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Abstract. The sl(1, 2)-modules that can be obtained from a parabolic sub-
algebra and a generalized Verma module by (co)homological induction are

described. It is proved that, unlike the case of simple Lie algebras, the mod-

ules thus obtained starting from a Borel subalgebra depend upon the choice
of this subalgebra. It is also proved that every indecomposable module such

that the action of a Cartan subalgebra on that module is semisimple can be

obtained by (co)homological induction.

Introduction

This article will use the notations and terminology introduced by Victor Kac in
his seminal works [2] and [3]. We will start by defining the objects that we will be
dealing with. The field we will be working with will be the complex number field. A
super vector space is a vector space V endowed with a decomposition V = V0

⊕
V1

(where 0 and 1 should be seen as elements of the group Z2). A superalgebra is an
algebra A endowed with super vector space structure A = A0

⊕
A1 such that, for

each i, j ∈ {0, 1}, Ai ·Aj ⊂ Ai+j . For each i ∈ {0, 1} and each a ∈ Ai \ {0}, let |a|
be equal to i. A Lie superalgebra is a superalgebra (g, [·, ·]) such that

(1) (∀X,Y ∈ (g0 ∪ g1) \ {0}) : [X,Y ] = −(−1)|X|·|Y |[Y,X];
(2) (∀X,Y, Z ∈ (g0∪g1)\{0}) : [X, [Y, Z]] = [[X,Y ], Z]+(−1)|X|·|Y |[Y, [X,Z]].

Note that g0 is then a Lie algebra and that g1 has a natural g0-module structure.
A classical Lie superalgebra is a finite-dimensional simple Lie superalgebra g such
that the natural action of g0 on g1 is completely reducible. If g is a classical Lie
superalgebra, we will say that g is basic classical if there is some non-degenerate
bilinear form (·, ·) on g which is invariant, that is, such that

(1) (∀X,Y ∈ (g0 ∪ g1) \ {0}) : (X,Y ) = (−1)|X|·|Y |(Y,X);
(2) (g0, g1) = {0};
(3) (∀X,Y, Z ∈ g) : ([X,Y ], Z) = (X, [Y,Z]).

Of course, every simple finite-dimensional Lie algebra is a basic classical Lie super-
algebra.

There are two Lie superalgebras that will be studied in this article. The first
one is sl(1, 2), whose elements the matricesa+ d x y

z a b
t c d


with a, b, c, d, x, y, z, t ∈ C. Its superalgebra structure is the one such that

(1) sl(1, 2)0 (respectively sl(1, 2)1) is the set of those matrices in sl(1, 2) such
that x = y = z = t = 0 (resp. a = b = c = d = 0);

(2) if M,N ∈ (sl(1, 2)0∪ sl(1, 2)1)\{0}, then [M,N ] = MN − (−1)|M |·|N |NM .
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The second Lie superalgebra which will be studied in this article is

gl(1, 1) =
{(

a b
c d

)
a, b, c, d ∈ C

}
.

In this case, gl(1, 1)0 (respectively gl(1, 1)1) is the set of those matrices
(

a b
c d

)
such

that b = c = 0 (resp. a = d = 0) and the the product is defined as in the case of
sl(1, 2). As an example of how different the behaviour of these Lie superalgebras
can be different from the behaviour of the reductive Lie algebras, it will be enough
to observe that, whereas g(2,C) has finite-dimensional irreducible representations
of any dimension, every finite-dimensional irreducible representation of gl(1, 1) has
dimension 1 or 2. See the theorem 4.2 for a more precise statement.

Let g be a basic classical Lie superalgebra. A Cartan subalgebra of g is a Cartan
subalgebra of g0. Let h be a Cartan subalgebra of g. When a is a subalgebra of g
that contains h, then “a-module” will mean “h-semisimple a-module”, unless it is
explicitly stated otherwise.

