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Abstract— The analysis of dot blot (macroarray) images is
currently based on the human identification of positive/negative
dots, which is a subjective and time consuming process. This
paper presents a system for the automatic analysis of dot
blot images, using a pre-defined grid of markers, including a
number of ON and OFF controls. The geometric deformations
of the input image are corrected, and the individual markers
detected, both tasks fully automatically. Based on a previous
training stage, the probability for each marker to be ON is
established. This information is provided together with quality
parameters for training, noise and classification, allowing for a
fully automatic evaluation of a dot blot image.

I. INTRODUCTION

The fast and reliable detection of bacteria from environ-
mental samples is of upmost importance in diagnostic micro-
biology. In the last years, DNA-based methods of bacteria
detection have been increasingly acknowledged as trustwor-
thy alternatives to circumvent the limitations of traditional
culture-based detection approaches focused on biochemical,
serological and pathogenicity tests. In fact, since DNA-loci
rather than organisms are detected, molecular detection meth-
ods are unbiased by the limitations of culturability. DNA-
based methods of bacterial detection rely mainly on two key
factors: the selection of taxa-specific DNA signatures [1],
[2] and a sensitive molecular detection technique [2]. Array-
based hybridization assays, such as microarrays and macroar-
rays, allow the analysis of numerous molecular markers
simultaneously, increasing the detection reliability. Currently,
macroarrays provide a better cost-benefit for routine anal-
ysis than the costly microarray platforms, as emphasized
by various examples for detection/identification of several
microorganisms, including bacterial potato pathogens [3],
phytopathogenic Pseudomonas [1], Lactobacillus species [4],
Pythium species [5] and Aeromonas spp. [6], among others.
In dot blot macroarrays, an ideal positive dot is defined as a
dark area in a light gray background, whereas an ideal nega-
tive dot is undistinguishable from the background. However,
the different hybridization molecular affinities between the
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labeled probe and the spotted marker, and the heterogeneity
of the background noise, results in a grayscale image from
which is not always easy to distinguish a positive from a
negative dot. At present, the analysis of dot blot images
is an operator dependent decision, which is subjective and
therefore a key drawback to further implement macroarrays
for microbial detection. There is thus a great interest in
developing an automatic process for detection, analysis and
classification of dot blot images, in order to allow the fully
automatic processing of dot blot images and consequently
enhance the potential of macroarrays for routine microbial
detection.
This work describes an application for the fully automatic
processing of macroarray images, using dot blot prototype
containing seventeen DNA signatures for the detection of
the plant pathogenic Ralstonia solanacearum [7].

II. METHODOLOGY
The algorithm developed receives as input a digital image

and assumes prior knowledge of the grid size (number of
dots per line and column). The process can be divided
in five stages, illustrated schematically in figure 1: grid
detection, adaptive training, noise evaluation, classification
and confidence estimation. The grid detection process is
described in detail in [8].

Fig. 1. Schematic representation of the automatic image analysis system.

A. Dot blot hybridization assays

For Dot blots, 100 ng of each heat-denatured DNA sig-
nature was spotted in a Nylon membrane, using a Bio-Dot
apparatus (Bio-rad, Hercules, CA). Each dot blot had a pre-
defined grid of evenly spaced dots, in this case, 48 dots
arranged in 8 rows and 6 columns. Figure 2 shows the 8
test images used (T 1, T 2, C1, C2, C3, C4, C5, C6).
Total DNA, from different bacteria, was labeled with Digox-
igenin using the DIG-High Prime labeling kit (Roche, Basel,
Switzerland). Hybridization was carried out overnight at
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68◦C, using a final concentration of 100 ng/mL Digoxigenin-
labeled DNA. DIG-labeled nucleic acids were detected by
chemiluminescency using X-ray films (GE healthcare). The
dot blot images were acquired with a GS-800 densitometer
(Bio-rad, Hercules, CA), producing grayscale images with
1100 by 820 pixels.

Fig. 2. Dot blot images used (from left to right): T1, T2, C1, C2 (top);
C3, C4, C5 C6 (bottom).

B. Grid Detection

Initially, the very dark dots are identify in the original
grayscale image. A binary image is obtained by thresholding
the grayscale image with the Otsu method [9]. The noise
in the binary image is reduced using the morphological
operation opening (erosion followed by dilation) with a
circular structuring element of 5 pixel radius [10]. The holes
present in the original binary image are filled by the morpho-
logical reconstruction [11]. After this initial processing, the
center of mass of each object is computed and the objects
with less than 15 pixel radius are eliminated. The size of
a circular marker diameter is 3mm, which corresponds to
approximately 56 pixels at the scanning resolution used.
The set of markers identified are used to calculate the
directions between all marker pairs. The two main directions
are orthogonal, so the orientation of the grid is obtained as
the most frequent angle in the range [0◦,90◦[, using a bin
search of 2◦. The original image is then rotated by this angle.
More details about this procedure are available in [8].
The correspondence between the markers detected and the
pre-defined (reference) grid is established by assigning a
position in the grid for each marker. The reference grid is
thus mapped into the image, correcting the effects of rotation,
scale and translation [8]. Once the image to grid mapping is
established, a local thresholding is performed on the original
image, to detect all markers present in the image, even the
lighter ones that were not detected in the initial thresholding.

