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The standard way of proving that certain algebraic constructions cannot be obtained
with ruler and compass alone is based upon the following theorem (see [1, §4.2]):

Theorem: Let z1,z2, . . . ,zn be complex numbers and let

F = Q(z1, . . . ,zn,z1, . . . ,zn).

Then any complex number z which is constructible from 0,1,z1,z2, . . . ,zn with ruler
and compass alone is algebraic over F and its degree over F is a power of 2.

Let A and B be the points corresponding to 0 and 1 respectively on the complex
plane. Briefly put, the usual way of using this theorem in order to prove that it is
impossible to trisect an arbitary angle with ruler and compass alone, is to observe that,
if such a construction were possible, then it would be possible to trisect any angle of the
form ∠BAZ, where Z is the point of the complex plane corresponding to a number z∈C
such that |z| = 1. Such a number z has the form cosθ + isinθ for some real number
θ . But then the point P of the plane corresponding to cos(θ/3) would be constructible
from A, B, and Z using ruler and compass alone, since P would be the projection on
the real axis of the point that corresponds to cos(θ/3)+ isin(θ/3). However, since

(∀θ ∈ R) : cos(θ) = 4cos3(θ/3)−3cos(θ/3), (1)

then, in particular, if we start with θ = π/3 we conclude that the polynomial

P(x) = 4x3−3x− 1
2

must be reducible over Q, which is not true. This can be proved using two theorems. In
order to state the first theorem (see [1, §2.16]), let us introduce the following notation:
we will say that a polynomial in one variable with integer coefficients is primitive if,
and only if, the only common factor of its coefficients is ±1.

Gauss’ lemma: The product of two primitive polynomials is again a primitive poly-
nomial.

As an easy consequence of Gauss’ lemma, we have that if P(x) ∈ Z[x] has positive
degree and is irreducible in Z[x], then P(x) is also irreducible in Q[x]. So, in order to
prove that a polynomial P(x) ∈ Z[x] is irreducible in Q[x], it will be enough to prove
that it is irreducible in Z[x]. In order to determine whether or not this is true, it is
convenient to use this criterion (see [2, ch. 2]):

Eisenstein’s criterion: If P(x) = a0 + a1x + · · ·+ anxn ∈ Z[x] and there is a prime p
such that p |ai, 0 6 i < n, p - an and p2 - a0, then P(x) is irreducible in Z[x].
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In order to use these results to prove that 4x3−3x− 1
2 is irreducible in Q[x], observe

that the irreducibility of this polynomial is equivalent to the irreducibility of
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)
= x3−3x−1.

But it follows from Eisentein’s criterion (with p = 3) that the polynomial P(x + 1)(=
x3 +3x2−3) is irreducible in Z[x] and therefore in Q[x]. So, P(x) is also irreducible in
Q[x].

Here we shall see another way of proving the impossibility of trisecting an arbitrary
angle with ruler and compass alone, which makes no reference to any trigonometric
formula such as (1) (or any equivalent geometric formulation; cf. [3, §I.4]) nor to the
polynomial P(x) or any other polynomial equivalent to it (such as x3−3x−1).

Let us start with the unit circle, i.e., the circle with centre A passing through B (see
Figure 1). Consider also the circle with centre B passing through A and let Z be one of
the two points at which the two circles meet. Let W be a point of the unit circle such that
the angle BAW is one third of the angle BAZ. Since the point Z can be constructed from
A and B with ruler and compass alone, it follows from the theorem above that, if the
angle BAZ could be trisected with ruler and compass alone, then the complex number
w corresponding to the point W would be algebraic over Q with degree a power of 2.
Let us see that this is impossible.
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Figure 1

A simple geometrical argument shows that, since the triangle 4ABZ is equilateral,
then, if z is the complex number that corresponds to Z, z3 =−1. But since

0 = z3 +1 = (z+1).(z2− z+1)

and since clearly z 6= −1, it follows that z2 − z + 1 = 0. On the other hand, it is clear
that w3 = z, and so w is a zero of the polynomial P(x) = x6 − x3 +1. Let us prove that
P(x) is irreducible in Z[x]; it will follow from this fact that w is algebraic over Q with
degree 6, which is not a power of 2. One way of proving that P(x) is irreducible in Z[x]
is to apply Eisenstein’s criterion to P(x + a) for some well chosen integer a. The fact
that

( n
k

)
is a multiple of 3 whenever n is equal to 3 or 6 and k ∈ {1,2,4,5} shows that

the coefficients of x, x2, x4, and x5 in P(x+a) are multiples of 3 and this fact suggests
that we might try to choose a such that Eisenstein’s criterion applies with p = 3. The
coefficients of x6, x3 and the constant term of P(x + a) are equal to 1, 20a3 − 1 and
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a6 − a3 + 1 respectively; therefore, if we take a = −1 these values will be −21 and 3
respectively, so Eisenstein’s criterion can be applied here with p = 3.

Another way of proving that P(x) is irreducible in Z[x] consists in applying this
theorem (cf. [4] for the standard way of stating this theorem and also for the proof):
A. Cohn’s generalized theorem: If Q(x) ∈ Z[x] has non-negative coefficients and if
Q(x) takes a prime value at some n ∈ N greater than any coefficient, then Q(x) is
irreducible in Z[x].

Since 26 +23 +1 = 73, which is a prime number, it follows that x6 + x3 +1 is irre-
ducible in Z[x] and, since the irreducibility of a polynomial Q(x) in Z[x] is equivalent
to the irreducibility of Q(−x), this proves that P(x) is irreducible in Z[x].

Notice that the measure of the angle BAZ is π/3. The method described above
can also by applied to angles whose measure is 2π/3. In fact, the calculations will
be even simpler in that case, since the polynomial whose irreducibility will have to be
established will be x6 + x3 + 1; therefore, A. Cohn’s generalized theorem can be used
directly.
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