HOMOLOGICALLY INDUCED $\mathfrak{sl}(1,2)$ -MODULES

JOSÉ CARLOS DE SOUSA OLIVEIRA SANTOS

ABSTRACT. The $\mathfrak{sl}(1,2)$ -modules that can be obtained from a parabolic subalgebra and a generalized Verma module by (co)homological induction are described. It is proved that, unlike the case of simple Lie algebras, the modules thus obtained starting from a Borel subalgebra depend upon the choice of this subalgebra. It is also proved that every indecomposable module such that the action of a Cartan subalgebra on that module is semisimple can be obtained by (co)homological induction.

INTRODUCTION

This article will use the notations and terminology introduced by Victor Kac in his seminal works [2] and [3]. We will start by defining the objects that we will be dealing with. The field we will be working with will be the complex number field. A super vector space is a vector space V endowed with a decomposition $V = V_0 \bigoplus V_1$ (where 0 and 1 should be seen as elements of the group \mathbb{Z}_2). A superalgebra is an algebra A endowed with super vector space structure $A = A_0 \bigoplus A_1$ such that, for each $i, j \in \{0, 1\}$, $A_i \cdot A_j \subset A_{i+j}$. For each $i \in \{0, 1\}$ and each $a \in A_i \setminus \{0\}$, let |a|be equal to *i*. A Lie superalgebra is a superalgebra $(\mathfrak{g}, [\cdot, \cdot])$ such that

- $\begin{array}{ll} (1) & (\forall X, Y \in (\mathfrak{g}_0 \cup \mathfrak{g}_1) \setminus \{0\}) : [X, Y] = -(-1)^{|X| \cdot |Y|} [Y, X]; \\ (2) & (\forall X, Y, Z \in (\mathfrak{g}_0 \cup \mathfrak{g}_1) \setminus \{0\}) : [X, [Y, Z]] = [[X, Y], Z] + (-1)^{|X| \cdot |Y|} [Y, [X, Z]]. \end{array}$

Note that \mathfrak{g}_0 is then a Lie algebra and that \mathfrak{g}_1 has a natural \mathfrak{g}_0 -module structure. A classical Lie superalgebra is a finite-dimensional simple Lie superalgebra \mathfrak{g} such that the natural action of \mathfrak{g}_0 on \mathfrak{g}_1 is completely reducible. If \mathfrak{g} is a classical Lie superalgebra, we will say that \mathfrak{g} is *basic classical* if there is some non-degenerate bilinear form (\cdot, \cdot) on \mathfrak{g} which is *invariant*, that is, such that

- (1) $(\forall X, Y \in (\mathfrak{g}_0 \cup \mathfrak{g}_1) \setminus \{0\}) : (X, Y) = (-1)^{|X| \cdot |Y|} (Y, X);$
- (2) $(\mathfrak{g}_0, \mathfrak{g}_1) = \{0\};$
- (3) $(\forall X, Y, Z \in \mathfrak{g}) : ([X, Y], Z) = (X, [Y, Z]).$

Of course, every simple finite-dimensional Lie algebra is a basic classical Lie superalgebra.

There are two Lie superalgebras that will be studied in this article. The first one is $\mathfrak{sl}(1,2)$, whose elements the matrices

$$\begin{pmatrix} a+d & x & y \\ z & a & b \\ t & c & d \end{pmatrix}$$

with $a, b, c, d, x, y, z, t \in \mathbb{C}$. Its superalgebra structure is the one such that

- (1) $\mathfrak{sl}(1,2)_0$ (respectively $\mathfrak{sl}(1,2)_1$) is the set of those matrices in $\mathfrak{sl}(1,2)$ such that x = y = z = t = 0 (resp. a = b = c = d = 0);
- (2) if $M, N \in (\mathfrak{sl}(1,2)_0 \cup \mathfrak{sl}(1,2)_1) \setminus \{0\}$, then $[M,N] = MN (-1)^{|M| \cdot |N|} NM$.

²⁰⁰⁰ Mathematics Subject Classification. Primary 17B10; Secondary 17B55.

Key words and phrases. Homological induction, parabolic subalgebra.

