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Abstract— This paper presents a Bayesian approach to hyper-
spectral image segmentation that boosts the performance of the
discriminative classifiers. This is achieved by combining class
densities based on discriminative classifiers with a Multi-Level
Logistic Markov-Gibs prior. This density favors neighboring la-
bels of the same class. The adopted discriminative classifier is the
Fast Sparse Multinomial Regression. The discrete optimization
problem one is led to is solved efficiently via graph cut tools. The
effectiveness of the proposed method is evaluated, with simulated
and real hyperspectral images, in two directions: 1) to improve
the classification/segmentation performance and 2) to decrease
the size of the training sets.

I. I NTRODUCTION

In recent years much research has been done in the field
of image classification/segmentation. Several methods have
been used in a wide range of applications in computer vision.
However, its application to high dimensional data, such as
hyperspectral images, is still a delicate task, namely owing to
well known difficulties in learning high dimensional densities
from a limited number of training samples.

The discriminative approach in classification problems cir-
cumvents the difficulties in inferring the class densities by
learning directly the boundaries between classes in the feature
space. Discriminative approaches hold the state-of-the art in
supervised hyperspectral image classification (see, e.g. [1]).
These approaches have been successful in dealing with small
class distances, high dimensionality, and limited training sets
characteristic of hyperspectral imagery.

An intuitive way of improving the classifica-
tion/segmentation performance of discriminative classifiers
consists in adding contextual information in the form of
spatial dependencies. This is, in a sense, the idea behind
the discriminative random fields(DRFs), introduced by
Kumar and Hebert [2]. This paper introduces a Bayesian
approach for the segmentation of hyperspectral images.
Spatial dependencies are enforced by amulti-level logistic
(MLL) Markov-Gibs prior. This density favors neighboring
labels of the same class. The class densities are build on
the fast sparse multinomial logistic regression(FSMLR) [3],
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which is a fast implementation of thesparse multinomial
regression algorithm [4]. This approach to segmentation
departs substantially from that of based on the DRFs
framework, since the latter adopts a supervised methodology
to learn all the model parameters, leading to complex learning
algorithms, still an object of research [2].

To compute an approximation of themaximum a posteriori
probability (MAP) segmentation, we adopt theα-Expansion
graph cut based algorithm proposed in [5]. This algorithm is
very efficient from the numeric point of view and yields nearly
optimum solutions.

The paper is organized as follows: Section 2 formulates the
problem, presents a brief description of the FSMLR learning
algorithm, of the MLL Markov-Gibs prior, and of theα-
Expansion optimization tool. Section 3 presents results using
simulated and real hyperspectral (AVIRIS) images.

II. FORMULATION

A segmentation is an image of labelsy = {yi}i∈S ,
where yi ∈ L = {1, 2, . . . ,K}. Let x =

{
xi ∈ R

d, i ∈ S
}

be the observed multi-dimensional images, also known as
feature image. The goal of the segmentation is to estimatey,
having observedx. In a Bayesian framework, this estimation
is done by maximizing the posterior distributionp(y|x) ∝
p(x|y)p(y), wherep(x|y) is the likelihood function (or the
probability of feature image given the labels) andp(y) is the
prior over the classes.

In the present approach, we use the discriminative FSMLR
classifier [3] to learn the class densitiesp(yi|xi). The likeli-
hood is then given byp(xi|yi) = p(yi|xi)p(xi)/p(yi). Noting
that p(xi) does not depend on the labelingy, we have

p(x|y) ∝
∏

i∈S

p(yi|xi)/p(yi), (1)

where conditional independence is understood.
The prior probabilitiesp(yi) associated with the training

set may differ from those of the the data to classify. This
deviation may be corrected by reweighting the posteriori
class probabilities, as proposed in [6]. In this paper, we have
assumed, however, that the classes are likely probable. We are
well aware that this choice may not be the best. Nevertheless,
it still leads to very good results, as shown in the Section
Experimental Results.

In the following sections, we briefly describe the FSMLR
method yielding the densityp(y|x) , the MLL prior p(y), and
the Graph-Cuts optimization algorithm.
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A. Class Density Estimation Using Fast-SMLR Method

The SMLR algorithm learns a multi-class classifier based
on the multinomial logistic regression. By incorporating a
Laplacian prior, this method performs simultaneously feature
selection, to identify a small subset of the most relevant
features, and learns the classifier itself [4].

