefore, the correspondent objective function L(w) is not,
with generality, concave. Therefore, we are not guaranteed to
obtain the global maxima. However, as shown in Section III, by
initializing all elements of w with nonzero values, we obtain
systematically very good estimates of w.

3) FSMLR—BGS Iterations: Independent of the prior used,
the computational cost of solving, at each iteration, the linear
systems implicit in (19) and (24) is on the order of ((dK)3),
preventing the application of SMLR to data sets with large
values of the product dK. This is the scenario that we have
in most hyperspectral image classification, or segmentation,
problems. Even using linear kernels and, thus, values of d
on the order of a few hundreds, the number of classes is
frequently on the order of 20, leading to matrices of thousands
by thousands, let alone the kernel case. In order to circumvent
this problem, a modification to the iterative method used in the
SMLR is introduced. This modification results in a faster and
more efficient algorithm: the FSMLR [34]. The FSMLR uses

the block Gauss–Seidel (BGS) method [38] to solve the system
implicit in (24). The modification consists in, at each iteration,
solving blocks corresponding to the weights belonging to the
same class, instead of computing the complete set of weights.

The linear system in (19) and (24) can be written as Au =
z, where A ≡ (Γ(t)BΓ(t) − λI) and z ≡ Γ(t)(Bŵ(t) −
g(ŵ(t))) wherein ŵ(t+1) = Γ(t)u and Γ(t) is given by (20)
for the Laplacian prior and by (25) for the Jeffreys prior. The
regularization parameter takes the value λ = 1 in the case of
the Jeffreys prior.

Computing ŵ(t+1) is thus equivalent to solving the system
Au = z with respect to u and then computing ŵ(t+1) =

Γ(t)ŵ(t+1)u.
Recall that Γ(t) is a diagonal matrix made of K − 1 diagonal

blocks of size d× d; the kth diagonal block corresponds to the
kth class. Hence, Γ(t) has dimension (d(K − 1))× (d(K −
1)). Matrix B (11) has dimension (d(K − 1))× (d(K − 1)),
and it can be decomposed into d× d blocks Bik given by

Bik ≡
[
−1

2
[I− 11T /K]

]
ik

Rx, i, k = 1, . . . ,K − 1

(26)

where Rx ≡
∑m

i=1 xix
T
i . With this definition in place and by

setting z and u as block vectors, where zk and uk are the
blocks corresponding to the class k, we have concluded that
solving the linear systems Au = z with the BGS iterative
procedure is equivalent to solving⎡⎢⎣ A1,1 . . . A1,K−1

...
...

AK−1,1 . . . AK−1,K−1

⎤⎥⎦
⎡⎣ u1

...
uK−1

⎤⎦ =

⎡⎣ z1
...

zK−1

⎤⎦ (27)

where

Aik = Γi,(t)BikΓk,(t) − λI (28)

and Γk,(t) is the kth block diagonal matrix of Γk corresponding
to the class k.

Using this technique, it happens that, at each iteration, K sys-
tems of equal dimension to the number of samples are solved.
This results in an improvement in terms of computational effort
on the order of K2, which has a high impact in problems with
a large number of classes.

The pseudocode for the FSMLR algorithm to estimate ŵ is
shown hereinafter.

Algorithm 1 The FSMLR algorithm
1: procedure FSMLR(w(0),u(0),D, λ,BGS_iters) �(D ≡
{(x1,y1), . . . , (xm,ym)} is the training set)

2: t ← 0
3: repeat � repeat for each bound
4: Γ(t) ← Γ(w(t))

5: z(t) ← Γ(t)(Bw(t) − g(w(t)))
6: for j = 1 to BGS_iters do
7: for k = 1 to K − 1do
8: uk ← solution{Ak,kuk = zk −∑

i�=k Ai,kui}
9: end for
10: end for
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11: t ← t+ 1
12: w(t) ← Γ(t)u
13: until stopping criterion is satisfied.
14: returnw(t)

15: end procedure

The gain introduced by the fast implementation of SMLR
allows the optimization criteria used in the SMLR to be solved,
which otherwise would not be possible in practice.

B. MLL Markov–Gibbs Prior

The application of FSMLR with a Laplacian or a Jeffreys
prior enforces sparsity in the regressors parameterizing the pos-
terior class probability distributions, providing a competitive
method for the classification of hyperspectral images. However,
the classifiers obtained can be improved by adding contextual
spatial information modeling the piecewise smooth nature of
real-world images.

In this paper, we adopt an MLL prior [40] to express contex-
tual constraints in a principled manner. The MLL prior is an
MRF that models the piecewise smooth nature of the image
elements, considering that adjacent class labels are likely to
belong to the same class [21].

