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Abstract— This paper presents a Bayesian approach to hyper- which is a fast implementation of theparse multinomial
spectral image segmentation that boosts the performance of ¢h regression algorithm [4]. This approach to segmentation
discriminative classifiers. This is achieved by combining class departs substantially from that of based on the DRFs

densities based on discriminative classifiers with a Multi-Level f K si the latt dont ised th |
Logistic Markov-Gibs prior. This density favors neighboring la-  TaMeWork, since the latter adopts a supervised methoglolog

bels of the same class. The adopted discriminative classifier is thet0 learn all the model parameters, leading to complex legrni
Fast Sparse Multinomial Regression. The discrete optimization algorithms, still an object of research [2].
problem one is led to is solved efficiently via graph cut tools. The  To compute an approximation of tmeaximum a posteriori
effectiveness of the proposed mgthod is t_evall_Jated, with _5|mulate probability (MAP) segmentation, we adopt theExpansion
and real hyperspectral images, in two directions: 1) to improve h cut based alqorith d in I51. This algorithm i
the classification/segmentation performance and 2) to decrease9"aP c?u. ased aigorithm p'ropo'se |n.[ 1 IS .a gorithm 1S
the size of the training sets. very efficient from the numeric point of view and yields ngarl
optimum solutions.
The paper is organized as follows: Section 2 formulates the

|. INTRODUCTION problem, presents a brief description of the FSMLR learning
In recent years much research has been done in the fialgorithm, of the MLL Markov-Gibs prior, and of the:-
of image classification/segmentation. Several method hdwxpansion optimization tool. Section 3 presents resulisgus
been used in a wide range of applications in computer visiggimulated and real hyperspectral (AVIRIS) images.
However, its application to high dimensional data, such as

hyperspectral images, is still a delicate task, namely gwin Il. FORMULATION
well known difficulties in learning high dimensional defist A segmentation is an image of labels = {y;},..
from a limited number of training samples. wherey; € £ = {1,2,...,K}. Letx = {xi eR? e S}

The discriminative approach in classification problems cibe the observed multi-dimensional images, also known as
cumvents the difficulties in inferring the class densitigs bfeature image. The goal of the segmentation is to estipate
learning directly the boundaries between classes in therea having observed. In a Bayesian framework, this estimation
space. Discriminative approaches hold the state-of-thénar is done by maximizing the posterior distributigriy|x) oc
supervised hyperspectral image classification (see, &]9. [p(x|y)p(y), wherep(x|y) is the likelihood function (or the
These approaches have been successful in dealing with srpedbability of feature image given the labels) gn@) is the
class distances, high dimensionality, and limited trajnsets prior over the classes.
characteristic of hyperspectral imagery. In the present approach, we use the discriminative FSMLR

An intuitve way of improving the classifica- classifier [3] to learn the class densitip&y;|z;). The likeli-
tion/segmentation performance of discriminative classifi hood is then given by(z;|y;) = p(yi|x:)p(x;)/p(y;). Noting
consists in adding contextual information in the form ofhatp(x;) does not depend on the labeliyg we have
spatial dependencies. This is, in a sense, the idea behind
the discriminative random fields(DRFs), introduced by p(x[y) Hp(yi|xi)/p(yi), @)
Kumar and Hebert [2]. This paper introduces a Bayesian €s
approach for the segmentation of hyperspectral imagagiere conditional independence is understood.

Spatial dependencies are enforced bynalti-level logistic ~ The prior probabilitiesp(y;) associated with the training
(MLL) Markov-Gibs prior. This density favors neighboringset may differ from those of the the data to classify. This
labels of the same class. The class densities are build @gviation may be corrected by reweighting the posteriori
the fast sparse multinomial logistic regressigAiSMLR) [3], class probabilities, as proposed in [6]. In this paper, weeha
assumed, however, that the classes are likely probableréVe a
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A. Class Density Estimation Using Fast-SMLR Method where Z is the normalizing constant and the sum is over the

The SMLR algorithm learns a multi-class classifier basddfior potentialsv.(y) for the set of cliquesC over the image,
on the multinomial logistic regression. By incorporating and

Laplacian prior, this method performs simultaneously deat ay, if lef=1 (single clique)
selection, to identify a small subset of the most relevanty,(y) = B. if le| >1 and Vijecvi=vy; (5)
features, and learns the classifier itself [4]. —Be if el >1  and 3 jecyi # Y

The goal is to assign to eaeh) the probability of belonging ) )
to each of thek classes, yieldings sets of feature weights, Where . is a nonnegative co?stant. _ _ _
one for each class. In particular,jf = [V, ... y¥)|Tisa Letax = a and f. = 306 > 0. This choice gives
1-of-K encoding of thek classes, and ifo®) is the feature NO preference to any label nor to any direction. Under this
weight vector associated with classthen the probability of Circumstances, (4) can be written as

