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Abstract

Let G be a topological group which acts in a continuous and tran-
sitive way on a topological space M . Sufficient conditions are given
that assure that, for every m ∈ M , the map from G onto M defined
by g 7→ g · m is an open map. Some consequences of the existence
of these conditions, concerning spinor groups and covering homomor-
phisms between Lie groups, are obtained.
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Introduction
A standard reference concerning Clifford algebras and spinor groups is [2,
Part I]. In that article, the authors define, for each k ∈ N, the spinor group
Spin(k) as a group of invertible elements of the real Clifford algebra Ck. There
is a natural continuous homomorphism ρ from Spin(k) to SO(k,R) and the
authors state that ρ is a covering homomorphism (see [2, proposition 3.13]).
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However, what is actually proved is just that ρ is surjective and that the
kernel has two elements and this is not enough to prove the statement. The
same problem arises in [3, §I.6], in [5, §20.2] and in [6, §4.7]. The goal of this
article is to state and prove a theorem concerning topological groups that
assures that ρ is really a covering homomorphism. Another way of doing
this, using Lie theory, can be found in [4, §II.XI]. We also give a new proof
of a theorem concerning covering homomorphisms between Lie groups.

1 The main theorem
In what follows, every topological space (and, in particular, every topological
group) is Hausdorff. The unit element of a group G will be denoted by eG or
simply by e, when there is only one group involved. The concepts and basic
facts concerning topological groups which will be needed here can be found
at [4, ch. II].

If ϕ is a continuous homomorphism from a topological group G to a topo-
logical group H, in order that ϕ is a covering homomorphism it is necessary
that ϕ is surjective and that the kernel of ϕ is discrete. In general, these
conditions are not sufficient to assure that ϕ is a covering homomorphism.
As an example, let α be a real irrational number and let G be the subgroup
of the torus S1×S1 whose elements are those of the form (eit, eiαt), for some
t ∈ R. Consider the homomorphism of the group (R,+) onto G that maps
each t ∈ R into (eit, eiαt). If you consider in R and in G the usual topologies,
then this map is a continuous and bĳective homomorphism, but it is not a
homeomorphism since G is not locally compact. An even simpler example
is given by the identity map from (R,+) (with the discrete topology) onto
(R,+) (with the usual topology).

In order to give general conditions concerning two topological groups G
and H that assure that each continuous and surjective homomorphism from
G onto H with discrete kernel is a covering homomorphism, we shall have to
prove a theorem concerning group actions on topological spaces.

Theorem 1 Let G be a Lindelöf and locally compact topological group which
acts in a continuous and transitive way on a Baire space M . If m ∈M , then
the map

G −→ M
g 7→ g ·m

is an open map.

Proof: It will be enough to prove that if V is a neighborhood of e, then
V · m is a neighborhood of m. Let W be a neighborhood of e such that
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W−1 ·W ⊂ V and suppose that W ·m is a neighborhood of some of its points;
in other words, suppose that, for some w0 ∈ W , W ·m is a neighborhood of
w0 ·m. Then w0

−1 · (W ·m) is a neighborhood of m and therefore
⋃

w∈W w−1 ·
(W ·m)(= V ·m) is a neighborhood of m.

Therefore, all that remains to be proved is that among all neighborhoods
W of e such that W−1 ·W ⊂ V there is at least one such that W · m is a
neighborhood of some of its points, and this is equivalent to saying that the
interior of W ·m is not empty. Let W be a compact neighborhood of e such
that W−1 ·W ⊂ V ; such a neighborhood exists since we are supposing that
G is locally compact. It is clear that the interior of W ·m is not empty if and
only if, for some g ∈ G, the interior of g ·(W ·m) is not empty. It follows from
the fact that G is a Lindelöf space and from the fact that

⋃
g∈G g ·

◦
W = G

that there is a sequence (gn)n∈N of elements of G such that
⋃

n∈N gn ·W = G
and, therefore, such that

⋃
n∈N gn · (W · m) = M , since the action of G on

M is transitive. For each n ∈ N, gn · (W ·m) is a compact set, since W is
compact and the action is continuous, and, in particular, each set gn ·(W ·m)
is a closed set. Since M is a Baire space, there is at least one n ∈ N such that
the interior of gn · (W ·m) is not empty and, as it has already been observed,
this is equivalent to the assertion that the interior of W ·m is not empty. �

This proof is adapted from the proof of the corollary in [1, §9] (see the
corollary 2 below).

It should be observed that if G is a connected and locally compact topo-
logical group, then G is also a Lindelöf space. In fact, since G is connected, it
is generated by any neighborhood of e (see [4, §II.IV, theorem 1]) and there-
fore if V is a compact neighborhood of e then G =

⋃
n∈N V

n. This proves
that G is σ-compact and therefore Lindelöf. Of course, it follows from this
observation and from the fact that any connected component of a topological
group is homeomorphic to the connected component of the unit element that,
more generally, if a locally compact group G has only a finite or countable
set of connected components, then G is Lindelöf.

Before we proceed, let us see an interesting consequence of the previous
theorem. This corollary is the corollary of [1, §9] that was mentioned above;
we prove it for completeness and because the proof is very short.

