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Hierarchical Clustering of Multispectral Images
Using Combined Spectral and Spatial Criteria

André R. S. Marçal and Luísa Castro

Abstract—An agglomerative hierarchical clustering method,
which uses both spectral and spatial information for the aggrega-
tion decision, is proposed here. The method is suitable for large
multispectral images, provided that an unsupervised classification
is previously applied. The method is tested on a synthetic image
and on a satellite image of the coastal zone.

Index Terms—Clustering methods, image classification, image
processing, image region analysis.

I. INTRODUCTION

ALARGE number of multispectral images of the earth are
acquired daily by the current remote sensing satellites.

Consistent automatic data exploration tools are increasingly re-
quired in order to make use of the huge volumes of data made
available. Clustering and unsupervised classification methods
are powerful techniques that can be used to reveal structures and
to identify “natural” groupings on the image data. Hierarchical
methods are needed if we seek to reveal structure in the data at
many levels [1]. This is a convenient approach when it is not
clear how many and which classes are present in the data.

Hierarchical clustering techniques proceed by either a series
of successive mergers or a series of successive divisions [2]. Ag-
glomerative hierarchical methods start with individual objects,
or pixels on a digital image. This is a major limitation, as usually
satellite images will be too big (typically millions of pixels) for
such a method to be computationally viable on a pixel by pixel
basis. An alternative way is to use an agglomerative hierarchical
method after the application of some other clustering method.
For example, the Isodata method [3] can be used to classify the
image into a reasonably small number of classes (e.g., 40). The
resulting classes from this initial classification are then clustered
hierarchically, providing a dendogram that will then allow for
various levels of discrimination to be extracted from the image
data. One problem of this approach is that the final results are
strongly dependent both on the unsupervised classification and
on the hierarchical clustering method. Usually the hierarchical
clustering criterion is based exclusively on the spectral informa-
tion of each object, in this case a set of image pixels or class. A
more meaningful result can be obtained using also the spatial
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context of the individual pixels and classes. This can be partic-
ularly useful when the spectral signatures of the various classes
are reasonably similar, as in the example with a satellite image
of the coastal zone presented here.

II. METHOD

The clustering strategy proposed is an agglomerative hierar-
chical method. However, instead of starting the clustering with
all individual observations (all image pixels), it starts off on a
classified image. The multispectral image ( bands) is assumed
to have been classified into a manageable number of classes ( ),
typically a few tens of classes, by an unsupervised classifier.
The agglomerative measure is based on a linear combination of
four indices: the spectral similarity index, the spatial boundary
index, the spatial compactness index and the class size index.
This agglomerative measure is used to hierarchically structure
the classes of the preclassified image, allowing for a class re-
duction to be performed at various levels.

A. Spectral Similarity Index

Each class ( ) is characterized by the mean vector ( ) of its
elements in the -dimensional multispectral space. The spec-
tral similarity between two classes can be evaluated by
computing the distance between the corresponding mean vec-
tors, and . Several metrics can be used, but the most fre-
quently encountered are Euclidian distance and interpoint dis-
tance [4]. However, for multispectral images a metric based on
the data itself, such as the Mahalanobis distance, is more suit-
able [1]. The Mahalanobis distance ( ) is calculated by (1)
where is the covariance matrix

In (1)

The spectral similarity index ( ) is computed by normal-
izing the Mahalanobis distance for the range 0 to 1 (2), where

and are the minimum and maximum of all
pairs

(2)

B. Spatial Boundary Index

The boundary length between all class pairs is computed
from the classified image. Each pixel is considered to have
eight neighbors: four adjacent and four oblique. An adjacent
boundary is counted twice and an oblique boundary only once.
Thus, a pixel away from the image edge will contribute with
12 boundary counts. The total boundary counts ( ) is a
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function of the number of columns ( ) and lines ( ) of the
image and, provided that each boundary is counted only once,
is given by

(3)

The number of boundary counts for the class pair is .
A normalized boundary for the pair ( ) can be computed from
the perspective of class (4a) and (4b)

(4a)

(4b)

For example, and mean that 50% of
the boundary of class 1 occurs with pixels of class 2, but it
only represents 20% of the total boundary of class 2. As the
boundary between two classes should be a commutative mea-
sure ( ), the normalized boundary index ( ) for the
pair should also be commutative. This can be achieved by
combining (4a) and (4b) in a number of ways, such as (5). This
index will provide values between 0 and 1, with lower values
when the boundary between the pair of classes is significant
from the perspective of both classes

(5)

The reasoning behind this criterion is that two classes that
have a significant common boundary should be more likely to
merge than classes with very little or no common boundaries.
This index will promote the reduction of the total boundary be-
tween different classes in the image.

