
Hyperspectral image segmentation using FSMLR with Jeffreys
prior

J.S. Borges & A.R.S. Marçal
Faculdade de Ciências, Universidade do Porto, Portugal

J.M. Bioucas-Dias
Instituto de Telecomunicações – Instituto Superior Técnico, Lisboa, Portugal

Keywords: hyperspectral images, image segmentation, feature selection

ABSTRACT: The segmentation of satellite images is a valuable tool to obtain useful information
about the spatial distribution of different land cover types. The use of segmentation algorithms
instead of the traditional pixel-by-pixel classifiers used to produce land cover maps results on
images that exhibit a more homogeneous distribution of classes, showing the piecewise spatial
continuity of the real world.
Several segmentation and classification methods are being developed to properly handle the high
dimensionality of hyperspectral images. An example is a Bayesian segmentation procedure
based on discriminative classifiers with a Multi-Level Logistic Markov-Gibbs prior. This method
adopts the Fast Sparse Multinomial Logistic Regression as discriminative classifier, a method
that promotes sparsity by including a Laplacian prior. However, the use of this type of prior re-
quires an extensive search to for the best parameter of sparsity. In this work, a modification to
this method is introduced. Instead of using the Laplacian Prior to enforce the sparsity of FSMLR
classifier, the Jeffreys prior is used. This prior avoids the need to proceed to an extensive search
for the best parameter, and also keeps the sparsity of the densities estimators, resulting on a fast-
er and competitive segmentation procedure. The results of the application of this new approach
to the benchmarked dataset Indian Pines show the effectiveness of the proposed method when
compared with that using the Laplacian prior.

1 INTRODUCTION

The classification of satellite images has been used as a powerful tool to access information about
the land cover type distribution on a given scene. Until recently, pixel based classification algo-
rithms were the most popular. These classification algorithms base their decisions in the spectral
signature of each individual pixel. Recently, there is been a development of classification methods
that use information from adjacent pixels. The use of contextual information together with spectral
information results on segmentation algorithms that, when compared with pixel based classification
algorithms, produce land cover maps that describe better the spatial homogeneity of the real world.
This is one reason why segmentation methods are becoming more popular for the production of
land cover maps. Other reason is the fact that adjacent pixels are more likely to have the same la-
bel, and so, this information can help to improve classification accuracies.

Image segmentation procedures are widely used for many applications such as remote sensing,
medical imaging, face and fingertip recognition, machine vision, etc. Theoretically, we might say
that, any segmentation algorithm should be able to give a solution to any segmentation problem.
Nevertheless, each application has specific characteristics that lead to the development of algo-
rithms somewhat devoted to a specific problem. Regarding the remote sensing application, namely
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the segmentation algorithms for land cover classification of satellite images, there are different ap-
proaches such as thresholding, edge or region segmentations (Pal & Pal 1993). Region segmenta-
tion algorithms integrate the spatial and spectral information to take advantage of the complemen-
tarities that both sources can provide. Segmentation algorithms based on morphological profiles
(Benediktsson et al. 2003), endmember extraction (Plaza et al. 2006), hierarchical segmentation
(Tilton et al. 2006) and Markov random fields (Li 2001) have shown good results in segmentation
of  satellite  images.  One  of  the  most  explored  approaches  is  the  Markov  Random  Fields  (MRF).
This type of model allows contextual constraints to be incorporated by modeling the spatial neigh-
borhood of a pixel as a spatially distributed random process. Hidden MRF were introduced in im-
age segmentation (Marroquin et al. 2003) and (Tso & Olson 2005) with different approaches.
However, these types of algorithms showed some problems when dealing with high dimensionality
datasets.

The possibility of having an almost continuous spectral signature of the image pixels makes
hyperspectral sensors powerful tools to better identify the different materials present in the land
cover. Hyperspectral satellite images are characterized for having hundreds of spectral bands,
which alongside the advantage of characterizing the different materials in more detail, also have the
problem of producing high dimensional datasets. When supervised algorithms are considered, the
high dimension of these images, together with limited number of training samples, bring about
problems related to Hughes phenomenon (Hughes, 1968) or curse of dimensionality. When con-
ventional pixel based classification algorithms are considered, the Hughes phenomenon can be
overcome by increasing the number of training samples, when possible, or by reducing dimensio-
nality. When spatial information is added, the problem of dimensionality increases. A solution to
circumvent this problem is the discriminative approach. Discriminative approaches hold the state of
the art of hyperspectral image segmentation (Camps-Valls & Bruzzone 2005). In this approach the
difficulties in learning class densities are overcome by learning directly the densities of the labels,
given the features. One of the most consolidated discriminative supervised classification tools is the
Support Vector Machines (SVMs). They have been successfully used for hyperspectral data classi-
fication due to their ability to deal with large input spaces efficiently and to produce sparse solu-
tions (Camps-Valls & Bruzzone 2005).