Let (·, ·) be a non-degenerate bilinear form on h∗ induced by an invariant non-
degenerate bilinear form on g. A root α of the pair (g, h) is called an even (respec-
tively odd) root if gα ⊂ g0 (resp. gα ⊂ g1). Denote by ∆0 and ∆1 the set of all even
roots and the set of all odd roots respectively and let ∆1 be the set of all isotropic
roots (that is, the roots α such that (α, α) = 0, the subscript 1 being due to the
fact that every isotropic root is odd). If λ ∈ h∗ is a weight, we will say that λ is
typical when (λ, α) 6= 0 whenever α ∈ ∆1. If b is a Borel subalgebra of g (that is, a
maximal solvable subalgebra of g) such that h ⊂ g, set ∆0(b) (respectively ∆1(b))
as the set of all even (resp. odd) roots α such that gα ⊂ b and define

ρb =
1
2

∑
α∈∆0(b)

α− 1
2

∑
α∈∆1(b)

α.

If p is a subalgebra of g that contains a Borel subalgebra of g that contains h
and if, for every root α of the pair (g, h), p contains gα or g−α, then it will be said
that p is a parabolic subalgebra of g. Then p = u

⊕
s, where s is a subalgebra of p

(it is the Levi factor of g when g is a semisimple Lie algebra) and u is the nilradical
of p. If E is an s-module, then E becomes a p-module with u acting trivially in E.
Let

M(p, E) = U(g)
⊗
U(p)

E.

Such a module is called a generalized Verma module (or simply a Verma module,
when p is a Borel subalgebra). Assume that E is irreducible. It was proved in [7,
lemme 2.3] that it has then one and only one irreducible quotient. If p is a Borel
subalgebra b of g, then s = h and E = Cλ, for some λ ∈ h∗; in this case, M(b, E)
will be denoted by M(b, λ) and its only irreducible quotient will be denoted by
L(b, λ). Every finite-dimensional irreducible g-module M (distinct from {0}) is
isomorphic to L(b, λ), for one and only one λ ∈ h∗. We will say that M is a typical
module when λ− ρb is typical.

If s0 is a reductive subalgebra of g0, then HC(g, s0) represents the category of
g-modules which, as s0-modules, are direct sum of finite-dimensional irreducible
modules (HC stands for Harish-Chandra). A covariant right exact functor

Ls0
0 : HC(g, s0) −→ HC(g, g0)

will be defined in section 1 with the following property: when V belongs toHC(g, s0)
and is such that, up to isomorphism, there are only a finite number of finite-
dimensional irreducible g0-modules that are isomorphic to g0-submodules of Ls0

0 (V ),
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then Ls0
0 (V ) is the greatest quotient of V in the category HC(g, g0); cf. proposi-

tion 1.1 for a more precise statement. In an analogous way (see [7, §4]), a left exact
functor

Γ0
s0

: HC(g, s0) −→ HC(g, g0)

can be defined such that, when V ∈ HC(g, s0), Γ0
s0

(V ) is the greatest submodule of
V in the categoryHC(g, g0). The functors Γ0

s0
and Ls0

0 are similar to the Zuckerman
functors and the dual Zuckerman functors; cf. [4, chap. II]. For each i > 0, let Ls0

i

(respectively Γi
s0

) denote the ith derived functor of Ls0
0 (resp. Γ0

s0
). It was proved

in [7, §6] that, if b is a Borel subalgebra of g, then every finite-dimensional typical
g-module is isomorphic to Lh

i (M(b, λ)) for some i ∈ {0, 1, . . . ,dim(g0/h)/2} and
some weight λ. It was also proved there that, if λ ∈ h∗ is a typical weight, then
Lh

i (M(b, λ − ρb)) = {0} except for, at most, one single i > 0 and also that when
Lh

i (M(b, λ− ρb)) is different from {0}, then it is irreducible.
As it will be seen (cf. theorem 2.1), even in such a simple case as when g =

sl(1, 2), the situation changes drastically when one considers all modules of the
form Lh

i (M(b, λ)). In fact:

(1) Not every finite-dimensional irreducible representation of sl(1, 2) is isomor-
phic to some Lh

i (M(b, λ)). Only the typical representations are.
(2) Sometimes Lh

i (M(b, λ)) is neither {0} nor an irreducible module.
(3) It is not true that there is always, at most, one single i > 0 such that

Lh
i (M(b, λ)) 6= {0}.

It will also be seen (cf. theorem 4.1) that every finite-dimensional irreducible rep-
resentation of sl(1, 2) is isomorphic to Ls0

i (M(p, E)) for some parabolic subalgebra
p of g, some i > 0 and some irreducible s-module E.

The author expresses his thanks to Jérôme Germoni for making him notice the
existence of the short exact sequence (2), from section 2.