C. Spatial Compactness Index

The number of self-boundary counts for each class ( ) can
be used to produce an index representing the compactness of a
class ( ), using

(6)

The spatial compactness index will be 0 when the class con-
sists of isolated pixels and will tend to 1 when the boundaries
between pixels of that class with pixels from other classes is neg-
ligible compared to the total number of self-boundary counts. As
the aim of the aggregation index is to identify a pair of classes to

merge , the following compactness index for the pair
is more suitable than and alone:

(7)

This index will penalize the merger of compact classes.

D. Class Size Index

The number of pixels belonging to a class ( ) can be used
to compute a class size index , for example as the fraction of
image pixels on that class. However, as the aggregation index is
computed for class pairs , a class size index for the pair

is a more suitable measure. This index ( ) is simply
(8), where the factor 4 increases the range of the index

without exceeding the value 1

(8)

The class size index should return values between 0 and 1,
but the values encountered will normally be in a much narrower
range, particularly when the number of ungrouped classes is still
large.

E. Hierarchical Clustering Strategy

An aggregation index ( ) is computed for each pair of classes
, combining the spectral similarity index (2), the spa-

tial boundary index (5), the spatial compactness index
(7), and the class size index (8). The relative weight of each
of these indices is controlled by the coefficients , , , and

(9). In order to assure that the aggregation index has values
in the range 0 to 1, the sum of the four coefficients should be 1
( )

(9)

In theory, each of the four indices ( , , , and ) can have
values between 0 and 1. However, in a typical image, only the
index will actually cover the whole range from 0 to 1. A more
reasonable approach is to specify the intended contribution from
each of the four indices for the aggregation process, by a set
of parameters , , , and . These parameters will subse-
quently be normalized, including the range of values covered by
each index. For , for example, following (10a) and (10b), and
for the remaining parameters using an analogue procedure, we
have

(10a)

(10b)

The pair of classes with lowest will be selected for merger.
The new merged class will be assigned a new label

, and the aggregation index is recalculated for all possible
pairs of available classes. The pair with lowest is selected,
and the process is repeated until there are only two classes re-
maining.
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Fig. 1. Synthetic test image—512 � 512 pixels, eight classes—used to
evaluate the performance of the spatial indices B, C , and S.

TABLE I
CLASS BOUNDARY INDEX (B) VALUES FOR THE SYNTHETIC TEST IMAGE

III. EVALUATION

A. Test on a Synthetic Image

A synthetic image was created to evaluate the performance
of the spatial indices , , and . The synthetic test image,
presented on Fig. 1, is 512 512 pixels with eight classes. This
image intends to cover a number of possible spatial situations:
large (classes 1 and 2), small (classes 5 and 7), “dense” (classes
2, 4, and 5), “disjoint” (class 7), with significant common border
(classes 3 and 8), and so forth.

The values for the class boundary index ( ) are presented
in Table I for each pair of classes. The minimum value (0.242)
was obtained, as expected, for the pair , , who have
a significant common boundary. There are several pairs with

, which means that they do not have any common
boundary.

The values for the spatial compactness index ( ) are pre-
sented in Table II. The range of values for this index is fairly
high, from 0.279–0.941. Pairs including class 2 or class 4
have the highest values of , as expected from the figure. It is
somehow surprising that the values for class 1 are only slightly
smaller than those for class 4.

The values for the class size index ( ) are presented in
Table III. The maximum value is not very high, 0.669 for the
pair (1,2), considering that these two classes account for nearly
85% of the image. There are several pairs with negligible values
of , below 0.0005. This is due to the very small relative size
of classes 5 and 7. The range of values for is acceptable for

TABLE II
CLASS COMPACTNESS INDEX (C) VALUES FOR THE SYNTHETIC TEST IMAGE

TABLE III
CLASS SIZE INDEX VALUES (S) FOR THE SYNTHETIC TEST IMAGE

this image, but for images with class sizes evenly distributed,
the range will be significantly reduced.

