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ABSTRACT: The number of hyperspectral sensors used in remote sensing is rapidly
increasing. Although the availability of hyperspectral images is widespread, there is still
a lack of efficient algorithms to properly handle the data. The major problem when
trying to apply traditional image classification procedures to hyperspectral data is the
high dimensionality, which besides increasing computational burden can impair
classification due to the Hughes phenomenon. One possible solution to this problem is
the dimensionality reduction, or feature reduction, prior to the application of other
image processing procedures, such as image classification. It often happens that what
was initially a hyperspectral image with several tens or even hundreds of bands is
reduced to a ‘standard’ multi-spectral image with a small number of bands.

The process of feature reduction/selection is nevertheless a delicate task, as ideally
one would like to preserve as much information as possible from the original dataset.

In this work some of the most commonly used feature selection and reduction
algorithms are tested. The Jeffries-Matusita distance is used to determine the best subset
of features and some spectral transformations such as Segmented Principal Component
Analysis, Segmented Canonical Analysis, Independent Component Analysis, and
Minimum Mean Squared Error are carried out to reduce the data dimensionality. These
methods were compared using four test images from the AVIRIS, Hymap and Hysens
sensors. Although no straightforward method exists to perform an evaluation, the
consistency between the various methods is discussed.

1 INTRODUCTION

Hyperspectral images are characterized by the high number of contiguous spectral
bands. The information provided by this type of data allows to characterize and/or
discriminate more accurately and precisely different materials than the standard
multispectral bands. Unfortunately, the increase of data dimensionality can become a
problem due the incapacity of common image processing algorithms to deal with such
high volume datasets. The impossibility, or high costs, of having sufficient training
samples to keep an acceptable classification error is one of the most common problems –
the Hughes phenomenon. Another frequent problem is the high computational cost of
dealing with images with hundreds of bands, and often the impossibility of application of
simple image processing methods. For these reasons, dimensionality reduction and
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feature extraction tasks are crucial methods of image pre-processing and analysis of
hyperspectral data. These methods will allow the user to work with data more efficiently,
preserving the essential information content while making evident features not
discernable in the original data, all this with a reduced number of dimensions.

A group of feature reduction methods is based on feature selection. This consists in
discarding the features that contribute less to the classes spectral separability using some
measurement metric, such as the Jeffries-Matusita (JM) distance. Another group of
feature reduction is based on transforming the pixel vectors into a new set of
coordinates. One of the most commonly used methods of this type is Principal
Components Analysis (PCA) (Duda & Hart 1973). This method projects data in a
subspace where the data variance is minimized. Other spectral transformations have
been used to reduce data dimensionality. Canonical Analysis (CA) is a technique similar
to PCA, with the difference that includes information about the class structure
optimizing the separation between classes (Hastie et al. 2001). These three methods
reveal problems when dealing with high volume datasets such as hyperspectral images.
A segmented principal component transformation was proposed for efficient
hyperspectral image classification and display (Jia & Richards 1999). This technique
is presented in Section 2.1 and it was applied to CA and feature selection with JM
distance. Being a multivariate data analysis process, largely used for blind source
separation, the Independent Component Analysis (ICA) can also be used as a tool for
dimensionality reduction and representation of hyperspectral images (Lennon et al.
2001). While PCA and CA are purely second-order statistical methods (assuming the
gaussianity of the factors), ICA makes a stronger assumption assuming that the factors
are statistically independent and non-gaussian. All these methods give us spectral
transformations of the original data, but do not give us information about the dimension
of the optimal subspace. Recently, a new mean squared error based approach to
determine the signal subspace in hyperspectral imagery was proposed (Dias &
Nascimento 2005). This method and other feature reduction and selection methods were
applied to a set of four hyperspectral images. The methods are briefly described in
Section 2 and the results are presented in Section 3.

2 METHODS

Before starting introducing the methods, some notation definitions ought to be made.
Capital bold letters denote matrices, small bold letters vectors, and small and capital
letters scalars are used throughout. N is the number of pixels, p the number of spectral
bands (columns) and the number of spectral classes is represented by C.

2.1 Segmented principal component analysis

Principal Component Analysis (PCA) is a well-known method that maps image data
into a new, uncorrelated co-ordinated system or vector space (Richards & Jia 2006). The
new feature space z is given by:

z ¼ ETx (1)
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where ET is the matrix of normalized eigenvectors of the image covariance matrix
ordered by the respective singular eigenvalues. The first k components give the
maximum data variance.