1. The functors

The aim of this section is to define the functors Ls0
i and Γi

s0
(i ∈ Z+). Since

Ls0
i (respectively Γi

s0
) will be defined as the ith derived functor of the functor Ls0

0

(resp. Γ0
s0

), this functor will be defined first. See [7, §4] for further details.
Note that sl(1, 2)0 ' gl(2,C); we shall identify these Lie algebras. Let G =

SL(2,C)×(C,+). Then G is a connected, simply connected complex Lie group such
that its Lie algebra is isomorphic to gl(2,C). LetR(G) be the vector space generated
by the matrix coefficients of the finite-dimensional semisimple representations of G.
It turns out that (∀f, g ∈ R(G)) : f · g ∈ R(G) and that, therefore, R(G) has a
natural structure of an algebra. The group G acts on R(G) by the natural right
action, denoted by r and defined as follows: if g ∈ G and f ∈ R(G), then

(∀h ∈ G) : (r(g)(f))(h) = f(hg).

Note that, under this action, R(G) can be decomposed as a direct sum of finite-
dimensional G-modules and that, therefore, the right natural action of G on R(G)
induces an action of sl(1, 2)0. This action will also be denoted by r.

Let M̂(G) be the dual space of R(G) and let

M(G) =
{
ψ ∈ M̂(G) # {γ ∈ sl(1, 2)∧0 ψ(R(G)γ) 6= {0}} <∞

}
,

where sl(1, 2)∧0 stands for the set of equivalent classes of finite-dimensional irre-
ducible representations of sl(1, 2)0 and R(G)γ is the sum of the submodules of
R(G) that belong to the class γ. The multiplication in R(G) induces an action of



4 JOSÉ CARLOS DE SOUSA OLIVEIRA SANTOS

R(G) in M(G). Then, if V is an sl(1, 2)-module that belongs to HC(sl(1, 2), s0)
(where s0 is a reductive subalgebra of sl(1, 2)0), we can define

Ls0
0 (V ) = M(G)

⊗
U(sl(1,2)0)

V.

An U (sl(1, 2))-module structure (and, therefore, an sl(1, 2)-module structure) can
be defined in Ls0

0 (V ) in the following way: if u ∈ U (sl(1, 2)), choose elements
u1, u2, u3, . . . ∈ U (sl(1, 2)) and elements f1, f2, f2, . . . ∈ R(G) such that

(∀g ∈ G) : Ad
(
g−1

)
(u) =

∑
j

fj(g)uj .

Then, if m⊗ v ∈ Ls0
0 (V ), the action of u on m⊗ v is given by:

u · (m⊗ v) =
∑

j

(fjm)⊗ (ujv).

Let us now define the functor Γ0
s0

. As a vector space,

Γ0
s0

(V ) =
(
R(G)

⊗
V

)sl(1,2)0
,

where the action of sl(1, 2)0 on R(G)
⊗
V is r ⊗ θ, θ being the action of sl(1, 2)

on V . In order to define an action of sl(1, 2) on Γ0
s0

(V ), note that R(G)
⊗
V

(and, therefore, Γ0
s0

(V )) can be seen as a space of functions from G into V . Let
X ∈ sl(1, 2), ψ ∈ Γ0

s0
(V ) and define Xψ by

(∀g ∈ G) : (Xψ)(g) = Ad
(
g−1

)
(X)(ψ(g)).

With these definitions, Ls0
0 and Γ0

s0
are, respectively, a right exact functor and

a left exact functor.

Proposition 1.1. Let V ∈ HC(sl(1, 2), s0) and suppose that, up to isomorphism,
there are only a finite number of sl(1, 2)0-modules that are irreducible and isomor-
phic to sl(1, 2)0-submodules of Ls0

0 (V ). Then there is a surjective homomorphism
η : V � Ls0

0 (V ) and, furthermore, if W is a quotient of V that belongs to the cate-
gory HC(sl(1, 2), sl(1, 2)0) and π : V �W is the projection of V onto W , then there
is a surjective homomorphism ψ : Ls0

0 (V )�W such that ψ ◦ η = π. Up to isomor-
phism, Ls0

0 (V ) is the only sl(1, 2)-module in the category HC(sl(1, 2), sl(1, 2)0) with
this property.