C. Adaptive Training

In the dot blot images, each marker (i) is associated with
a type (Ti), corresponding to a specific DNA signature. The
control markers are represented by 0 and 1 (TOFF = 0, TON =
1) and the other markers by integers larger than 1 (2, ...n).

Seventeen different signatures (types 2-18) were considered
for the dot blot. Figure 3 shows the marker’s type matrix for
the test images used. The images have six control markers
OFF, eight control markers ON and two duplicate markers for
all other seventeen types (Ti : i = 2, ...,18). Two circles are

Fig. 3. Marker’s type matrix for the dot blot images used.

Fig. 4. Example of the circular areas (internal and external) established
for each marker.

established for each marker (figure 4). One (internal) circle
with the same radius of the marker, and another (external)
with a radius of one third of the minimum distance between
markers. Pixel intensity measurements are computed for all
markers and for the image background. For each marker,
the average intensity of the pixels inside the marker (Ii)
and the average intensity of pixels in the local background
Iback (pixels in the outer ring) are computed. The normalized
intensity for a marker (Ii) is obtained by (1).

Ii = 1− Ii
Iback

(1)

For regular markers (markers that are not ON/OFF con-
trols), the average normalized intensity (mIi ) is computed for
each type, and compared with the average normalized in-
tensity for all OFF markers (mOFF ). The difference between
these two values (∆ = mIi−mOFF ) should be positive, with a
value between 0.05 and 0.10. A probability function P(Ii) is
established using mIi as the top level and mOFF as the bottom
level, using equation (2). The shape of this probability
function is illustrated in figure 5. For values of normalized
intensity below mOFF the probability of the marker being ON
is 0 and for values above mIi , the probability is 1. For values
between mOFF and mIi the probability values, between 0 and
1, are given by (2).

P(Ii) =


0 if Ii < mOFF
arg(tan(u))−arg(tan(−2))
arg(tan(8))−arg(tan(−2)) if mOFF ≤ Ii ≤ mIi

1 Ii > mIi

(2)
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where u =−2+ 10×(Ii−mOFF )
∆

.

Fig. 5. General probability function established for each marker type.

The adaptive training is performed using a number of
images, and provides probability functions P(Ii) adapted for
each marker type. In this work, the first two images presented
in figure 2 (T1 and T2) were used as training images, with
the matrix type as presented in figure 3.

D. Noise evaluation

The dot blot images may have considerable noisy areas,
which limits the ability to evaluate some markers. This can
be observed for example in images C1, C5 and C6 (figure
2). The estimation of the noise level of each marker is
therefore an important complementary information required
to properly interpret and classify a dot blot image.
The level of noise contamination is computed for each
marker (i) using the information from its neighboring pixels.
The area around the marker, defined as the outer ring, is
divided in eight equal sectors. Figure 6 (left) illustrates this
process. The difference between the average intensity of
pixels within the sector and the average intensity of the
background (4noise) is used as a noise estimator. The range
of potencial values for 4noise is [0,255]. Three different
noise levels are established for a sector. For 4noise below
30, the sector is considered to have low level of noise, with
a level 0 assigned. For4noise between 30 and 100, a sector is
considered to have moderate noise, and the level 1 is assigned
to that sector. For 4noise above 100 the sector is considered
to have hight level of noise and the level assigned is 2. The
overall noise level for the marker is computed as the sum
of the noise levels of the eight sectors. In figure 6 (right)
two examples of markers from the same image (C1) are
presented. The top marker in figure 6 (3rd line, 1st column in
figure 7) has two sectors with level 1 noise. The noise level of
this marker is thus 2 (2= 0×6+1×2). The bottom marker in
figure 6 (1st line, 2nd column in figure 7) has one sector with
level 1 noise and two sectors with level 2 noise. The overall
noise level for this marker is 5 (5 = 0× 5+ 1× 1+ 2× 2),
which is a rather noisy marker. Figure 7 (left) presents the
noise estimation for the twelve markers of the bottom left
section of image C1.

E. Classification

The classification stage is done assuming that at least
one image is available to train the classifier. Each marker is
classified as being ON or OFF with a probability value.
The classification probability for a marker is calculated

Fig. 6. Illustration of the noise estimation of process, based on 8 sectors,
and two examples of markers with noise level of 2 (top) and 5 (bottom).

using the information obtained in the adaptive training
stage. The probability of a marker being ON is calculated
by equation 2, using for mOFF and mIi the values obtained
in the adaptive training stage for that marker type. If the
value of P(Ii) is below 0.5, then the marker is labeled as
OFF, with a probability of being OFF of 1−P(Ii).