The MLL prior model for segmentation has the formal
structure

p(y) =
1

Z
exp

(
−

∑
c∈C

Vc(y)

)
(29)

where Z is a normalizing constant and the sum is over the so-
called prior potentials Vc(y) for the set of cliques2 C over the
image, and

−Vc(y) =

⎧⎨⎩
αyi

, if |c| = 1 (single clique)
βc, if |c| >1 and ∀i,j∈cyi = yj
−βc, if |c| > 1 and ∃i,j∈cyi �= yj

(30)

where βc is a nonnegative constant.
In this paper, we assume that the cliques consist either of a

single pixel, i.e., c = {i}, for i ∈ S , or of a pair of neighboring
pixels, i.e., c = {i, j}, where i, j ∈ S are first order neighbors.
Furthermore, we set αk = α and βc = (1/2)β > 0, i.e., our
MLL gives no preference to any particular label or direction,
and it is coherent with the assumption p(yi) = 1/K taken in
the beginning of Section II.

Let n1, n2, and n(y) denote the number of single-pixel
cliques, the number of two-pixel cliques, and the number of
two-pixel cliques with the same class label, respectively; then,
(29) can be written as

p(y) =
1

Z
en1α− β

2 (n2−n(y))+ β
2 n(y)

=
1

Z ′ e
βn(y) (31)

where Z ′ is a normalizing constant. It is therefore clear that the
prior (31) attaches a higher likelihood to segmentations with a
large number of cliques having the same label. Given that, in the

2A clique is a set of pixels that are neighbors of one another.

present setting, n(y) =
∑

{i,j}∈C δ(yi − yj), where δ denotes
the unit impulse function;3 then, the MLL prior can also be
written as

p(y) =
1

Z ′ e
β

∑
{i,j}∈C

δ(yi−yj)

.

In the next section, we will exploit this formula for the MLL
prior.

C. MAP Segmentation Using the α-Expansion Algorithm

After learning the class probability distributions p(x|y) ∝∏
i p(yi|xi) with the FSMLR and modeling the prior over

classes p(y) with an MLL probability distribution, we aim at
computing the MAP segmentation given by

ŷ = argmax
y

p(x|y)p(y)

= argmax
y

∑
i∈S

log p(yi|xi) + βn(y)

= argmin
y

∑
i∈S

− log p(yi|xi)− β
∑

{i,j}∈C
δ(yi − yj). (32)

The minimization of (32) is an integer optimization problem.
The exact solution for K = 2 was introduced by mapping the
problem into the computation of a min-cut on a suitable graph
[41]. This line of attack has been recently reintroduced and
has been intensely researched since then (see, e.g., [42]–[44]).
The number of integer optimization problems that can now
be solved exactly (or with a very good approximation) has
increased substantially. The central concept in graph-cut-based
approaches to integer optimization is the so-called submodular-
ity of the pairwise terms: A pairwise term V (yi, yj) is said to be
submodular (or graph representable) if V (yi, yi) + V (yj , yj) ≤
V (yi, yj) + V (yj , yi), for any yi, yj ∈ L. This is the case of
our binary term −δ(yi − yj). In this case, the α-expansion
algorithm [42] is applicable. It yields very good approximations
to the MAP segmentation problem and has, from the practical
point of view, an O(n) complexity.

To conclude this section, the pseudocode of the complete
segmentation algorithm with discriminative class learning and
MLL prior—BSD-MLL—is shown hereinafter.

The BSD-MLL segmentation algorithm presented here re-
sumes to two major steps: 1) the estimation of class densi-
ties through the discriminative algorithm FSMLR and 2) the
modeling of contextual information by means of an MLL
Markov–Gibbs prior. Finally, the MAP segmentation is ef-
ficiently solved by applying the graph-cut-based technique
α-expansion.

Algorithm 2 The BSD-MLL algorithm
1: procedure BSD-MLL(D, λ,BGS_iters, c, β) �(D ≡

{(x1,y1), . . . , (xm,ym)} is the training set)
2: x ← h(x) � Transform the input features x through

function h(x)
3: ŵ ← FSMLR(D, λ,BGS_iters) � Estimate the feature

weights ŵ with FSMLR algorithm

3That is, δ(0) = 1, and δ(y) = 0 for y �= 0.
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4: Edata(y) ← −
∑n

i=1 log(p(yi|xi, ŵ))
5: Eprior(y) ← − log p(y)

6: Etrain(y) ←
{
0, if ŷi = yi (correct label)
∞, if ŷi �= yi (incorrect label)

7: E(y) ← Edata(y) + Eprior(y) + Etrain(y) �
Compute energy for all classes

8: ŷ ← α-expansion(E(y)) � Minimization using
α-expansion algorithm.