Corollary 2 Let G be a Lindelöf and locally compact group which acts in
a continuous and transitive way on a Baire space M . If m ∈ M , if H is
the stabilizer of m in G and if in G/H one considers the final topology with
respect to the natural projection from G onto G/H, then the map

G/H −→ M
gH 7→ g ·m
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is a homeomorphism.

Proof: The map is clearly a continuous bĳection and all that remains
to be proved is that it is an open map. If A is an open set of G/H and
π : G −→ G/H denotes the natural projection, then A is mapped onto
π−1(A) ·m and this set is an open set, by the previous theorem. �

Theorem 3 Let G and H be topological groups and suppose that, as topo-
logical spaces, G is Lindelöf and locally compact and H is a Baire space.
If ϕ is a continuous homomorphism from G onto H, then ϕ is a covering
homomorphism if and only if its kernel is discrete.

Proof: The homomorphism ϕ induces the action from G on H defined by

G −→ Aut(H)

g 7→
(
H −→ H
h 7→ ϕ(g) · h

)
.

This action is continuous (since ϕ is continuous) and transitive (since ϕ is
surjective). Therefore, it follows from the theorem 1 (with m = eH) that ϕ
is an open map. Let V be a neighborhood of eG such that V ∩ kerϕ = {eG},
let W be an open neighborhood of eG such that W ·W−1 ⊂ V and define
W ′ = ϕ(W ). Since ϕ is an open map, W ′ is a neighborhood of eH . Then

ϕ−1(W ′) =
⋃

g∈ker ϕ

g ·W

and, furthermore, this is a disjoint union, because if g, h ∈ kerϕ and v, w ∈ W
are such that g · v = h ·w, then v ·w−1 = g−1 ·h ∈ kerϕ; since v ·w−1 ∈ V , it
follows that g = h. Therefore ϕ−1(W ′) is homeomorphic to ker(ϕ)×W ′ when
we consider in kerϕ the discrete topology. This proves that ϕ is a covering
homomorphism. �

In order to apply this theorem to the spinor groups, it will be enough
to prove that these groups are Lindelöf and locally compact. But it is a
consequence of the definition of Spin(k) (see [2, pp. 6–8]) that this group can
be seen as a closed subset of a finite-dimensional real vector space (with the
usual topology); therefore, it is both a Lindelöf space and a locally compact
space. Since SO(k,R) is compact (and therefore a Baire space) the natural
homomorphism from Spin(k) onto SO(k,R) is a covering homomorphism.
As it was observed before (see [2, Part I] and [3, §I.6]), this fact can be used
to prove that Spin(k) has a Lie group structure.
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2 Lie group homomorphisms
Let us extract another consequence of theorem 3. If ϕ is an analytic homo-
morphism from a Lie group G to a Lie group H, let ϕ∗ denote the differential
of ϕ at eG. Note that, since every connected Lie group is locally compact, Lin-
delöf and a Baire space, theorem 3 implies that an analytic homomorphism ϕ
from a connected Lie group G to a Lie group H is a covering homomorphism
if and only if ϕ is surjective and kerϕ is discrete.

Theorem 4 If G and H are connected Lie groups and ϕ is an analytic ho-
momorphism from G onto H, then ϕ is a covering homomorphism if and
only if ϕ∗ is an isomorphism.

Proof: Using the exponential map it is easy to prove that if ϕ∗ is sur-
jective then ϕ is also surjective. In fact, these statements are equivalent.
If ϕ is surjective, then it induces a bĳective analytic homomorphism ψ :
G/ ker(ϕ) −→ H. It is in fact a homeomorphism; this can be seen as a
consequence of corollary 2 or as an application of the theorem of invariance
of domain. Since every continuous homomorphism between Lie groups is
analytic (see [4, §IV.XIII] or [7, theorem 3.39]), it follows that ψ−1 is also
analytic. Therefore, ψ∗ is an isomorphism and this implies that ϕ∗ is surjec-
tive; in fact, if π denotes the natural projection from G onto G/ ker(ϕ), then
π∗ is surjective and

ϕ = ψ ◦ π =⇒ ϕ∗ = ψ∗ ◦ π∗.

Finally, observe that ϕ∗ is injective if and only if the kernel of ϕ is discrete.
Indeed, if ϕ∗ is not injective, then there is some X in the Lie algebra g of G
such that X 6= 0 and that ϕ∗(X) = 0, and this would imply that

(∀t ∈ R) : ϕ(exp(tX)) = exp(tϕ∗(X)) = eH .

On the other hand, if ϕ∗ is injective and if U is neighborhood of 0 in g such
that exp |U and exp |ϕ∗(U) are injective and that exp(U) is a neighborhood V
of eG, then every g ∈ V \ {eG} has the form exp(X) for some X ∈ U \ {0}
and therefore

ϕ(g) = ϕ(exp(X)) = exp(ϕ∗(X));

since ϕ∗(X) 6= 0 and exp |ϕ∗(U) is injective, this proves that ϕ(g) 6= eH . �

Cf. [7, p. 100] for another proof of this theorem.
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