Fig. 7. Noise level estimation (left) and quality parameter Q (right) for
the 12 markers of the bottom left section of image C1.

F. Confidence estimation

Three parameters are used to produce a confidence esti-
mation: a training confidence parameter, a noise confidence
parameter and a classification confidence parameter. All
these parameters use the range 0 to 1, with a value of 1
corresponding to an optimum result. The training confidence
parameter (qt ) is established for each marker type, as the
average of the probabilities of all training markers used for
that type. The noise confidence parameter (qn) is obtained
from the noise level, with qn = 1 for noise levels of 0 or
1; and qn=0 for a noise level of 11 or greater. A linear
interpolation is used for noise levels between 2 and 10.
The classification confidence parameter (qc) is defined by
equation (3). The probability of the marker being ON (3a)
or OFF (3b) is a value between 0.5 and 1.

qc =

{
2P(I j)−1 if P(I j)≥ 0.5
1−2P(I j) if P(I j)< 0.5 (3)

The overall confidence estimation parameter for a regular
marker is computed using (4). For control markers (ON or
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TABLE I
CLASSIFICATION RESULTS FOR A SECTION OF IMAGE C1 (FIGURE 7).

(line,column) Status Q qt qn qc

(1,1) C-OFF 1.00 X 1.00 1.00
(1,2) ON 0.85 1.00 0.70 1.00
(1,3) ON 0.84 0.87 0.80 1.00
(2,1) C-OFF 0.90 X 0.90 1.00
(2,2) ON 0.80 1.00 0.60 1.00
(2,3) ON 0.94 0.87 1.00 1.00
(3,1) C-ON 0.90 X 0.90 1.00
(3,2) ON 1.00 1.00 1.00 1.00
(3,3) ON 0.90 0.79 1.00 1.00
(4,1) C-ON 1.00 X 1.00 1.00
(4,2) ON 1.00 1.00 1.00 1.00
(4,3) ON 0.90 0.79 1.00 1.00

OFF) the confidence estimation is simply obtained as Q =
qc×qn, as there is no training for these markers.

Q = qc× (
qt +qn

2
) (4)

III. RESULTS

The method proposed for the automatic dot blot image
analysis was evaluated using 8 test images (figure 2). The
first two images (T 1, T 2) were used for the training stage and
the other six (C1-C6) for classification. These images were
obtained with the marker’s type matrix presented in figure
3. The automatic processing corrects the image rotation,
identifies the visible markers (location of their centers and
radius) and provides an estimate of the noise level present
in each marker. It uses the training images to calculate the
probability function (of a marker being ON/OFF), adjusted
for each marker type, and classifies each observed marker
accordingly. Together with the final result for each marker
(ON or OFF), a confidence estimation is also provided,
based on the quality of training, the level of noise and the
classification process.
An example of a classification result for the 12 markers of
the bottom left section of image C1 is presented in figure
7 (right). In this section, there are 4 control markers (2 ON
and 2 OFF) and all regular markers were classified as ON,
with a probability of 1.00. The values presented in figure 7
(right) are the overall quality parameter Q, which provides an
indicator of the degree of certainly of the label assignment.

As a further illustration of the final results produced,
table I shows the status and confidence parameters for the
12 markers presented in figure 7. A total of 2 markers
are labeled OFF (the 2 control markers C-OFF) and 10
are labeled ON (including 2 control markers C-ON). The
markers C-OFF and C-ON were used as controls in the
training stage, thus they do not have training confidence
parameter values (qt ), while the DNA-signature markers
had values of qt close to 1. Concerning noise evaluation,
7 markers (1 OFF and 6 ON) had a high noise confidence
parameter (low level of noise qn = 1), 4 had a moderate
value for the noise confidence parameter (qn = 0.7,0.8,0.9)

and 1 had a low level of the confidence parameter (high level
of noise, qn = 0.6). The classification confidence parameter
(qc) was 1 for all 12 markers. Finally, the overall quality
(Q) of these markers had values of 0.80 or above. The
overall quality of markers (2,2) and (1,2) was influenced
by the noise confidence parameter, the overall quality of
markers (2,3), (3,3) and (4,3) was influenced by the training
confidence parameter, while the overall quality of marker
(1,3) was influenced both by the noise and the training
confidence parameters.

IV. CONCLUSIONS

The proposed method performs a fully automatic analysis
of dot blot images with a pre-defined structure (grid size
and location of control markers), based on a number of
training images (at least one). The system provides not only
the status of each marker (ON or OFF), but also three
quality parameters, related to the training and classification
stages, and to the noise present in the observed image. One
limitation of dot blot images is the fact that the status of
same marks is sometimes unclear, even for an experience
user. However, the application of the proposed image analysis
system will increase the reliability of macroarrays used for
bacteria detection, and is therefore an important contribution
in diagnostic microbiology.
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