See [7, proposition 4.3] for a proof of this proposition (in a more general context).
Note that in the previous proposition the hypothesis that says that, up to iso-

morphism, there are only a finite number of sl(1, 2)0-modules irreducible and iso-
morphic to sl(1, 2)0-submodules of Ls0

0 (V ) is certainly valid when Ls0
0 (V ) is finite-

dimensional. It happens that, according to [7, proposition 4.10], this is always the
case when V = M(p, E) for some finite-dimensional s-module E. This observation,
together with proposition 1.1, shows that when E is a finite-dimensional s-module,
Ls0

0 (M(p, E)) is the greatest quotient of M(p, E) in HC(sl(1, 2), sl(1, 2)0), that is,
the greatest quotient of M(p, E) that, as an sl(1, 2)0-module, can be written as a
direct sum of finite-dimensional irreducible modules.

It was also proved in [7, §4] that if V belongs to the category HC(sl(1, 2), s0),
then Γ0

s0
(V ) is the greatest submodule of V in HC(sl(1, 2), sl(1, 2)0).

2. Borel subalgebras

Let

h =


h1 + h2 0 0

0 h1 0
0 0 h2

 h1, h2 ∈ C

 .
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Then h is a Cartan subalgebra of sl(1, 2). Let α, β ∈ h∗ be defined by

α

h1 + h2 0 0
0 h1 0
0 0 h2

 = h1 and β

h1 + h2 0 0
0 h1 0
0 0 h2

 = h2

and let

hα =

1 0 0
0 0 0
0 0 1

 and hβ =

1 0 0
0 1 0
0 0 0

 .

The even roots of (sl(1, 2), h) are ±(α − β) and the odd roots are ±α and ±β. If
λ ∈ h∗ \ {0}, then we define

sl(1, 2)λ = {X ∈ sl(1, 2) (∀H ∈ h) : [H,X] = λ(H)X} .
Note that this is done for λ 6= 0 only; the reason for this is that the notation sl(1, 2)0
is reserved for the even part of sl(1, 2). Let

b+ = h
⊕

sl(1, 2)α−β

⊕
sl(1, 2)α

⊕
sl(1, 2)β ,

b− = h
⊕

sl(1, 2)α−β

⊕
sl(1, 2)−α

⊕
sl(1, 2)−β

and

b± = h
⊕

sl(1, 2)α−β

⊕
sl(1, 2)α

⊕
sl(1, 2)−β ;

then b+, b− and b± are Borel subalgebras of g and, up to conjugacy, these are
the only ones, as can be easily seen (or deduced from [2, §2.5.4]). They all have
the same even part, namely h

⊕
sl(1, 2)α−β . If λ ∈ h∗, then λ is a weight if

and only if λ = n(α − β)/2 + t(α + β) with n ∈ Z and t ∈ C. It will be said
that λ is a dominant weight when n ∈ Z+ and that λ is a regular weight when
λ(hα − hβ) 6= 0(⇐⇒ (λ, α− β) 6= 0).

In this article, when we speak of “dominant weight” or “highest weight” this is
meant to correspond to the choice of {α− β} as a set of positive roots of sl(1, 2)0.

If λ ∈ h∗ is a dominant weight, then let L0(λ) denote the finite-dimensional
irreducible sl(1, 2)0-module whose highest weight is λ. If

sl(1, 2)+ = sl(1, 2)α

⊕
sl(1, 2)β and sl(1, 2)− = sl(1, 2)−α

⊕
sl(1, 2)−β ,

then sl(1, 2)+ and sl(1, 2)− are supercommutative ideals of sl(1, 2)0
⊕

sl(1, 2)+ and
sl(1, 2)0

⊕
sl(1, 2)− respectively and therefore every sl(1, 2)0-module M becomes

an sl(1, 2)0
⊕

sl(1, 2)+-module (resp. an sl(1, 2)0
⊕

sl(1, 2)−-module) with sl(1, 2)+
(resp. sl(1, 2)−) acting trivially in M . Let

K+(λ) = U(sl(1, 2))
⊗

U(sl(1,2)0
L

sl(1,2)+)

L0(λ)

and

K−(λ) = U(sl(1, 2))
⊗

U(sl(1,2)0
L

sl(1,2)−)