Discriminative approaches incorporate neighborhood interactions in the labels as well as the ob-
served data and have being presented in recent years. The Discriminative Random Fields (DRF)
framework proposed by Kumar & Herbert (2006) is an example. In the vein of this approach, we
present a Bayesian segmentation approach which improves the classification performance of dis-
criminative classifiers by adding contextual information in the form of spatial dependencies. The
major difference of our work from the one presented by Kumar & Herbert (2006) is the way that
the parameters are learnt. DRFs learn all the model parameters simultaneously, leading to hard and
complex procedures.  On the contrary,  in  the proposed approach,  the parameters  are  learnt  in  two
consecutive, but non simultaneous steps. As a consequence, the proposed method leads to much
lighter procedures, still displaying very good results.

The Bayesian segmentation method for hyperspectral images here presented learn the class den-
sities in a supervised fashion with a modified discriminative Fast Sparse Multinomial Regression
(FSMLR) (Borges et al. 2006). The FSMLR is a fast version of the Sparse Multinomial Regression
(SMLR) (Krishnapuram et al. 2005). This method is a sparse classification algorithm capable of
dealing with high dimensional datasets. The FSMLR uses a Laplacian prior to enforce the sparsity
on the class parameters. The degree of sparseness of the class densities estimates is controlled by a
sparsity parameter, which has to be tuned by the user. When dealing with high dimensional data-
sets, such as hyperspectral images, this task may become time consuming. This can be circumvent
by using a parameter-free prior. In this work we present a modified version of the Bayesian hyper-
spectral image segmentation with discriminative class learning by introducing the Jeffreys prior
(Bioucas-Dias 2006). The Jeffreys prior keeps the sparsity of the FSMLR without the need to tune
any parameter, controlling the complexity of the learned classifier and, therefore, achieving good
generalization capabilities.
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Having learned the class densities, the spatial dependencies are enforced by a Multi-Level Lo-
gistic (MLL) Markov-Gibs prior, which favors neighboring labels of the same class. To compute an
approximation to the Maximum A Posteriori probability (MAP) segmentation, we adopt the -
Expansion graph cut based algorithm proposed in (Boykov et al. 2001). This tool is computational-
ly efficient and yields nearly optimum solutions.

The segmentation method presented is applied to the benchmarked hyperspectral dataset Indian
Pines (Landgrebe 2003).

The  paper  is  organized  as  follows.  In  section  2  the  methods  are  presented:  FSMLR classifier
with Jeffreys prior and the segmentation procedure based on MLL Markov Gibs prior. Section 3
presents the results of the application to the hyperspectral image and section 4 the concluding re-
marks.

2 METHODS

A segmentation can be interpreted as an image of labels Siiy }{y  where KLyi ,,2,1 .
Let },{ SiRx d

ix  be the observed multi-dimensional image, also known as feature image.
The goal of the segmentation is to estimate y , having observed x . Regarding the Bayesian frame-
work, this estimation is done by maximizing the posterior distribution )()|()|( yxyyx ppp ,
where )|( xyp  is  the  likelihood  function  (or  the  probability  of  feature  image)  and )(yp  is  the
prior over the classes.

The approach here presented, makes use of the discriminative FSMLR classifier (Borges et al.
2006) to learn the class densities )|( ii xyp . The likelihood is then given
by )(/)()|()|( iiiiii ypxpxypyxp . Noting that )( ixp does not depend on the labeling y and
assuming Kyp i /1)( , we have

(1)

where conditional independence is understood.
In the following sections, the FSMLR method, yielding the density )|( xyp ,  the  MLL

prior )(yp and  -Expansion optimization algorithm are briefly described.

2.1 Class density estimation
Given  the  training  set )},(,),,{( 11 nn yxyxD , the SMLR algorithm learns a multi-class

classifier based on the multinomial logistic regression. By incorporating a prior, this method per-
forms simultaneously feature selection, to identify a small subset of the most relevant features, and
learns the classifier itself (Krishnapuram et al. 2005). The goal is to assign to each site Si  the
probability of kyi , for k=1, …, K. In particular, if

TK
i yyy )()1( ,,  is a 1-of-K encoding of

the K classes, and if )(kw  is the feature weight vector associated with class k, then the probability
of 1)( k

iy  given ix  is

(2)

where
TT Kwww )()1( ,,   and )(,),()( 1 xhxhxh l  is a vector of l fixed functions of the in-

put,  often  termed  features.  Possible  choices  for  this  vector  are  linear T
diii xxxh ,1, ,,,1)( ,

where jix , is the jth component of ix ), and kernel ( T
nxxKxxKxh ),(,),,(,1)( 1 , where K(.,.)

is some symmetric kernel function). The latter nonlinear mapping guarantees that the transformed
samples are  more likely to  be linearly separable.  A popular  kernel  used in image classification is
the Gaussian Radial Basis Function (RBF): 22 2/exp)|( zzK xx .