The goal is to assign to eachxi the probability of belonging
to each of theK classes, yieldingK sets of feature weights,
one for each class. In particular, ifyi = [y(1), . . . , y(K)]T is a
1-of-K encoding of theK classes, and ifw(k) is the feature
weight vector associated with classk, then the probability of
y
(k)
i = 1 given xi is

P
(
y
(k)
i = 1|xi, w

)
=

exp
(
w(k)T

h(xi)
)

∑K
k=1 exp

(
w(k)T h(xi)

) , (2)

where w = [w(1)T

, . . . , w(K)T

]T and h(x) =
[h1(x), . . . , hl(x)]T is a vector of l fixed functions of
the input, often termed features. Possible choices for this
function are the linear (i.e., h(xi) = [1, xi,1, . . . , xi,d]

T ,
wherexi,j is the jth component ofxi) and the kernel (i.e.,
h(x) = [1,K(x, x1), . . . ,K(x, xn)]T , whereK(·, ·) is some
symmetric kernel function). Kernels are nonlinear mappings,
thus ensuring that the transformed samples are more likely to
be linearly separable.

The MAP estimate ofw is

ŵMAP = arg max
w

L(w) = arg max
w

[l(w) + log p(w)] , (3)

where l(w) is the log-likelihood function andp(w) ∝
exp(−λ‖w‖1); λ is a regularization parameter controlling the
degree of sparseness of̂wMAP . The inclusion of a Lapla-
cian prior does not allow the use of the classicaliterative
reweighted least squares(IRLS) method [4] to learn the
weightsw. However, by using bound optimization tools [7],
it is possible to perform exact MAP multinomial logistic
regression under a Laplacian prior, with the same cost as the
original IRLS algorithm for ML estimation (see [8]).

In practice, the application of SMLR to large data sets is
often prohibitive. The FSMLR algorithm tackles this limitation
by replacing the solution of a sequence large linear system of
equations with a sequence of block Gauss-Seidel iterations
[8]. More specifically, in each iteration, instead of solving
the complete set of weights, only blocks corresponding to the
weights belonging to the same class are solved [3]. The gain in
number of floating point operations is of the order ofO(K2),
whereK is the number of classes.

B. The MLL Markov-Gibs Prior

The MLL prior is a MRF that models the piecewise smooth
nature of the real world images;i.e., it favors neighboring
labels of the same class.

According to the Hammersly-Clifford theorem, the density
associated with a MRF is a Gibb’s distribution [9]. Therefore,
the prior model for segmentation has the structure

p(y) =
1

Z
exp

(
−
∑

c∈C

Vc(y)

)
, (4)

whereZ is the normalizing constant and the sum is over the
prior potentialsVc(y) for the set of cliques1 C over the image,
and

−Vc(y) =






αyi
if |c| = 1 (single clique)

βc if |c| > 1 and ∀i,j∈c yi = yj

−βc if |c| > 1 and ∃i,j∈c yi 6= yj

(5)

whereβc is a nonnegative constant.
Let αk = α and βc = 1

2β > 0. This choice gives
no preference to any label nor to any direction. Under this
circumstances, (4) can be written as

p(y) =
1

Z
eβn(y) (6)

wheren(y) denotes the number of cliques having the same
label. The conditional probabilityp(yi = k|yj , j ∈ S − i) is
then given by

p(yi = k|yNi
) =

eβni(k)

∑K

k=1 eβni(k)
, (7)

whereni(k) is the number of sites in the neighborhood of site
i, Ni, having the labelk.

C. Energy Minimization Via Graph Cuts

The MAP segmentation is given by

ŷ = arg max
y

p(x|y)p(y)

= arg max
y

∑

i∈S

log p(xi|yi) + βn(y)

= arg min
y

∑

i∈S

− log p(xi|yi) − β
∑

i,j∈c

δ(yi − yj), (8)

wherep(x|y) ∝
∏

i p(yi|xi) was learned using the FSMLR
algorithm. Minimizing (8) is a hard combinatorial optimization
problem. To compute a very good approximation for it, we run
the graph cutα-Expansion based algorithm [5], which can be
applied because the pairwise interaction term on the right hand
side of (8) is equivalent to a metric2.