L0(λ);

these are the Kac modules in the specific case of sl(1, 2) (cf. [3, §2.2]).
Note that the functors Ls0

i and Γi
s0

can be defined for every basic classical Lie
superalgebra. It will be useful for what will be done later to see now in more
detail what is Ls0

0 (V ) and Ls0
1 (V ) in the specific case of the Lie algebra sl(1, 2)0

when s(= s0) is the standard Cartan subalgebra h (that is, the subalgebra whose
elements are the diagonal matrices), b is the set of upper triangular matrices and V
is a Verma moduleM(b, λ) (where λ ∈ h∗ is a weight). In this situation, the functors
Ls0

0 and Ls0
1 will be represented by L0

0 and L0
1 respectively. Notice that the Weyl
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group of (sl(1, 2)0, h) has only two elements: the identity and the automorphism
w : h −→ h that exchanges α and β. With this notation, the description is quite
simple:

L0
0(M(b, λ)) '

{
L(b, λ) if λ is dominant
{0} otherwise

and

L0
1(M(b, λ)) '

{
L(b, w(λ)− α+ β) if w(λ)− α+ β is dominant
{0} otherwise.

This is just a particular case of the Borel-Weil-Bott theorem (see [4, §IV.11]).
In what follows, Ls0

i and Γi
s0

will be replaced by Li and Γi whenever it is clear
from the context what subalgebra of g0 is being taken. It was proved in [7, §4]
that, for any basic classical Lie superalgebra g, any parabolic subalgebra p and
any finite-dimensional s-module E, Li(M(p, E)) = {0} when i > dim(g0/s0)/2.
Therefore, (∀λ ∈ h∗) : Li(M(b, λ)) = {0} for any Borel subalgebra b of sl(1, 2) and
any i > 1.

We are ready to state and prove the first of the three theorems which will de-
scribe L0(M(p, E)) and L1(M(p, E)) when E is an irreducible finite-dimensional
s-module. However, when Li(M(p, E)) (i ∈ {0, 1}) is isomorphic to {0} or to C,
the method that will be used to prove that assertion will always be the same and
we will explain it now. The generalized Verma modules M(p, E) are always, as
sl(1, 2)0-modules, direct sum of three modules, two of which are Verma modules
whereas the third one admits a filtration by Verma modules. To be more precise, we
shall denote the sl(1, 2)0-Verma module with highest weight λ by M0(b0, λ). Then,
for instance, in the case when p = b+ and E = Cλ, we have an sl(1, 2)0-module
isomorphism

(1) M(b+, λ) 'M0(b0, λ)
⊕

M0(b0, λ− α− β)
⊕

M ,

where M is such that there is a short exact sequence

(2) {0} −→M0(b0, λ− β) ↪→M �M0(b0, λ− α) −→ {0}.
On the other hand, if V is an sl(1, 2)-module from the category HC(sl(1, 2), h) then,
as an sl(1, 2)0-module, Li(V ) ' L0

i (V ) where L0
i is the functor from the category

HC(sl(1, 2)0, h) to the category HC(sl(1, 2)0, sl(1, 2)0) built the same way as Li

(see [7, proposition 4.4]). Therefore, it follows from (1) that we have

(3) L0
i (M0(b0, λ)) ' L0

i (M0(b0, λ))
⊕

L0
i (M0(b0, λ− α− β))

⊕
L0

i (M)

and it is a consequence of (2) that there is an exact sequence

(4)
{0} −→ L0

1(M0(b0, λ− β)) −→ L0
1(M) −→ L0

1(M0(b0, λ− α)) −→
−→ L0

0(M0(b0, λ− β)) −→ L0
0(M) −→ L0

0(M0(b0, λ− α)) −→ {0}.
So, to prove that some Li(M(p, E)) is isomorphic to {0} or to C it will be enough
to use (3), (4) and the description made above of the sl(1, 2)0-modules of the type
L0

i (M0(b, λ)) (i ∈ {0, 1}).

Theorem 2.1. Let λ ∈ h∗ be a weight.
(1) If λ is dominant, then

(a) L0(M(b+, λ)) ' K+(λ);
(b) L1(M(b+, λ)) ' {0};
(c) L0(M(b−, λ)) ' K−(λ);
(d) L1(M(b−, λ)) ' {0}.