9: returnŷ
10: end procedure

The first major step of the BSD-MLL algorithm is dom-
inated by step 3, where the estimation of class densities is
done through the FSMLR algorithm. As seen in Section II-A3,
this has a complexity O(kd3). The second major step of the
segmentation algorithm is dominated by step 8, where the
α-expansion algorithm is used to determine the MAP segmenta-
tion. This process has complexity O(n), as seen in Section II-C.
In practice, we have therefore concluded that the complexity of
the complete BSD-MLL algorithm is dominated by the FSMLR
complexity O(kd3).

III. RESULTS

This section presents a series of experimental results with the
following main objectives.

1) Show the gains in segmentation accuracy due to the
inclusion of the spatial prior information.

2) Compare the tradeoff between segmentation results and
computational complexity obtained with the Laplacian
and Jeffreys priors.

3) Compare the introduced BSD-MLL segmentation method
with state-of-the-art competitors.

To meet these objectives, the BSD-MLL algorithm is applied
to simulated hyperspectral images and to the Indian Pines [45]
and Pavia [46] benchmarked data sets. In the following sections,
one for each data set, we start by analyzing the overall accuracy
(OA) results from the FSMLR classifier, as well as the degree
of sparseness obtained with each prior, and then proceed with
the presentation of the OA segmentation results obtained with
the BSD-MLL segmentation method.

To evaluate the performance of the proposed method, we split
the available complete ground-truth set, of size nT , into a train-
ing set of size nL and a validation set of size nV = nT − nL.
Then, we select subsets of size αnL (α ∈ {0.1, 0.2, 0.3, . . . , },
i.e., 10%, 20%, 30%, . . . , of the complete training set). Each
reported OA is computed from ten Monte Carlo (MC) runs,
where, in each run, αnL training samples are obtained by
random sampling the full training set.

Owing to the sparsity enforcing priors we have adopted, only
a small number of components of the MLR are nonzero. For
this reason and also because we are estimating the OAs based
on 10 MC runs, the OA estimates have very small errors. For
this reason, we do not compute any other uncertainty statistics.

In Pavia Data set 1 experiments, we built training sets with
the same number of samples per class. This is, of course, not
optimal when the distribution of the class labels is nonuni-
formly distributed because the training set does not account for

the class-label distribution. Anyway, we make the following re-
marks: 1) The log posterior of the class labels is formally given
by (32) for any class-label distribution, which is a consequence
of the necessary compatibility between the MLL marginals and
the class-label distribution, and 2) in spite of the nonoptimal
selection of the number of samples per class, we show below
state-of-the-art performance in all experiments reported. Of
course, this issue is open to further research.

A. Simulated Data Sets

In this section, we report the results from two experiments:
a binary classification/segmentation problem and a multiclass
classification/segmentation problem.

1) Binary Segmentation Problem: Fig. 1 shows the classi-
fication and segmentation results of a simulated data set. The
original image of binary class labels, shown in the top left
corner, of size n = 128× 128, is a sample of an MLL random
field generated with smoothness parameter βg = 4 and with a
second-order neighborhood.4 The feature vectors xi, for i ∈ S ,
conditioned on the class labels yi ∈ {1, 2}, were generated as

xi = myi
+ ni (33)

where

m1 ≡ −1√
10

[1, . . . , 1︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
d−10

]T , d ≥ 10

m2 = −m1, and ni represents the samples of zero-mean Gaus-
sian noise with covariance matrix σ2I, with σ = 1.5. The size
of the training set is m = 100, which is just 0.61% of the size
of the complete ground-truth set.

The plot in the top right corner in Fig. 1 shows the classifica-
tion and segmentation results obtained with the Laplace and the
Jeffreys priors as a function of d, the dimension of the feature
vector. The plotted OAs were obtained from 10 MC runs. We
highlight the following points.

1) The classification OAs are over ten points below (1−
PE)100, where PE is the minimum probability of error
for the current problem (see the expression for PE , e.g.,
[47]). The gap between the OA and the optimal value ap-
proaches zero as m, the size of the training set, increases.
For example, for m = 1000, this gap is smaller than 1%.

2) The classification results obtained with the Laplace prior
are slightly better than those obtained with the Jeffreys
prior. The former was, however, obtained by fine tuning
the parameter λ of the Laplace density, whereas the latter
does not depend on any parameter.