III. E XPERIMENTAL RESULTS

In this section, we present experimental results based on
simulated and real hyperspectral data sets. The simulated
feature images,x, were generated according to the a Gaussian
densityp(x|y), where the priorp(y) follows an MLL densi-
ties. The real data was acquired with the AVIRIS spectrometer.

A. Simulated Hyperspectral Images

The simulated spectral vectorxi for i ∈ S, given the label
yi, is Gaussian distributed with meanµ(yi) and covariance
matrixσ2I, i.e.,xi ∼ N [µ(yi), σ

2I]. The meansµ(yi), playing
the role of spectral signatures, were extracted from the USGS
spectral library [10].

1A clique is a set of pixels that are neighbours of one another.
2A metric is obtained by addingβ to terms−βδ(yi − yj)
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Fig. 1. Image labels with four classes generated by a MLL distribution with
β = 1 andβ = 2 (from left to right, respectively

The images of labelsy were generated according to the
MLL density (6) using a 2nd order neighbourhood3. The shape
of these label images depends on the parameterβ that controls
the spatial continuity. In this work we consideredβ = 1 and
β = 2. Figure 1 shows two samples of these image of labels
with 4 classes and size 120×120.

The noise variance is set toσ2 = 1, corresponding to a
signal-to-noise ratio‖µ(yi)‖

2/(Lσ2) less than one, and thus
to a hard classification problem.

Tables I and II show, forh linear, the overall accuracy (i.e.,
the ratio of the correct classified pixels over the total number of
pixels) as a function of the number of classes, the smoothness
parameter̂β used in theα-Expansion algorithm, and the size
of the training set, whose size is120 × 120 spectral vectors.

Observe that, in every case, the proposed method largely
outperforms the FSMLR classification. WhenK = 4, the
difference in the accuracies are larger when small training
data sets are considered. The improvements in this situation
ranges from 15% (for 10% of the training set) to around 7%
(for 90% of the training set). When we considerK = 10,
the improvements of the proposed method over the FSMLR
classification are much higher, ranging from 42% (for 10% of
the training set) to around 27% (for 90% of the training set).

We also note that when using 50% or 90% of the training
data, the performance of the segmentation method proposed
does not vary too much with the number of classes. On the
opposite, the FSMLR decreases its performance over 30%
when images with higher number of classes are considered.

Table III shows the overall accuracy obtained with a RBF
kernel. In this experience, we considered only 4 classes and
10% of the training set. As with the linear kernels, the
segmentation method proposed improved the results over 13%.

B. Experiments on a real Hyperspectral Image

Experiments were also performed with a real hyperspec-
tral AVIRIS spectrometer image, the Indian Pines 92 from
Northern Indiana, taken on June 12, 1992 [11]. The ground
truth data image consists of 145 x 145 pixels of the AVIRIS
image in 220 contiguous spectral bands. Experiments were
carried out without 20 noisy bands. Due to the insufficient
number of training samples, seven classes were discarded,

3The 2nd order neighborhood of a site(i, j) is the set of sitesNi,j =
{(i, j + 1), (i − 1, j + 1), (i − 1, j), (i − 1, j − 1), (i, j − 1), (i + 1, j −
1), (i + 1, j), (i + 1, j + 1)}.

TABLE I

OVERALL ACCURACIES FOR THE PROPOSED SEGMENTATION METHOD

AND FSMLR CLASSIFICATION WITH h, LINEAR K = 4, AND σ = 1.

SIZE OF TRAINING SET

10% 50% 90%
β = 0.9 96.26% 98.91% 98.96%

β = 1 β = 1 96.33% 98.92% 99.48%
β = 1.1 96.55% 98.93% 98.82%
FSMLR 82.13% 89.59% 92.27%

β = 1.9 98.63% 99.36% 99.38%
β = 2 β = 2 98.49% 99.27% 98.96%

β = 2.1 98.75% 99.27% 99.38%
FSMLR 82.06% 89.82% 90.11%

TABLE II

OVERALL ACCURACIES FOR THE PROPOSED SEGMENTATION METHOD

AND FSMLR CLASSIFICATION, WITH h LINEAR , K = 10, AND σ = 1.