Although PCA is a powerful technique, its application to hyperspectral data
transformation is often inefficient to transform the complete dataset. A scheme that
makes use of block structure of the correlation matrix can be applied so that PCA is
conducted on data of smaller dimensionality (Jia & Richards 1999). The elements Rij of
the correlation matrix R are determined by:

Rij ¼ uij=
ffiffiffiffiffiffiffiffiffi

uiiujj
p

(2)

where uij are elements of the covariance matrix and uii and ujj are the variances of the ith
and jth bands of data. The scheme proposed by Jia starts by partioning the complete data
into K subgroups. Each subgroup is composed by highly correlated bands. The PCA is
then conducted separately on each subgroup of data. The features selected can be
regrouped and transformed again to compress the data further.

2.2 Segmented canonical analysis

Canonical Analysis (CA) is a procedure similar to PCA, in the sense that it generates a set
of feature axes where the class separation is optimized. This new feature space is given by
the linear transformation VTx. When the classes are known, CA is more powerful than
PCA since it maximizes the ratio between the dispersion among classes and the
dispersion within classes. The criterion to be maximized is:

JðVÞ ¼
VTSAV
�

�

�

�

VTSWV
�

�

�

�

(3)

where SA is the dispersion matrix among classes and SW the dispersion matrix within
classes (Duda & Hart 1973). This technique projects the data into a new feature space of
dimension C-1.

Like PCA, the CA approach does not handle hyperspectral data easily. So the scheme
proposed by Jia for PCA can be also used in CA. The canonical coefficients are
estimated in each of the K subgroups of highly correlated bands.

2.3 Jeffries-Matusita distance for feature selection

The Jeffries-Matusita (JM) distance is widely used to measure the class separability or
distances between distributions. For multivariate Gaussian distributions the JM distance
between class i and j is given by:

Jij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1� e�Bijð Þ
q

(4)
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where Bij is the Battacharyya distance is given by:

Bij ¼
1

8
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(5)

in which mi and mj are the class mean vectors, and Ri; Rj are the class covariances.
To proceed to a feature selection, one needs to find the subset of features that gives

the largest average JM distance. The average pairwise distance is given by:

dave ¼
X

C

i¼1

X

C

j¼1

pðoiÞpðokÞJij (6)

where pðoiÞ; pðojÞ are the class prior probabilities.

In general, for C spectral classes, p total features, and a target of n features, a total of
pCn �CC2 measures of pairwise distances need to be calculated, besides the need of
compute the average distance for each subset. This approach turns out to be unfeasible
with the complete dataset. So the scheme of creating K subgroups of highly correlated
bands can be used in this feature selection procedure.

2.4 Independent component analysis

Independent Component Analysis assumes the model (Hyvärinen et al. 2001)

x ¼ As (7)

where x is the vector of observed signals, A is the matrix of mixing coefficients and s the
vector of source signals. This model makes the following two assumptions: (a) the
independent components are assumed statistically independent; (b) the independent
components must have nongaussian distributions. In the case of dimensionality
reduction of hyperspectral data, the physical sources do not exist and then the model (7)
does not hold and assumption (a) is not relevant. ICA is only used to find the projection
where all the projected components are ‘‘the most independent’’ in the sense of
negentropy.

The estimation of independent components consists in finding the matrix W ¼ A�1

so that the sources ŝ ¼Wx can be estimated from the vector x of the observed signals by
optimizing a statistical independence criterion. The negentropy is estimated by
(Hyvärinen et al. 2001):

JðxÞ ¼ E GðxÞ½ � � E GðxgÞ
� �	 
2

(8)

where G is a non quadratic function and xg is a gaussian random vector of the same
covariance matrix as x.

FastICA (Hyvärinen 1999) is a method that uses a fixed-point algorithm to estimate
the independent components from given multidimensional signals by maximizing
equation (8). The basic fixed-point iteration in FastICA is

wnew ¼ E xgðwTx
	 


� E xg0ðwTx
	 


w (9)
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where gðuÞ ¼ tanhðuÞ. The FastICA algorithm starts by choosing an initial (e.g
random) vector w, then uses the iteration (9) followed by normalization. This process
is repeated until it converges, i.e., the old and new values of w point in the same
direction.

To avoid a direction to be estimated several times and to prevent privileging a vector
amongst others, the matrix W ¼ (w1; . . . ;wn)T is symmetrically decorrelated after every
iteration.