3) The classification OAs are very close to 100% for both
priors, which represents a gain over the classification
accuracy higher than 20%.

4) The number of training samples (100) and the number of
regression parameters to learn are 2d. As d increases, it
would be expectable to observe a clear decrease in the
OA owing to the Hughes phenomenon. However, this is

4We denote the smoothness parameter β, present in the MLL prior (31), used
to generate the true image of labels as βg .
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Fig. 1. (Top left) Sample of an MLL random field. (Top right) Classification and segmentation overall accuracies for Laplace and Jeffreys priors as a function of
d, the size of the feature vectors. (Bottom left) Vector of weights of the multilogistic regression for the Laplacian prior and for d = 100. (Bottom right) Vector of
weights of the multilogistic regression for the Jeffreys prior and for d = 100.

not the case, and the reason is the inclusion of sparsity-
inducing priors controlling the machine complexity.

5) The effect of the Laplacian and Jeffreys sparsity-inducing
priors is to set most components of the regression vector
w to zero as shown in the bottom in Fig. 1; for d = 100,
the use of the Laplacian prior yields 17 nonzeros out of
100, whereas the use of the Jeffreys prior yields just 11
nonzero components. This higher level of sparsity pro-
moted by the Jeffreys prior has already been anticipated
and will be observed in all the results shown in this
section.

2) Muticlass Segmentation Problems: In this section, we re-
port the results with more than two classes. The original images
of class labels, of size 128× 128, were according to the MLL
random field (31) using a second-order neighborhood. Fig. 2
shows one of such images, with four classes and smoothness
parameter βg = 1 (left-hand side) and βg = 2 (right-hand side).
The image obtained with βg = 2 is, as expected, smoother.

The feature images were generated as in (33). The mean
vectors mi, for i = 1, . . . ,K, are mineral spectral signatures
extracted from the U.S. Geological Survey spectral library [48].
Each signature contains 221 spectral bands, resulting in a data
set of dimension 128× 128× 221. The noise variance was
set to σ2 = 1, corresponding to a hard classification problem
because the Euclidian distances ‖mi −mj‖, for i �= j, tend
to be on the order of σ. In these experiments, we considered
nT = 16 384 (all image pixels) and nL = 8192.

Fig. 2. Image of class labels with four classes generated by an MLL distribu-
tion with (left) βg = 1 and (right) βg = 2.

Table I presents the OA results with h(x) linear, considering
K = 4, K = 10, and βg = 1, for both the Laplacian prior (with
λ = 0.0005) and the Jeffreys prior. In both cases (K = 4 and
K = 10), the OA obtained with the Jeffreys prior is slightly
lower than that obtained with the Laplacian prior. Table II
presents the number of nonzero features by each prior for
K = 4. It is clear that the Jeffreys prior imposes sparseness
more aggressively than the Laplacian prior. This characteristic
brings advantages concerning computational complexity and
generalization capability.

We have also run the FSMLR using RBF functions h(x) =
[1, K(x,x1), . . . , K(x,xm)]T , where K(x, z) = − exp(|x−
z|2/(2σ2

h)). The parameter σh controlling the kernel width was
hand tuned for optimal performance. An OA of 87%, which is
close to the best obtained with the linear kernel, was obtained



BORGES et al.: BAYESIAN HYPERSPECTRAL IMAGE SEGMENTATION 2159

TABLE I
CLASSIFICATION OA OBTAINED WITH THE FSMLR USING DIFFERENT

TRAINING SET SIZES, WITH h(x) LINEAR, K = 4, AND K = 10,
USING THE LAPLACIAN AND THE JEFFREYS PRIORS

TABLE II
NUMBER OF NONZERO FEATURES SELECTED (FROM 224) BY

EACH PRIOR, WITH h(x) LINEAR AND K = 4

using a training set of 820 samples (10% of nL). Larger training
sets did not improve the OA as the linear kernel is the optimal
model for the current problem. Concerning the use of the
two priors, the results are very close, with the Jeffreys prior
producing a sparser weights vector.

To illustrate the convergence behavior of the BGS iterative
algorithm, Fig. 3 shows the evolution of L(ŵ(t)), with the
SMLR and the FSMLR algorithms parameterized by the num-
ber of complete runs of the BGS algorithm (BGS_iters). The
total number of iterations necessary to compute w(t) and the
time required for that are represented in the abscissas (left and
right graphics in Fig. 3, respectively).

From Fig. 3, one should note that the total numbers of
iterations that both the SMLR and FSMLR algorithms take to
converge are quite similar. In addition, it is also patent that the
number of iterations required is not very sensitive to the number
of complete runs of the BGS algorithm. A conclusion in-line
with this is presented in [49].