SIZE OF TRAINING SET

10% 50% 90%
β = 0.9 66.18% 95.27% 95.85%

β = 1 β = 1 71.76% 94.99% 94.91%
β = 1.1 68.54% 94.49% 94.77%
FSMLR 46.18% 65.87% 69.47%

β = 1.9 89.59% 96.61% 97.40%
β = 2 β = 2 89.38% 97.56% 97.54%

β = 2.1 87.68% 95.71% 94.88%
FSMLR 47.14% 67.20% 70.41%

leaving a dataset with 9345 elements distributed by 9 classes.
This dataset was randomly divided into a set of 4757 training
samples and 4588 validation samples. The spatial distribution
of the class labels is presented in Figure 2.

The results presented in this section are the overall accuracy
measured in the independent (validation) dataset with 4588
samples. For the density estimation task, as well as for
the FSMLR classification task, linear and RBF kernels were
considered.

For the linear kernel case, experiments were carried out
using 10%, 20% and the complete training set (100%). In the
αExpansion method aβ = 1.5 was defined when the complete
training set is used, andβ = 4 for subsets of training set.
The results of overall accuracy from FSMLR classification
and segmentation with MRF are presented in table IV.

From these results we can see that, regardless of the size

TABLE III

OVERALL ACCURACIES USING A RBF KERNEL IN THE ESTIMATION OF

CLASS DENSITIES, FOR THE PROPOSED SEGMENTATION METHOD AND

FSMLR CLASSIFICATION, USING 10% OF PIXELS AS TRAINING DATA.

β = 0.9 β = 1 β = 1.1 FSMLR
β = 1 96.27% 96.91% 97.23% 83.53%

β = 1.9 β = 2 β = 2.1 FSMLR
β = 2 97.88% 97.82% 97.77% 83.77%
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Fig. 2. AVIRIS image used for testing. (a): original image band50 (near
infrared); (b): training areas; (c): validation areas.

TABLE IV

OVERALL ACCURACY OF FSMLR CLASSIFICATION (h LINEAR) AND MRF

SEGMENTATION USING10%, 20%AND THE COMPLETE TRAINING SET.

10% 20% 100%
FSMLR 75.57% 79.69% 85.77%

MRF 88.40% 89.56% 95.51%

of the training set used to learn the density function, the
MRF segmentation largely outperforms (by over 9%) the MAP
classification with FSMLR.

In the case of RBF kernel, experiments were done using
only 10% of training set andβ = 2. In this conditions the
proposed methof yielded an overall accuracy of 91.85%, while
the FSMLR classifier yielded an overall accuracy of 84.98%.

Note that these experiments with the segmentation method
were done in sub-optimal conditions, since no extensive search
for the optimal parameterβ was performed.

It also important to note that the presented segmentation
procedure outperformed in over (10%) the results achieved
in [1] with linear kernels, using the complete training set.
Using only 10% of the training data and without tuning all the
parameters we achieved an overall accuracy over 5% higher
than the one achieved in [1] with the complete training set.
When RBF kernels were considered, with only 10% of training
data we achieved the same results in [1] with 50% of training
data, and without tuning all the parameters.

IV. CONCLUSIONS

A segmentation technique for hyperspectral images is pre-
sented. This procedure uses a sparse method for the esti-
mation of features densities, and includes statistical spatial
information using a MLL Markov-Gibs based prior. The graph
cuts αExpansion algorithm is used to estimate the optimal
segmentation.

Experiments were done using simulated datasets and a real
hyperspectral image from AVIRIS sensor. From the results
with simulated datasets, and when compared with the FSMLR
classification, the segmentation method reached higher accura-
cies independently of the number of classes considered. Also
when a higher degree of noise is considered, the segmentation
method largely outperformed the FSMLR classifier. When
used over a benchmark dataset, the method here proposed,
outperformed (over 9.5%) the results by Camps-Valls [1],
using linear kernels. Higher accuracies were also achieved
using only 10% and 50% of the training set and without
tuning all the parameters. When using RBF kernels the results
by Camps-Valls [1] with 50% of training data were achieved
using only 10% of training data, also without tuning all the
parameters.

It should be noticed that these are preliminary results since
no extensive search of all parameters used in this work was
done. The results achieved so far are very promising and the
estimation of the optimum parameters is a problem that will
be addressed in future work.
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