The second Lie superalgebra which will be studied in this article is

$$\mathfrak{gl}(1,1) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{C} \right\}.$$

In this case, $\mathfrak{gl}(1,1)_0$ (respectively $\mathfrak{gl}(1,1)_1$) is the set of those matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that b = c = 0 (resp. a = d = 0) and the the product is defined as in the case of $\mathfrak{sl}(1,2)$. As an example of how different the behaviour of these Lie superalgebras can be different from the behaviour of the reductive Lie algebras, it will be enough to observe that, whereas $\mathfrak{g}(2,\mathbb{C})$ has finite-dimensional irreducible representations of any dimension, every finite-dimensional irreducible representation of $\mathfrak{gl}(1,1)$ has dimension 1 or 2. See the theorem 4.2 for a more precise statement.

Let \mathfrak{g} be a basic classical Lie superalgebra. A *Cartan subalgebra* of \mathfrak{g} is a Cartan subalgebra of \mathfrak{g}_0 . Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} . When \mathfrak{a} is a subalgebra of \mathfrak{g} that contains \mathfrak{h} , then " \mathfrak{a} -module" will mean " \mathfrak{h} -semisimple \mathfrak{a} -module", unless it is explicitly stated otherwise.

Let (\cdot, \cdot) be a non-degenerate bilinear form on \mathfrak{h}^* induced by an invariant nondegenerate bilinear form on \mathfrak{g} . A root α of the pair $(\mathfrak{g}, \mathfrak{h})$ is called an *even* (respectively *odd*) root if $\mathfrak{g}_{\alpha} \subset \mathfrak{g}_{0}$ (resp. $\mathfrak{g}_{\alpha} \subset \mathfrak{g}_{1}$). Denote by Δ_{0} and Δ_{1} the set of all even roots and the set of all odd roots respectively and let $\overline{\Delta}_{1}$ be the set of all *isotropic* roots (that is, the roots α such that $(\alpha, \alpha) = 0$, the subscript 1 being due to the fact that every isotropic root is odd). If $\lambda \in \mathfrak{h}^*$ is a weight, we will say that λ is *typical* when $(\lambda, \alpha) \neq 0$ whenever $\alpha \in \overline{\Delta}_{1}$. If \mathfrak{b} is a *Borel subalgebra* of \mathfrak{g} (that is, a maximal solvable subalgebra of \mathfrak{g}) such that $\mathfrak{h} \subset \mathfrak{g}$, set $\Delta_{0}(\mathfrak{b})$ (respectively $\Delta_{1}(\mathfrak{b})$) as the set of all even (resp. odd) roots α such that $\mathfrak{g}_{\alpha} \subset \mathfrak{b}$ and define

$$\rho_{\mathfrak{b}} = \frac{1}{2} \sum_{\alpha \in \Delta_0(\mathfrak{b})} \alpha - \frac{1}{2} \sum_{\alpha \in \Delta_1(\mathfrak{b})} \alpha.$$

If \mathfrak{p} is a subalgebra of \mathfrak{g} that contains a Borel subalgebra of \mathfrak{g} that contains \mathfrak{h} and if, for every root α of the pair $(\mathfrak{g}, \mathfrak{h})$, \mathfrak{p} contains \mathfrak{g}_{α} or $\mathfrak{g}_{-\alpha}$, then it will be said that \mathfrak{p} is a *parabolic subalgebra* of \mathfrak{g} . Then $\mathfrak{p} = \mathfrak{u} \bigoplus \mathfrak{s}$, where \mathfrak{s} is a subalgebra of \mathfrak{p} (it is the Levi factor of \mathfrak{g} when \mathfrak{g} is a semisimple Lie algebra) and \mathfrak{u} is the nilradical of \mathfrak{p} . If E is an \mathfrak{s} -module, then E becomes a \mathfrak{p} -module with \mathfrak{u} acting trivially in E. Let

$$M(\mathfrak{p}, E) = \mathcal{U}(\mathfrak{g}) \bigotimes_{\mathcal{U}(\mathfrak{p})} E.$$

Such a module is called a generalized Verma module (or simply a Verma module, when \mathfrak{p} is a Borel subalgebra). Assume that E is irreducible. It was proved in [7, lemme 2.3] that it has then one and only one irreducible quotient. If \mathfrak{p} is a Borel subalgebra \mathfrak{b} of \mathfrak{g} , then $\mathfrak{s} = \mathfrak{h}$ and $E = \mathbb{C}_{\lambda}$, for some $\lambda \in \mathfrak{h}^*$; in this case, $M(\mathfrak{b}, E)$ will be denoted by $M(\mathfrak{b}, \lambda)$ and its only irreducible quotient will be denoted by $L(\mathfrak{b}, \lambda)$. Every finite-dimensional irreducible \mathfrak{g} -module M (distinct from $\{0\}$) is isomorphic to $L(\mathfrak{b}, \lambda)$, for one and only one $\lambda \in \mathfrak{h}^*$. We will say that M is a typical module when $\lambda - \rho_{\mathfrak{b}}$ is typical.