Regarding the time required to compute ŵ(t), the high im-
provement attained with the fast implementation of SMLR is
evident. With respect to the influence of the number of complete
runs of the BGS algorithm, it is noticeable that a higher number
of BGS iterations imply more time to compute w(t).

It is important to note that, for a given ŵ(t), it is not
necessary to exactly solve the system since it will change in
the subsequent iteration. In practice, BGS_iters was set to one,
leading to excellent results.

The BSD-MLL segmentation method was applied to the
simulated data sets previously described and the linear kernels.
Table III presents the OA of the BSD-MLL segmentation for
βg ∈ {1, 2} and K ∈ {4, 10}.

Considering the K = 4 case and independent of the value
used for βg , the performances in terms of OA are very similar
for both priors used in the density-estimation step. It is also
interesting to note that there is no significant difference in the
OA using 20% or 50% of the training set. The main differ-
ence happens when the training size is changed from 10% to
20%. Tests with K = 10 produced lower OA values than with
K = 4, which is similar to what was observed in the FSMLR
classification problems. However, the improvement achieved

by the segmentation procedure was very good (around 30%).
Increasing the size of the training sets attenuates the differences
between the OAs for both priors. The OA achieved with 50%
of pixels as training samples produced very good results for
the segmentation OA, comparing with the OA achieved by the
FSMLR classification (see Table I). The inclusion of spatial
information in the BSD-MLL process increased the OA results
achieved by the FSMLR, as expected.

B. Indian Pines Data Set

The proposed algorithms are now applied to the well-known
hyperspectral data set from the Airborne Visible Infrared Imag-
ing Spectrometer (AVIRIS) Indian Pines 92 from Northern
Indiana taken on June 12, 1992 [45]. The ground-truth data
image consists of 145× 145 pixels of the AVIRIS image in
220 contiguous spectral bands to which we have removed 20
noisy bands [45] (bands 104–108, 150–163, and 220). Due to
the insufficient number of training samples, seven classes were
discarded, leaving a data set with nine classes distributed by
9345 pixels (nT = 9345). This data set was randomly divided
into a set of 4757 training samples and 4588 validation samples
(nL = 4757 and nV = 4588). The spatial distribution of the
class labels is shown in Fig. 4, and the number of samples per
class is presented in Table IV.

The OA was inferred from the validation data set with 4588
samples using linear and RBF kernel mappings h(x) and train-
ing set sizes of 10% (475 samples), 20% (951 samples), and
50% (2379 samples). Both the Laplacian parameter λ and the
MLL smoothness parameter β were hand tuned, based on the
training set, to produce good segmentation results. As a result
of this procedure, we set λ = 16 in the linear case, λ = 0.0005
when an RBF kernel was considered, β = 1.5 when a complete
training set was used, and β = 4 for subsets of the training data.
As with simulated data, we present the classification results
obtained with the FMSLR algorithm and the segmentation
results obtained with the BSD-MLL algorithm.

Table V presents the OA obtained in the independent test
set for each training set size used to learn the classifier and,
in brackets, the respective number of nonzero features selected
by each prior. The OAs produced by the Jeffreys prior are
slightly lower than the ones from the FSMLR classification with
a Laplacian prior. However, looking to the level of sparsity of
each prior, the Jeffreys prior leads to a lower number of features,
producing in this way sparser solutions than the Laplacian prior.
It can be observed that, for all sizes of the training set, the
Jeffreys prior selects around half the number of features with
respect to the Laplacian prior.

Table VI shows the OA obtained with the RBF kernels as
input functions. Compared with the results shown in Table V for
the linear kernel, we have a clear improvement in performance
ranging from about 10% for 10% of the training set to about
5% for 50% of the training set. Notice that, for the RBF
kernel and Laplacian prior, just 10% of the training set yields
a performance similar to that of the linear kernel with 100% of
the training set. The Laplacian and Jeffreys priors exhibit the
pattern of behavior shown for the linear case.

The OA classification results obtained with the FSMLR
are competitive with the results published in [50] in similar
conditions over the same data set. In fact, the performance of
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Fig. 3. Evolution of L(ŵ(t)) as function of (left) the number of iterations and (right) time, for SMLR and FSMLR algorithms, with h(x) linear, parameterized
by the number of complete runs of the BGS algorithm (BGS_iters).