2.5 Minimum mean squared error

The Minimum Mean Squared Error (Dias & Nascimento, 2005) is a technique to
determine the signal subspace in hyperspectral imagery. The method first estimates the
signal and noise correlations matrices, then it selects the subset of eigenvalues that best
represents the signal subspace.

Let Y ¼ Y1;Y2 . . . YN½ � be a C � N matrix of spectral vectors. Assuming a linear
mixing scenario, each observed pixel is given by

y ¼ xþ n (10)

where n models system additive noise. An estimate of the signal correlation matrix is
given by

R̂x ¼ R̂y � R̂n (11)

where R̂y ¼ YYT=N is the sample correlation matrix of Y, and R̂n is an estimate of
noise correlation matrix which is inferred based on multiple regression theory.

The signal subspace can be identified by finding the subset of eigenvalues that best
represents, in the least square sense, the mean value of the data set.
The sample mean value of Y is

y ¼ cþ w (12)

where c is the signal subspace and w is a normal random variable with zero mean and
covariance Rn=N . Let ck be the projection of c onto the subspace Ekh i, spanned by the
first k singular vectors ordered by the respective singular eigenvalues. The estimation of
ck can be obtained by projecting y onto the signal subspace Ekh i, i.e., ĉk ¼ Pkŷ, where
Pk ¼ EkE

T
k is the projection matrix onto Ekh i.

The criteria for the signal subspace order determination is given by:

k̂ ¼ argmink yTP?k yþ 2trðPkRn=NÞ
� �

(13)

3 RESULTS

This section presents the results of the application of methods described to four
hyperspectral images acquired by different sensor systems.
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3.1 Test datasets

The datasets used in this work were collected by three different sensors.
Image A was collected by the AVIRIS airborne sensor system. This image is of a

small area (145� 145 pixels) gathered over the Indian Pines test site in North-Western
Indiana, containing 220 bands from 0.4mm to 2.4mm (Landgrebe 2003). A total of 16
classes were identified, but due to an insufficient number of training samples, only 9
classes were considered.

Image B is a section of 255� 255 pixels from an Hymap image acquired over Barrax
test site under the Daisex campaign in 1999 (Berger et al 2001). The Barrax test site is a
well-described agricultural site close to the town of Albacete in Spain. The section used
in this work has 128 spectral bands and 5 classes.

Images C and D are from Pavia University and Pavia centre, respectively. These
images were acquired from ROSIS sensor in the HySens Pavia campaign in 2002 (Dell’
Acqua et al. 2004). A section of 255� 255 pixels was considered on both images. Image
C has 103 bands and 9 cover classes, whereas image D has 102 bands and 8 cover
classes.

3.2 Band segmentation

The first task performed on the test images was band segmentation. The segmentation
was based on the results obtained by searching the edges in the correlation matrix
(Equation 2). Figure 2 presents the correlations matrices of the 4 test images. As a result,
the complete set of bands of images A and B was divided into 4 subsets and images C
and D in 2 subsets. The exact band segmentation is present in Table 1.

This procedure of segmentation was used to perform PCA, CA and feature selection
with JM distance. Each of these methods was applied in each of the subgroups generated
by the correlation matrices of each image.

3.3 Feature selection/reduction

The feature reduction/selection methods presented in Section 2 were applied to the 4
test images, using MATLAB software (Mathworks 2002). Initially, a PCA procedure

Figure 1. Test images (from left to right): A (band 50), B (band 43), C (band 80) and D

(band 87).
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using the complete set of bands was performed in each test image. As expected, this
task involved a high computational cost, but achieved good results in the sense that
about 99% of data variance is explained in the first 4 or 3 principal components for all
images.

The segmented PCA procedure using the segmentation presented on Table 1 proved
to be much faster than the complete PCA. The time of computation was reduced in
approximately 73%, 65%, 41% and 40% for images A, B, C and D, respectively. In
order to compare results of complete PCA and segmented PCA procedures, the
cumulative ordered eigenvalues of both approaches were plotted (Figure 3) as function
of the number of components considered. It can be observed that, although the
difference between both methods is considerable in the initial principal components,
this difference tends to rapidly vanish. From the 6th component onwards, there is
almost no difference between the two methods.

Figure 2. Correlation matrices of images A, B, C and D (from left to right). White corresponds

maximum correlation (þ 1 or �1) and black to minimum (0).

Table 1. Segmentation of the complete set of bands.