The MAP estimate of w is
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where l(w) is the log-likelihood function and p(w) is a prior on w.
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where )(t is given by

(5)

and

(6)

and T1,,1,11 , g(w) is the gradient of l(w) given by

(7)

1
/1)( wwp  having no

longer a sparsity parameter to tune. Adopting this prior, the optimization process is done in a simi-
lar way to that done in Krishnapuram et al.(2005).

The weights w are learned using bound optimization tools (Lange 2004), making possible to
perform exact MAP multinomial logistic regression, with the same cost as the original iterative re-
weighted least squares algorithm for maximum likelihood estimation (see (Krishnapuram et al.
2005) for details).

The solution of (2) is then given by the iterative equation:

1
exp)( wwp , where  acts

as a tunable regularization parameter.  The process of selecting the optimum  is usually done by
cross-validation trough the training process. In the case of high dimensional datasets, such as
hyperspectral images, this search often becomes a time consuming task. The process of estimating
the class densities must be repeated as many times as the number of values to be tested. In order
to overcome this problem, we introduce a parameter-free prior in the estimation of class densities:
the Jeffreys prior (Bioucas-Dias 2006). The Jeffreys prior is given by

The SMLR presented by Krishnapuram et al. (2005) uses a Laplacian prior on w, to control the
degree of sparseness of MAPŵ . The Laplacian prior is given by

with
TK

iii yyy )1()1( ,,' and
TK

iii wpwpwp )(,),()( )1()1( .
As can be observed in equation (4) there is no parameter to be defined by the user. The weights

estimation procedure with the inclusion of Jeffreys prior instead of the Laplacian prior becomes in-
dependent of the selection of any parameter.

In practice, the computational cost of solving the linear system in equation (4) is often prohibi-
tive. Regarding the application of SMLR to hyperspectral images, this becomes a problem since the
cost at each iteration is of the order of (dK)3 where the number of bands d is usually very large.

In order to avoid this problem, a modification to the iterative method used in SMLR can be
done. This modification results in a faster and more efficient algorithm: the Fast-SMLR (FSMLR)
(Borges et al. 2006). FSMLR uses the Block Gauss-Seidel method (Quarteroni et al. 2000) to solve
the system (4). The modification consists, at each iteration, in solving blocks corresponding to the
weights belonging to the same class, instead of computing the complete set of weights. Using this
technique, what happens is that, at each iteration, K systems of equal dimension to the number of
samples are solved. This results in an improvement in terms of computational effort of the order of

2
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2.2 Including spatial information with the Markov-Gibs prior
The sparsity enforced by the Jeffreys prior  on the estimation of  class  densities  with FSMLR is  a
key step in the image classification process. However, the estimation of class densities does not in-
clude any spatial information about the classes’ dispersion in the image. The information of each
pixel neighborhood is introduced by the MLL prior. The MLL prior is a MRF that favors neighbor-
ing labels of the same class. In this way, we will be able to better model the piecewise smooth of
real world images.

The prior over classes p(w) in equation (1) will be defined in a way that allows to model the
spatial distribution of neighboring pixels.

According to the Hammersly-Clifford theorem, the density associated with a MRF is a Gibb's
distribution (Geman & Geman 1984). Therefore, the prior model for segmentation has the structure

(8)

where Z is the normalizing constant and the sum is over the prior potentials )(ycV  for the set of
cliques C over the image, and

(9)

where c is a non-negative constant.
Equation (8) can be written as

(10)

where n(y) denotes the number of cliques having the same label, if we let k and
02/c .  This choice gives no preference to any label nor to any direction.

The conditional probability ),|( iSjykyp ji  is then given by

(11)

where )(kni  is the number of sites in the neighborhood  of site i, Ni, with label k.

2.3 Segmentation algorithm
All the process was initialized under the Bayesian framework, leading us to the maximization of
the posterior distribution )()|()|( yxyyx ppp .  As described in sections 2.1 and 2.2, the class
densities  were learned using the FSMLR with Jeffreys prior,  while  the prior  over  classes, )(yp ,
was modeled by a MLL Markov-Gibs prior.

This way we have that the MAP segmentation is given by

(12)

The minimization of (12) is a hard combinatorial optimization problem. Graph cut techniques
from combinatorial optimization are able to find the global minimum for some multi-dimensional
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energy functions. The minimization problem in (12) presents characteristics that allow us to apply
the -Expansion algorithm (Boykov et al. 2001), which achieves very good approximations for this
problem.

The -Expansion algorithm makes use of a min-cut/max-flow algorithm presented by Boykov &
Kolmogorov (2004).