TABLE III
OA OF BSD-MLL SEGMENTATION USING DIFFERENT TRAINING SETS,

WITH h(x) LINEAR, USING THE LAPLACIAN AND THE JEFFREYS PRIORS

Fig. 4. AVIRIS image used for testing: (Left) Color composite of the original
image, which is near infrared, (center) training areas, and (right) validation
areas.

TABLE IV
NUMBER OF SAMPLES PER CLASS IN THE GROUND-TRUTH SETS. NOTE

THAT, ALTHOUGH THE NUMBER OF CLASSES IS THE SAME IN ALL

DATA SETS, THE TYPES OF LAND-COVER CLASS REPRESENTED

BY EACH CLASS ARE DIFFERENT

the FSMLR linear classification proved to be superior to that
of the linear discriminant analysis presented in [50] (82.32%),
and the FSMLR results with an RBF input function are

TABLE V
OA OF FSMLR CLASSIFICATION USING 10%, 20%, AND 50% AND THE

COMPLETE TRAINING SET OF THE INDIAN PINES DATA SET, WITH

h(x) LINEAR, USING LAPLACIAN AND JEFFREYS PRIORS. THE

NUMBER OF NONZERO FEATURES SELECTED BY EACH PRIOR

(OUT OF 200) IS IN BRACKETS

TABLE VI
OA OF FSMLR CLASSIFICATION USING 10%, 20%, AND 50% OF

TRAINING SET OF THE INDIAN PINES DATA SET, WITH h(x) RBF,
USING LAPLACIAN AND JEFFREYS PRIORS. THE NUMBER OF

NONZERO FEATURES SELECTED BY EACH PRIOR (OUT OF

475, 951, AND 2379, RESPECTIVELY) IS IN BRACKETS

similar to the ones from an SVM-RBF classification (approx-
imately 91%), where exponentially increased sequences of σ =
1, . . . , 50 were tested. Although, for RBF kernels, our method
did not outperform the method used in [50], the sparsity of the
FSMLR can be an advantage for large data sets.

Table VII summarizes the OA results obtained in the seg-
mentation process with the BSD-MLL algorithm. Notice the
large improvement (up to 10%) that, in all cases, we got just
due to the inclusion of the spatial prior. Table VIII presents
the confusion matrix of the segmentation performed with 50%
of training data to learn the BSD-MLL algorithm with the
Laplacian prior and h(x) RBF (OA of 97.86%). The classes
considered are as follows: C1 (corn, no till), C2 (corn, minimum
till), C3 (grass/pasture), C4 (grass/trees), C5 (hay, windrowed),
C6 (soybean, no till), C7 (soybean, minimum till), C8 (soybean,
clean till), and C9 (woods). This table shows that the BSD-
MLL was able to identify perfectly the class 4 (grass/trees) and,
almost perfectly, other classes like class 5 (hay, windrowed) and
class 9 (woods).

Recently, classification methods that combine spatial and
spectral information have been proposed [29], [51]. To compare
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TABLE VII
OA OF BSD-MLL SEGMENTATION USING 10%, 20%, AND 50% AND THE

COMPLETE INDIAN PINES TRAINING SET, WITH h(x) LINEAR

AND RBF, USING LAPLACIAN AND JEFFREYS PRIORS

TABLE VIII
CONFUSION MATRIX OF BSD-MLL SEGMENTATION USING 50% OF

INDIAN PINES TRAINING SET (nL = 8192), WITH h(x) RBF,
USING A LAPLACIAN PRIOR

the performance of the BSD-MLL segmentation method, we
run it over the same conditions presented in [29] and [51]: using
20% of the training set (2073 samples) and considering 16 land-
cover classes. The BSD-MLL achieved an OA of 96%, with a
Laplacian prior, showing to be competitive with the results from
[29] (OA of 96.53%) and slightly lower than those from [51]
(OA of 97.85%).

Concerning the comparison between the use of the Jeffreys
and the Laplace priors, notice the similar performance that they
yield. In these cases, the Jeffreys prior is preferable because
there is no prior parameter to deal with. Moreover, the sparsity
achieved by the FSMLR when using a Jeffreys prior is higher
than that with the Laplacian prior (see Tables V and VI).

C. Pavia Data Sets

The Pavia data set was collected by the Reflective Optics
System Imaging Spectrometer sensor in the framework of the
HySens project managed by the German Aerospace Center
[46]. The images have 115 spectral bands with a spectral
coverage from 0.43 to 0.86 μm and a spatial resolution of 1.3 m.
Two scenes over Pavia were made available—a scene over the
city center and another over Pavia University. Three different
subsets of the full data were used, which is similar to the work
presented in [16].