Images Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4

A Bands 1:36 Bands 38:103 Bands 111:149 Bands 165:220
B Bands 1:19 Bands 20:48 Bands 49:63 Bands 64:128
C Bands 1:73 Bands 74:103 --- ---
D Bands 1:73 Bands 74:102 --- ---

Figure 3. Cumulative eigenvalues of PCA over the complete band dataset (line) and the

segmented PCA (doted line) as a function of the number of components, for the 4 test images

(A, B, C and D, from left to right).
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The application of CA over the complete test sets was not possible because the data
dimensionality was too high. Instead, CA was applied to each of the subgroups of high
correlated bands similarly to what was done with the segmented PCA approach. The CA
reduces the number of features to the number of classes minus one. Using the first two
canonical components, it is possible to observe the separation between classes. However
it was observed, that a significant class overlapping exists. The difficulty of using CA in
separating data is also observed in Figure 4, where the cumulative eigenvalues of CA
transformation are compared with the ones from segmented PCA. The cumulative
eigenvalues of CA are generally lower than those of PCA, except for a large number of
components retained.

The JM distance was used to select the best 2 features in each subgroup of highly
correlated bands. First, the pairwise JM distance between each pair of classes was
determined for all combinations of two out of the number of bands in each subset; then
the average pairwise JM distance was evaluated. The bands selected by this method are
presented in Table 2.

FastICA algorithm has been applied to the complete test images, unlike PCA,
revealing no difficulty in dealing with hyperspectral images. The only problem of ICA
was the lack of convergence when estimating the final independent components.
However, this problem is not ‘‘severe’’ since the main information is present in the first
few independent components, and so, there is no need to estimate the last independent
components.

The results of the application of Minimum Mean Squared Error for estimating the
signal subspace was applied to the four images and the estimates were: 10, 24, 103 and 102
for A, B, C and D images respectively. There are respectively, 9, 5, 9 and 8 land cover
classes identified in the test images. In image A the estimation (10 instead of 9) was good,

Figure 4. Cumulative eigenvalues of segmented CA (line) and the segmented PCA (doted line)

as a function of the number of components, for the 4 test images (A, B, C and D, from left to

right).

Table 2. Features selected by J-M distance.

Images Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4

A Bands 17 and 28 Bands 74 and 100 Bands 118 and 132 Bands 168 and 181
B Bands 14 and 19 Bands 20 and 35 Bands 49 and 63 Bands 86 and 103
C Bands 59 and 72 Bands 74 and 83 --- ---
D Bands 55 and 72 Bands 74 and 98 --- ---
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but for the remaining images, the predicted values were much more different than the
actual number of classes expected. These differences are most likely due to the presence of
rare pixels not accounted in truth data and spectral variability of recorded signals.

4 DISCUSSIONS AND CONCLUSION

The main objective of this work was to present and discuss some methods of pre-processing
hyperspectral images. Methods of feature reduction, feature selection and estimation of
signal subspace were presented and briefly evaluated on four hyperspectral datasets.

The main difficulty was to evaluate the performance of the methods presented. The
absence of an independent criterion for evaluating the effectiveness of the methods is
clearly a problem in the image processing field. It is possible to evaluate feature
reduction methods based on classification accuracies. However, we must keep in mind
that this type of evaluation is always dependent on the classification methods used. In
this work we hoped to try to evaluate the performance of the feature selection/reduction
methods independently, without being tied to a particular classification method.

Segmented PCA showed to be much faster than traditional PCA and revealed similar
results except when only the first few principal components are considered. CA results
were not so satisfactory as PCA. ICA, unlike PCA and CA, proved to be able to deal
easily with hyperspectral datasets, and at the same time representing the essential
information on a smaller space. The determination of signal subspace dimensionality is a
difficult task mainly due the presence of rare pixels not accounted in truth data and
spectral variability. However, this type of method should be taken in consideration when
a feature reduction task is need. Overall, this work clearly indicates that there is great
need to develop independent analysis tools for the evaluation of feature selection/
reduction methods.

ACKNOWLEDGEMENTS

The first author would like to thank the ‘‘Fundação para a Ciência e a Tecnologia’’ (FCT)
for the financial support (PhD grant SFRH/BD/17191/2004) and ‘‘Centro de
Investigação em Ciências Geo-Espaciais, Faculdade de Ciências da Universidade do
Porto’’ (CICGE-FCUP). The authors would also like to thank David Landgrebe for
providing the AVIRIS data, Paolo Gamba for providing images from Pavia and José
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