(2) If λ is not dominant and λ+ (α− β)/2 is regular, then,
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(a) L0(M(b+, λ)) ' {0};
(b) L1(M(b+, λ)) ' K+(w(λ)− α+ β);
(c) L0(M(b−, λ)) ' {0};
(d) L1(M(b−, λ)) ' K−(w(λ)− α+ β).

(3) If λ is not dominant and λ + (α − β)/2 is not regular, L0(M(b+, λ)),
L1(M(b+, λ)), L0(M(b−, λ)) and L1(M(b−, λ)) are all isomorphic to {0}.

(4) One has:
(a) λ(hβ) 6= 0 =⇒M(b±, λ) 'M(b+, λ+ β);
(b) λ(hα) 6= 0 =⇒M(b±, λ) 'M(b−, λ− α).

(5) L0(M(b±, 0)) ' L1(M(b±, 0) ' C.

Proof: Among these assertions, those which state that some Li(M(b, λ)) is
isomorphic to {0} or to C (where b can be either b+ or b−) can be proved using
the method describe before the statement of the theorem. For instance, in order
to prove 1b all that has to be proved is that L0

1(M0(b, η)) = {0}, for each η ∈
{λ, λ−α, λ−β, λ−α−β}, but this is a consequence of the fact that, for each such
η, w(η) − α + β is not dominant. Besides this, since there is an automorphism ϕ
of sl(1, 2) such that ϕ(b+) = b−, it is clear that for any result concerning b+ there
is a similar result concerning b−. Hence, the assertions that will be proved are 1a,
2b and 4a.

It follows from proposition 1.1 and from the fact that L0(M(b+, λ)) is finite-
dimensional (see [7, proposition 4.10]) that, to prove that L0(M(b+, λ)) and K+(λ)
are isomorphic, it will be enough to prove that when V is a quotient of M(b+, λ)
that, as an sl(1, 2)0-module, can be written as a direct sum of finite-dimensional ir-
reducible modules, then the projection π : M(b+, λ) −→ V factors through K+(λ).
But since λ is a maximal weight of V (unless V = {0}, but in this case there is noth-
ing to prove), L0(λ) is isomorphic to a submodule V (λ) of V . On the other hand,
every weight ofM(b+, λ) has the form ω−n(α−β) with ω ∈ {λ, λ−α, λ−β, λ−α−β}
and n a non-positive integer; therefore, the weights of V have the same form. It
follows that sl(1, 2)α

⊕
sl(1, 2)β acts trivially in V (λ) and this proves that the in-

clusion V (λ) ↪→ V induces an sl(1, 2)-morphism

η : K+(λ)

= U(sl(1, 2))
⊗

U(sl(1,2)0
L

sl(1,2)+)

V (λ)

 −→ V.

It is clear that, if Π is the projection of M(b+, λ) onto K+(λ), then η ◦Π = π. This
proves the assertion 1a.

To prove the assertion 2b, take η = w(λ)− α+ β. Then η is a dominant weight
and if π is a projection from M(b+, η) onto K+(η), then its kernel is isomorphic to
M(b+, λ). In other words, one has a short exact sequence

{0} −→M(b+, λ)
ι
↪→M(b+, η)

π
� K+(η) −→ {0}

which induces an exact sequence

L2(M(b+, η)) −→ L2(K+(η)) −→ L1(M(b+, λ)) −→ L1(M(b+, η)).

But, since M(b+, η) is a Verma module, L2(M(b+, η)) ' {0} and, since η is domi-
nant, the assertion 1a shows that L1(M(b+, η)) ' {0}. Therefore,

L1(M(b+, λ)) ' L2(K+(η)).

But, according to [7, proposition 4.8], L2(K+(η)) is isomorphic to Γ0(K+(η)). Since
K+(η) belongs to the category HC(sl(1, 2), sl(1, 2)0), it follows that Γ0(K+(η)) '
K+(η), because, as it was stated at the introduction, when V is an sl(1, 2)-module
that belongs to the category HC(sl(1, 2), s0), Γ0(V ) is the greatest submodule of V
in the category HC(sl(1, 2), sl(1, 2)0).
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Finally to prove the assertion 4a simply take Xβ ∈ sl(1, 2)β \ {0}. It is easy to
see that

M(b+, λ) −→ M(b±, λ+ β)
u⊗ c  uXβ ⊗ c

is an isomorphism.
Note that assertion 4 of the theorem is only a particular case of a much more

general result; cf. [5, §0.1.5] or [6, p. 23].