1) Data set 1—Image over Pavia city center with 492×
1096 pixels in size [see Fig. 5(a)], 102 spectral bands
(without the noisy bands), and 9 ground-truth classes
distributed by nL = 5536 training samples and nV =
103 539 validation samples.

2) Data set 2—Image over Pavia University with 310×
340 pixels in size [see Fig. 5(b)], 103 spectral bands
(without the noisy bands), and 9 ground-truth classes

Fig. 5. Pavia data sets used. (a) Data set 1. (b) Data set 2. (c) Data set 3.

distributed by nL = 3921 training samples and nV =
42 776 validation samples.

3) Data set 3—Superset of the scene over Pavia city cen-
ter, including a dense residential area, with 715× 1096
pixels in size [see Fig. 5(c)], and 9 ground-truth classes
distributed by nL = 7456 training samples and nV =
148 152 validation samples.

The distribution of the number of samples per class is pre-
sented in Table IV.

The FSMLR classification with h(x) linear was carried out
over Data set 1 and Data set 3 considering the complete training
set to learn the classifier.

The FSMLR classification of Data set 1 with the Jeffreys
prior resulted in an OA of 95.15%. The best OA achieved by the
Laplacian prior in the same conditions was 93.30% for λ = 3.
In terms of OA, the Jeffreys prior outperformed the FSMLR
linear classification with the Laplacian prior and approximated
the results presented in [16] with an SVM polykernel (OA of
96.03%).

In respect to the classification-method sparsity, the number
of weights estimated by the Jeffreys prior with a nonzero
value was 20 (out of 102) while the number estimated by the
Laplacian prior (with λ = 3) was 66. This clearly shows the
higher sparsity achieved by the Jeffreys prior.

The classification experiments with the FSMLR linear classi-
fication over Data set 3 yield an OA of 96.95% with the Jeffreys
prior, outperforming the result achieved with the Laplacian
prior in about 2% and showing to be competitive with the results
from [16] (97%) achieved with methods that integrate spatial
information. In terms of sparsity, comparing with the Laplacian
prior with λ = 7 (the parameter that returned the best OA), the
Jeffreys prior once again gave solutions with a higher level of
sparsity. The number of weights estimated by the Jeffreys prior
with a nonzero value was 21 (out of 102) while the number
estimated by the Laplacian prior was 50. By using a larger
number of features to execute the classification process, the
Laplacian prior will evidently increase the computational cost
of the task.

The FSMLR classification of Data set 2 was performed
considering an RBF as the input function. In this case, 10% of
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TABLE IX
OA OF THE BSD-MLL SEGMENTATION WITH LINEAR MAPPING BOTH

FOR LAPLACIAN AND JEFFREYS PRIORS AND THE RESULTS

FROM [16], USING THE COMPLETE TRAINING SET

Fig. 6. Segmentation maps of Pavia Data set 2, with RBF function. (a) β = 1.
(b) β = 3.4. (c) β = 5.

the training set sample was used to learn the classifier. The OA
was measured in the test set. In this case, an OA of 83.78% was
achieved with the Jeffreys prior, while the use of a Laplacian
prior retrieved an OA of 84.43%, using λ = 0.001. The Jeffreys
prior proved to be competitive with the Laplacian prior, without
the need to define any parameter, and also outperformed the
results presented in [16] (80.99%) over the same data set but
considering the complete training set to learn the classifier with
an SVM with RBF kernels in which the parameters were tuned
using a fivefold cross validation.

The number of weights (out of 392) estimated by each prior
with a nonzero value, 10 by the Jeffreys prior and 23 by
the Laplacian prior, once again exhibits the higher degree of
sparsity promoted by the Jeffreys prior, improving the general-
ization capacity.

The performance of the BSD-MLL segmentation method
with a linear function was evaluated with Data sets 1 and 3
using the complete training set to learn the segmentation algo-
rithm and the complete set of validation samples to access the
OA (see Table IX).

The results from [16] presented in Table IX for Data set 1
were achieved with an SVM with a polykernel function. The
results for Data set 3 are a product of an MRF-based spatial
characterization where a discriminant analysis feature extrac-
tion was applied beforehand in order to increase spectral sepa-
rability. The application of the BSD-MLL segmentation method
with a linear mapping managed to improve the results under
the same conditions, without any preprocessing to increase the
spectral separability, independent of the prior used.

The segmentation problem with the RBF function was evalu-
ated considering different subsets of Data set 1 training set and
with 10% of the training set from Data set 2.

Fig. 6 shows the segmentation of Data set 2, for different
values of β (β = 1, 3.4 and 5), when an FSMLR with a
Laplacian prior was considered.