3 APPLICATION TO A HYPERSPECTRAL IMAGE

To evaluate the performance of the segmentation algorithm presented in this paper, the well-known
hyperspectral AVIRIS spectrometer Indian Pines 92 from Northern Indiana was used (Landgrebe,
2003). This benchmarked dataset has been frequently used to test several techniques in the
processing of hyperspectral images allowing for a good evaluation.

The ground truth data image consists of 145 x 145 pixels of the AVIRIS image in 220 conti-
guous spectral bands. Experiments were carried out without 20 noisy bands (Landgrebe, 2003).
Due to the insufficient number of training samples, seven classes were discarded, leaving a dataset
with 9 classes distributed by 9345 pixels. This dataset was randomly divided into a set of 4757
training samples and 4588 validation samples.

The spatial distribution of the class labels is presented in figure 1.

Figure 1. AVIRIS image used for testing. Left: RGB(50, 27, 17) color composite; Centre: training areas;
Right: validation areas.

The results presented here are the overall accuracy measured in the independent (validation) dataset
with 4588 samples. Experiments were made using 10%, 20% and 50% of the training set with a
linear  and a RBF kernel  to h(xi). When h(xi) is set to a linear function the complete training was
also used to train the segmentation algorithm. In the GC -Expansion method a =1.5 was defined
when the complete training set was used, and  =4 for subsets of the training data. The overall ac-
curacy results from are presented in table 1.

Size of training set
10% 20% 50% 100%

h linear Laplacian prior 86.05% 89.45% 89.69% 95.60%
Jeffreys prior 86.18% 88.58% 90.43% 95.66%

h RBF
Laplacian prior 92.11% 94.62% 97.86% ---
Jeffreys prior 89.84% 95.07% 96.71% ---

Table 1. Overall accuracy of Bayesian segmentation using 10%, 20%, 50% and the complete training set,
with h(xi) Linear and RBF, using a Laplacian and a Jeffreys prior.
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By the analysis of table 1, it is possible to observe that the Jeffreys prior achieves competitive
results with Laplacian prior. The performance of the classifier was found to be nearly independent
of  the prior  used for  all  training sets  tested,  the variations on the overall  accuracies  are  minimal.
The increase in the size of training set results in better accuracies for all methods. The results pre-
sented in table 1 for the Laplacian prior had already been evaluated in other work (Borges et al.,
2007) and proved to be very competitive with the state of the art algorithms for hyperspectral im-
age segmentation. The introduction of Jeffreys prior was able to keep the good performance of the
Bayesian segmentation method proposed. It should be noted that with this prior there is no need for
searching the parameter that best controls sparsity, something that has to be done with the Lapla-
cian prior. This reduces significantly the time needed to classify the image. The reduction is of the
order  of  the  number  of  sparsity  parameters  to  be  tested.  Moreover,  the  sparsity  achieved  by  the
FSMLR when using a Jeffreys prior is higher than with the Laplacian prior. This can be observed
in table2, which presents the number of significant features selected by each prior, considering h(xi)
as a linear function. In both cases there is a significantly reduction in the number of features
(bands) used to produce the land cover map. Recall that the number of bands considered in the ex-
periments  were  200.  Using  the  Jeffreys  prior  and  only  10%  of  the  training  set  it  is  possible  to
achieve an overall accuracy of 86.18% using the information of only 18 spectral bands. As the size
of training set grows, the number of bands selected by the priors also grows as well as the overall
accuracies. The best accuracy achieved with a linear kernel (95.66%) is achieved using only 51
spectral bands from the 200 bands considered initially.

Size of training set
10% 20% 50% 100%

Laplacian prior 34 49 71 105
Jeffreys prior 18 27 39 51

4 CONCLUSIONS

In this paper we have presented a Bayesian hyperspectral image segmentation algorithm that
uses the non-informative parameter-free Jeffreys prior to compute the class densities with the
FSMLR algorithm. This is a first step to the whole segmentation process. After estimating the class
densities with the discriminative classifier FSMLR, the segmentation method includes spatial in-
formation of the neighborhood of each pixel by adopting a MLL Markov-Gibs prior over the
classes. The MAP segmentation is carried out using the CG -expansion algorithm.

The  inclusion  of  the  Jeffreys  prior  instead  of  the  Laplacian  prior  in  the  FSMLR method,  was
able to keep the good performance of the Bayesian segmentation algorithm, while at the same time
there was an improvement of the sparsness of the classifier. Moreover, this sparsity improvement
was achieved without the need of an extensive search for the parameter that best controls the spar-
sity, carried out through a cross-validation based model selection. This process, when dealing with
high dimensional datasets like hyperspectral images is a challenging problem. The inclusion of the
Jefreys prior results on a greatly reduced computational expense mantaining the good performance
of the segmentation algorithm
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