3. Irreducible representations of gl(1, 1)

Theorem 2.1 proves that an sl(1, 2)-module of the form Li(M(b, λ)), where b
is a Borel subalgebra of sl(1, 2), is never an atypical finite-dimensional irreducible
representation of sl(1, 2). It will be seen that such representations may be obtained
by homological induction if one uses a parabolic subalgebra of sl(1, 2). To be more
precise, it will be enough to use the parabolic subalgebras associated with one of
the following sets of roots: {±α, β}, {±α,−β}, {α,±β} and {−α,±β}. In each
case, s ' gl(1, 1).

In order to study the finite-dimensional irreducible gl(1, 1)-modules, we shall fix
the notation. Put Xβ =

(
0 1
0 0

)
, X−β =

(
0 0
1 0

)
and hβ = [Xβ , X−β ] =

(
1 0
0 1

)
. If E

is a finite-dimensional irreducible gl(1, 1)-module, then the usual argument shows
that E is h-semisimple and that, for some weight λ ∈ h∗, every weight of E has the
form λ − nβ, for some non negative integer n. It will be said then that λ is the
highest weight of E.

If E is a super vector space, dimE = dimE0 + εdimE1.

Proposition 3.1. Let E be a finite-dimensional irreducible representation of the
Lie superalgebra gl(1, 1) and let λ be its highest weight. Then the dimension of E
is 1 or ε if λ(hβ) = 0 and 1 + ε otherwise.

Proof: Let vλ ∈ Eλ \ {0}. Then CX−βvλ

⊕
Cvλ

⊕
CXβvλ is a submodule of

E, since Xβ
2v = X−β

2v = 0 for every v ∈ E. In fact, since λ + β is not a weight
of E, E = CX−βvλ

⊕
Cvλ. There are now two possibilities:

λ(hβ) 6= 0: In this case, X−βvλ 6= 0 since

Xβ(X−βvλ) = Xβ(X−βvλ) +X−β(Xβvλ) = hβvλ = λ(hβ)vλ 6= 0.

λ(hβ) = 0: The same argument as above shows that CX−βvλ is a submodule
of E; therefore, E = CX−βvλ or X−βvλ = 0. But, since vλ ∈ E, E 6=
CX−βvλ and this implies that E = Cvλ.

4. Parabolic subalgebras

We will deal now with the case where p = h
⊕(⊕

η∈Ψ sl(1, 2)η

)
, where Ψ is one

among the following four sets: {±α, β,−α + β}, {±α,−β, α − β}, {α,±β, α − β}
and {−α,±β,−α + β}. Since all these cases are similar, it will be enough to do
things in detail for one of these cases; this will be done with Ψ = {α,±β, α − β}.
Therefore s = h

⊕
sl(1, 2)β

⊕
sl(1, 2)−β(' gl(1, 1)).

Theorem 4.1. Let E be an irreducible finite-dimensional s-module and let λ be its
highest weight.

(1) If λ is dominant, then
(a) if λ(hβ) 6= 0, L0(M(p, E)) ' K+(λ);
(b) if λ(hβ) = 0, L0(M(p, E)) is irreducible with highest weight λ (in other

words, L0(M(p, E)) ' L(b+, λ));
(c) L1(M(p, E)) ' {0}.

(2) If λ is not dominant, then
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(a) L0(M(p, E)) ' {0};
(b) if λ(hβ) 6= 0, L1(M(p, E)) ' K+(w(λ)− α+ β), unless w(λ)− α+ β

is not dominant, in which case L1(M(p, E)) ' {0};
(c) if λ(hβ) = 0, L1(M(p, E)) is irreducible with highest weight w(λ)−α+

β (that is, it is isomorphic with L(b+, w(λ) − α + β)), unless λ = β,
in which case L1(M(p, E)) ' C.

Proof: By the argument presented before the statement of theorem 2.1, the
cases where it is stated that Li(M(p, E)) is isomorphic either to {0} or to C are
easy to establish.