As can be seen in the three images in this figure, higher
values of β produce maps with a higher degree of homogeneity.
This aspect can be of interest to the user, depending on the scale
and generalization requirements of the image segmentation
task.

The best OA achieved with the segmentation process for
Data set 2 was 91.5% with the Laplacian prior and 84.6% with
the Jeffreys prior. The segmentation results for other data sets
did not exhibit such large differences on the OA resulting from
the use of different priors. This can be due to the low sparsity
level considered in the Laplacian prior (λ = 0.001). Even so,
the results from the segmentation with the Jeffreys prior are
competitive with the results from [16] with algorithms that in-
clude spatial information. When compared with the results from
[52] (88% with the complete training set and using a combined
spatial and spectral algorithm), the BSD-MLL segmentation
algorithm shows once again a very good performance using
only 10% of the training set.

The BSD-MLL segmentation method proposed using RBF
kernels in the class density estimation was also evaluated using
Data set 1. Subsets with 10, 20, 40, 60, 80, and 100 samples
of each class were randomly selected from the training set, and
the OAs were calculated over the complete test set. The results
are presented in Table X, where it is possible to observe the
improvement in the OA promoted by the segmentation process
in comparison with other methods that do not include spatial
information.

The advantage of using a method that includes spatial infor-
mation is well shown by the comparison of the OA achieved by
both methods. With only 90 samples (10 per class), the BSD-
MLL segmentation yielded an OA of 97.77%, while the SVM-
RBF algorithm, used in [16], with the complete training set
(5536 samples) achieved an OA of 96.45%. In the SVM-RBF
algorithm, the kernel parameters were adjusted empirically to
maximize the estimated OA, which was computed using a
fivefold cross validation.

IV. DISCUSSION AND CONCLUSION

We have presented a new supervised segmentation algorithm
suited to hyperspectral images. The algorithm is based on the
MLR discriminative classifier, which accounts for the spectral
information, and on the MLL MRF, which accounts for the
spatial information. Accordingly, we term the method BSD-
MLL. The BSD-MLL method comprises two parts: 1) the
estimation of the MLR regressors and 2) the segmentation of the
images by computing the MAP labeling based on the posterior
MLR and on the MLL spatial prior.

In a series of experiments using simulated and real hyper-
spectral images, the BSD-MLL algorithm yields state-of-the-
art performance. The new FSMLR classification step alone
also performed very well when compared with other classi-
fication competitors. The choice of the input function h(x)
may have a significant influence in the classification results.
Good results were systematically achieved with RBF kernel
functions. However, linear kernels generated very often useful
results with a much lower price in terms of computational
complexity.

The use of Jeffreys priors tends to produce classifica-
tion results that are a little worse than those based on the
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TABLE X
OA (PERCENT) OF THE BSD-MLL SEGMENTATION, USING DIFFERENT

NUMBER OF SAMPLES OF EACH CLASS FROM Data set 1
AND RESULTS FROM [16]

Laplacian prior. However, this difference becomes smaller, or
even disappears, in the segmentation step.

Comparing the segmentation results for the Pavia and Indian
Pines data sets, shown in Tables X and VII, respectively, we
have concluded that the performance of the BSD-MLL segmen-
tation algorithm is higher on the Pavia data sets. For example,
using approximately the same number of training samples (950
in Indian Pines, or approximately 20% of training samples, and
900 samples in Pavia Data set 1) results in a higher OA in
Pavia Data set 1. Moreover, using only 90 samples to train
the BSD-MLL segmentation algorithm, an OA of 97.77% is
achieved over Pavia Data set 1, while approximately the same
OA is achieved in the Indian Pines but with 2375 training
samples. The different resolution of the two data sets is the most
likely explanation for the distinct performance obtained—the
spatial resolution of the Indian Pines image is 20 m, while the
spatial resolution of the Pavia data sets is 1.3 m. Thus, a better
separation between the classes in the Pavia data sets than in the
Indian Pines image is expected, leading to better segmentation
results in the former data set.

The generalization capacity of the segmentation method
should also be noticed. Even when small training sets were
considered, the proposed segmentation algorithm managed to
achieve very good OA results. This fact is well shown, for
example, when we compare the results of the BSD-MLL seg-
mentation of Data set 2 using only 10% of the training set (OA
of 91.5%) with the results from [52] with the complete training
set (OA of 88%).

This paper has presented the proposal of a new Bayesian
hyperspectral segmentation algorithm. Further improvement of
the method can be done, namely, by implementing accurate su-
pervised learning of the model parameters and the development
of semisupervised techniques based on the FSMLR method
presented.
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