(k) _ i ;
y, = 1lgivenx; Is o(y) = leﬁnm ®)
(] Z
) exp (w h(xl)> _ _
P (y§k> = 1|mi,w> = —% = ,  (2) wheren(y) denotes the number of cliques having the same
D k=1 €XP (w(k) h(xv:)) label. The conditional probability(y; = kly;,j € S — i) is
where w = [w®" . w®"T and h(z) = then given by
[h1(x),...,h(x)]T is a vector of [ fixed functions of i (k)
the input, often termed features. Possible choices for this p(yi = klyn;) = K )’ (7)
function are the linearige, h(z:) = [Lzi1,...,2:4)7, I

wherez; ; is the jth component otr;) and the kernelife., wheren;(k) is the number of sites in the neighborhood of site
h(z) = [1,K(x,21),...,K(x,2,)]T, where K(-,-) is some i, N;, having the labek.

symmetric kernel function). Kernels are nonlinear mapping
thus ensuring that the transformed samples are more likely

t s
be linearly separable. C. Energy Minimization Via Graph Cuts

The MAP estimate ofv is The MAP segmentation is given by
’LZ}]\,[AP — arg mgx L(w) = arg muz}x [l(w) + logp(w)] 5 (3) y = arg maxp(x|y)p(y)
Y
where I(w) is the log-likelihood function andp(w) o = argmax Y _log p(x;ly;) + An(y)
exp(—Allw||;); X is a regularization parameter controlling the Yy s

degree of sparseness d@fy; 4p. The inclusion of a Lapla-
cian prior does not allow the use of the classitarative
reweighted least squareRLS) method [4] to learn the
weightsw. However, by using bound optimization tools [7]wherep(x|y) « [], p(vi|z;) was learned using the FSMLR
it is possible to perform exact MAP multinomial logisticalgorithm. Minimizing (8) is a hard combinatorial optimtian
regression under a Laplacian prior, with the same cost as fireblem. To compute a very good approximation for it, we run
original IRLS algorithm for ML estimation (see [8]). the graph cuv-Expansion based algorithm [5], which can be
In practice, the application of SMLR to large data sets mpplied because the pairwise interaction term on the rightih
often prohibitive. The FSMLR algorithm tackles this lintitn ~ side of (8) is equivalent to a metfic
by replacing the solution of a sequence large linear system o
equations with a sequence of block Gauss-Seidel iterations i
[8]. More specifically, in each iteration, instead of sotyin
the complete set of weights, only blocks corresponding éo th In this section, we present experimental results based on
weights belonging to the same class are solved [3]. The gairsimulated and real hyperspectral data sets. The simulated
number of floating point operations is of the order@fK?), feature imagesx, were generated according to the a Gaussian

where K is the number of classes. densityp(x|y), where the priop(y) follows an MLL densi-
ties. The real data was acquired with the AVIRIS spectromete

= afgn%,inz —logp(wilyi) — B> 6(yi — ;) (8)

i€s ij€c

. EXPERIMENTAL RESULTS

B. The MLL Markov-Gibs Prior
The MLL prior is a MRF that models the piecewise smooth. Simulated Hyperspectral Images

nature of the real world imagese., it favors neighboring  The simulated spectral vectas for i € S, given the label
labels of the same class. . _y;, is Gaussian distributed with mear(y;) and covariance
According to the Hammersly-Clifford theorem, the density5irix 21 ie. 2; ~ Nu(y:), o2I). The meang(y; ), playing

associated with a MRF is a Gibb’s distribution [9]. Therefor e role of spectral signatures, were extracted from the §SG
the prior model for segmentation has the structure spectral library [10].

1
p(y) = 7 exp | — Z Vely) |, 4) A cliqu_e ig a set of pixels th.at are neighbours of one another.
ceC 2A metric is obtained by adding to terms—35(y; — y;)



TABLE |
OVERALL ACCURACIES FOR THE PROPOSED SEGMENTATION METHOD
AND FSMLR CLASSIFICATION WITH h, LINEAR K = 4, AND 0 = 1.

SIZE OF TRAINING SET

10% 50% 90%
B8=09 96.26% 98.91% 98.96%
s=1 B=1 96.33% 98.92% 99.48%
s=11 96.55% 98.93% 98.82%
A & i FSMLR 82.13% 89.59% 92.27%
8=19 98.63% 99.36% 99.38%
Fig. 1. Image labels with four classes generated by a MLL ibigtion with B=2 B=2 08.49% 99.27% 98.96%
B8 =1andg = 2 (from left to right, respectively g=21 98.75% 99.27% 99.38%
FSMLR 82.06% 89.82% 90.11%

The images of labelss were generated according to the
MLL density (6) using a 2nd order neighbourhdo@he shape TABLE I
Of these |abe| images depends on the paramﬁ:‘.tbat COHtrOlS OVERALL ACCURACIES FOR THE PROPOSED SEGMENTATION METHOD
the spatial continuity. In this work we considergd= 1 and  AND FSMLR CLASSIFICATION, WITH h LINEAR, K = 10, AND o = 1.
[ = 2. Figure 1 shows two samples of these image of labels
with 4 classes and size 1R020.