Take X±α ∈ sl(1, 2)±α and X±β ∈ sl(1, 2)±β such that hα = [Xα, X−α] and
hβ = [Xβ , X−β ]. Suppose that λ is dominant and that λ(hβ) 6= 0. If V is a
quotient of M(p, E) that belongs to the category HC(sl(1, 2), sl(1, 2)0) and if π is
the projection of M(p, E) onto V , then, in order to be able to use proposition 1.1
(and the remark made after its statement), it must be proved that π factors through
K+(λ). Let v ∈ Eλ \ {0} and let w = π(1 ⊗ v); it can (and will) be assumed that
w 6= 0. Since w ∈ Vλ and since V belongs to the category HC(sl(1, 2), sl(1, 2)0),
there is an sl(1, 2)0-submodule of V isomorphic to L0(λ) and the inclusion of this
module into V induces an sl(1, 2)-morphism F : K+(λ) −→ V such that, for some
v∗ ∈ L0(λ)λ \ {0}, F (1⊗ v∗) = w. Since λ(hβ) 6= 0, C(1⊗ v∗)

⊕
C(X−β ⊗ v∗) ' E

(as a gl(1, 1)-module) and Xα acts trivially on C(1⊗ v∗)
⊕

C(X−β ⊗ v∗), there is
an sl(1, 2)-morphism η : M(p, E) −→ K+(λ) such that η(v) = 1 ⊗ v∗. Therefore
(F ◦ η)(v) = w = π(v); since v generates M(p, E), F ◦ η = π. This proves the
assertion 1a.

Suppose now that λ is dominant and that λ(hβ) = 0. In this case, and since
proposition 3.1 tells us that E = Cv for some v ∈ E whose weight is λ, the sl(1, 2)0-
module M(p, E) is the direct sum of two Verma modules whose highest weights are
λ and λ − α. Observe that, since λ(hβ) = 0 and λ is dominant, λ = nα for some
non-negative integer n. There are two possibilities:

λ 6= 0: Then λ and λ − α are both dominant weights and therefore, as an
sl(1, 2)0-module, L0(M(p, E)) is isomorphic to the direct sum

L0(λ)
⊕

L0(λ− α).

Let ω1 be an element of L0(M(p, E))λ different from 0 and define ω2 =
X−αω1. Then the weight of ω2 is λ− α and ω2 6= 0 since

Xα · ω2 = Xα · (X−α · ω1) = −X−α · (Xα · ω1) + hα · ω1 = λ(hα)ω1

and both λ(hα) and ω1 are different from 0. Since, as an sl(1, 2)0-module,
L0(M(p, E)) is the direct sum of two irreducible modules, generated by
ω1 and ω2, ω2 = X−αω1, and Xα · ω2 = λ(hα)ω1, the sl(1, 2)-module
L0(M(p, E)) is irreducible and generated by ω1; it is therefore isomorphic
to L(b+, λ).

λ = 0: Then λ−α = −α and therefore it is not a dominant weight. In this case
then, as a sl(1, 2)0-module, L0(M(p, E)) is simply L0(λ)(= L0(0)), which
is isomorphic to C. Therefore, L0(M(p, E)) ' C ' L(b+, 0) = L(b+, λ).

Finally, the statements concerning L1(M(p, E)) when λ is not dominant can be
proved in the same way as in theorem 2.1.

There are only two parabolic subalgebras p left (distinct from sl(1, 2)), namely

p = sl(1, 2)0
⊕

sl(1, 2)+ and p = sl(1, 2)0
⊕

sl(1, 2)−.

We shall simply describe the sl(1, 2)-modules homologically induced that can be
obtained from the first of these two parabolic subalgebras; the proof is similar (in
fact, easier) to the proofs of theorems 2.1 and 4.1.
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Theorem 4.2. Let p = sl(1, 2)0
⊕

sl(1, 2)+ and let E be an irreducible finite-
dimensional sl(1, 2)0-module with highest weight λ ∈ h∗. Then L0(E) ' K+(λ) and
L1(E) ' {0}.

5. Final remarks

The description made in sections 2 and 4 of the sl(1, 2)-modules that are homo-
logically induced show that

(1) no single parabolic subalgebra of sl(1, 2) is enough to obtain every irre-
ducible finite-dimensional sl(1, 2)-module by homological induction;

(2) every homologically induced sl(1, 2)-module is indecomposable and, fur-
thermore, every indecomposable sl(1, 2)-module is homologically induced.

Remember that it was stated at the beginning of the article that all our modules
are h-semisimple. In fact, there are sl(1, 2)-modules which are indecomposable but
that are not h-semisimple (see [1]).
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