The aggregation index for the synthetic test image, using ex-
clusively spatial information ( , , ,

), would select the pair 3–8 for merger ( ),
closely followed by the pair 1–7 ( ).

B. Test on a Satellite Image

A section of a satellite image (2048 4200 pixels) from
the sensor ASTER was selected for testing. The three 15-m
pixel bands of ASTER were used [5]. The motivation for this
image exploration was to provide nonquantitative information,
at various levels, about suspended sediments for coastal protec-
tion studies in the west coast of Portugal [6]. The land areas
were removed, except for the beach, to prevent spectral con-
tamination of the interest area. The image was classified into
17 classes using the Isodata algorithm on PCI Geomatics [7],
Fig. 2. Class 1 corresponds to nonobserved or excluded land
areas and was therefore discarded. Classes 2–5 are large, with
between – pixels, and correspond to the deeper sea
areas with low concentration of suspended sediments. Classes
8–17 are very small, 2000–10 000 pixels, and are located in the
sea-breaking zone and around the beach.

The classified image was hierarchically structured using the
aggregation index described in Section II. Initially the classes
were clustered using exclusively the spectral information. This
was achieved by setting the coefficients , and to 0,
leaving the spectral similarity index (Mahalanobis distance) as
the single agglomeration criterion. Fig. 3(a) shows the resulting
hierarchical tree, or dendogram. For this particular situation this
is not a satisfactory result, as the large and more significant
classes are all merged together at the earliest levels. This occurs
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Fig. 2. Isodata classification of the ASTER satellite image of the coastal
zone (17 classes). Class 1 corresponds to nonobserved and land areas that were
removed to prevent spectral contamination of the interest area.

because the small classes near the beach are spectrally more di-
verse than the large open sea classes.

For this particular case, it is important that the large classes,
mainly deep-water areas with low sediment concentrations re-
main unmixed at the earlier stages. The class size index is there-
fore the most important of the spatial indices. For the example
presented, the relative weights for the indices were chosen to be

, , , and . For another
application, image scale and location a different set of coeffi-

(a)

(b)

Fig. 3. Dendograms produced using different clustering criteria. (a)
Exclusively the spectral similarity index (D)—Mahalanobis distance. (b) The
mixed spatial and spectral aggregation index (I) proposed.

TABLE IV
SUMMARY OF INDEX VALUES FOR THE ASTER IMAGE

cients would most likely be required to properly suit the data
and task objectives. It is worth pointing out that to impose these
relative contributions, the normalized coefficients actually used
were , , , and .
Table IV shows the minimum, maximum, average, and stan-
dard deviation ( ) values of the indices , , , and for
this image. The range and are also presented as a percentage
value of the full range available (0 to 1). The dendogram for the
hierarchical clustering using the combined spectral and spatial
criteria is presented on Fig. 3(b). Here, the small classes begin
to merge together at the earlier stages. This is a more reasonable
result, from the point of view of the coastal protection applica-
tion tested here, where the most interesting areas are large but
spectrally very similar. These areas have slightly different re-
flectance values, due to the different concentration of suspended
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sediments, and would be merged at the initial stages of a hi-
erarchically clustering method based exclusively on the spec-
tral differences between classes. The clustering produced by the
combined spectral and spatial criteria prevents the merger of the
more meaningful classes for the application tested at the very
early stages.

IV. CONCLUSION

The method proposed here allows for more flexible criteria
for hierarchical clustering process than the traditional spectral
distance measurement. This is particularly important if the areas
of interest in an image are spectrally similar, as it was the case
on the example presented with an ASTER image of the coastal
zone.

In hierarchical clustering, there is no provision for a reallo-
cation of objects that may have been “incorrectly” grouped at
an early stage [2]. The decision on the coefficients, that control
the relative weight of each index, is a somehow delicate task,
as different results will be obtained from different sets of coef-
ficients. This problem can be reduced by applying the method
a few times, with small variations in the coefficients. A pos-
sible weakness of the method is that it is based on the previous
classification of the multispectral image. It is, nevertheless, a
computationally efficient method that allows for the informa-

tion contained on large multispectral images to be structured hi-
erarchically. It can be a valuable tool for image exploration and
interpretation in application where the structure of the informa-
tion present in the image is not clearly known.
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