N . 1 i SIZE OF TRAINING SET
The noise variance is set #®* = 1, corresponding to a 10% 50% 90%
signal-to-noise ratid|x(y;)||?/(Lo?) less than one, and thus B=09 66.18% 95.27% 95.85%
to a hard classification problem. g=1 p=1 71.76% 94.99% 94.91%
Tables | and Il show, fok linear, the overall accuracy (i.e., ﬁS:Mll_é 22-?;‘22 gg-g%‘; 23'1?32
the ratio of the correct classified pixels over the total nandf ' - '

. : B=19 89.59% 96.61% 97.40%
pixels) as a function of the number of classes, the smoothnes , 9 52 89.38% 97 56% 97 54%
paramete_rﬁ_ used in thea-Ex_pansmn algorithm, and the size g=21 87.68% 95.71% 04.88%
of the training set, whose size 120 x 120 spectral vectors. FSMLR 47.14% 67.20% 70.41%

Observe that, in every case, the proposed method largely
outperforms the FSMLR classification. Whdd = 4, the
difference in the accuracies are larger when small training
data sets are considered. The improvements in this situatlgaving a dataset with 9345 elements distributed by 9 ctasse
ranges from 15% (for 10% of the training set) to around 7%his dataset was randomly divided into a set of 4757 training
(for 90% of the training set). When we consid&t = 10, samples and 4588 validation samples. The spatial disimibut
the improvements of the proposed method over the FSMLG% the class labels is presented in Figure 2.
classification are much higher, ranging from 42% (for 10% of The results presented in this section are the overall acgura
the training set) to around 27% (for 90% of the training setjneasured in the independent (validation) dataset with 4588

We also note that when using 50% or 90% of the trainirggmples. For the density estimation task, as well as for
data, the performance of the segmentation method propo$e@ FSMLR classification task, linear and RBF kernels were
does not vary too much with the number of classes. On tRensidered.
opposite, the FSMLR decreases its performance over 30%-or the linear kernel case, experiments were carried out
when images with higher number of classes are consideredsing 10%, 20% and the complete training set (100%). In the

Table 11l shows the overall accuracy obtained with a RBEExpansion method & = 1.5 was defined when the complete
kernel. In this experience, we considered only 4 classes draining set is used, and = 4 for subsets of training set.
10% of the training set. As with the linear kernels, thdhe results of overall accuracy from FSMLR classification
segmentation method proposed improved the results over 13%d segmentation with MRF are presented in table V.

From these results we can see that, regardless of the size

B. Experiments on a real Hyperspectral Image

Experiments were also performed with a real hyperspec- TABLE IlI
tral AVIRIS spectrometer image, the Indian Pines 92 fromOveRALL ACCURACIES USING ARBF KERNEL IN THE ESTIMATION OF
Northern Indiana, taken on June 12, 1992 [11]. The groundcLAss DENSITIES FOR THE PROPOSED SEGMENTATION METHOD AND
truth data image consists of 145 x 145 pixels of the AVIRIS FSMLR CLASSIFICATION, USING 10% OF PIXELS AS TRAINING DATA.
image in 220 contiguous spectral bands. Experiments were
carried out without 20 noisy bands. Due to the insufficient

o . B8=0.9 B=1 B=11 FSMLR
number of training samples, seven classes were dlscarded,ﬁ 1 96.27% 96.91% 97.23% 83.53%

3The 2nd order neighborhood of a sitg j) is the set of sites\; ; = B=19 B=2 g=21 FSMLR
(g + 10— 1,4 1), (= 150, (G — 1.5 — 1), (s — 1), 0G4 15 — B=2 97.88% 97.82% 97.77% 83.77%

1),(i+1,5),¢+1,+1)}
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Fig. 2.
infrared); (b): training areas; (c): validation areas.

TABLE IV

OVERALL ACCURACY OF FSMLR CLASSIFICATION (h LINEAR) AND MRF

SEGMENTATION USING10%), 20%AND THE COMPLETE TRAINING SET

10% 20% 100%
FSMLR 75.57% 79.69% 85.77%
MRF 88.40% 89.56% 95.51%

18 - Sayhean-clean till

AVIRIS image used for testing. (a): original image bd&® (near

IV. CONCLUSIONS

A segmentation technique for hyperspectral images is pre-
sented. This procedure uses a sparse method for the esti-
mation of features densities, and includes statisticatiapa
information using a MLL Markov-Gibs based prior. The graph
cuts aExpansion algorithm is used to estimate the optimal
segmentation.

Experiments were done using simulated datasets and a real
hyperspectral image from AVIRIS sensor. From the results
with simulated datasets, and when compared with the FSMLR
classification, the segmentation method reached higheracc
cies independently of the number of classes considered. Als
when a higher degree of noise is considered, the segmeantatio
method largely outperformed the FSMLR classifier. When
used over a benchmark dataset, the method here proposed,
outperformed (over 9.5%) the results by Camps-Valls [1],
using linear kernels. Higher accuracies were also achieved
using only 10% and 50% of the training set and without
tuning all the parameters. When using RBF kernels the results
by Camps-Valls [1] with 50% of training data were achieved
using only 10% of training data, also without tuning all the
parameters.

It should be noticed that these are preliminary resultsesinc
no extensive search of all parameters used in this work was
done. The results achieved so far are very promising and the
estimation of the optimum parameters is a problem that will
be addressed in future work.
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