If \mathfrak{s}_0 is a reductive subalgebra of \mathfrak{g}_0 , then $\mathcal{HC}(\mathfrak{g},\mathfrak{s}_0)$ represents the category of \mathfrak{g} -modules which, as \mathfrak{s}_0 -modules, are direct sum of finite-dimensional irreducible modules (\mathcal{HC} stands for Harish-Chandra). A covariant right exact functor

$$\mathcal{L}_0^{\mathfrak{s}_0}:\mathcal{HC}(\mathfrak{g},\mathfrak{s}_0)\longrightarrow\mathcal{HC}(\mathfrak{g},\mathfrak{g}_0)$$

will be defined in section 1 with the following property: when V belongs to $\mathcal{HC}(\mathfrak{g},\mathfrak{s}_0)$ and is such that, up to isomorphism, there are only a finite number of finitedimensional irreducible \mathfrak{g}_0 -modules that are isomorphic to \mathfrak{g}_0 -submodules of $\mathcal{L}_0^{\mathfrak{s}_0}(V)$, then $\mathcal{L}_{0}^{\mathfrak{s}_{0}}(V)$ is the greatest quotient of V in the category $\mathcal{HC}(\mathfrak{g},\mathfrak{g}_{0})$; cf. proposition 1.1 for a more precise statement. In an analogous way (see [7, §4]), a left exact functor

$$\Gamma^0_{\mathfrak{s}_0}:\mathcal{HC}(\mathfrak{g},\mathfrak{s}_0)\longrightarrow\mathcal{HC}(\mathfrak{g},\mathfrak{g}_0)$$

can be defined such that, when $V \in \mathcal{HC}(\mathfrak{g},\mathfrak{s}_0)$, $\Gamma_{\mathfrak{s}_0}^0(V)$ is the greatest submodule of V in the category $\mathcal{HC}(\mathfrak{g},\mathfrak{g}_0)$. The functors $\Gamma_{\mathfrak{s}_0}^0$ and $\mathcal{L}_0^{\mathfrak{s}_0}$ are similar to the Zuckerman functors and the dual Zuckerman functors; cf. [4, chap. II]. For each $i \ge 0$, let $\mathcal{L}_i^{\mathfrak{s}_0}$ (respectively $\Gamma_{\mathfrak{s}_0}^i$) denote the i^{th} derived functor of $\mathcal{L}_0^{\mathfrak{s}_0}$ (resp. $\Gamma_{\mathfrak{s}_0}^0$). It was proved in [7, §6] that, if \mathfrak{b} is a Borel subalgebra of \mathfrak{g} , then every finite-dimensional typical \mathfrak{g} -module is isomorphic to $\mathcal{L}_i^{\mathfrak{h}}(M(\mathfrak{b},\lambda))$ for some $i \in \{0,1,\ldots,\dim(\mathfrak{g}_0/\mathfrak{h})/2\}$ and some weight λ . It was also proved there that, if $\lambda \in \mathfrak{h}^*$ is a typical weight, then $\mathcal{L}_i^{\mathfrak{h}}(M(\mathfrak{b},\lambda-\rho_{\mathfrak{b}})) = \{0\}$ except for, at most, one single $i \ge 0$ and also that when $\mathcal{L}_i^{\mathfrak{h}}(M(\mathfrak{b},\lambda-\rho_{\mathfrak{b}}))$ is different from $\{0\}$, then it is irreducible.

As it will be seen (cf. theorem 2.1), even in such a simple case as when $\mathfrak{g} = \mathfrak{sl}(1,2)$, the situation changes drastically when one considers all modules of the form $\mathcal{L}_i^{\mathfrak{h}}(M(\mathfrak{b},\lambda))$. In fact:

- (1) Not every finite-dimensional irreducible representation of $\mathfrak{sl}(1,2)$ is isomorphic to some $\mathcal{L}_i^{\mathfrak{h}}(M(\mathfrak{b},\lambda))$. Only the typical representations are.
- (2) Sometimes $\mathcal{L}_{i}^{\mathfrak{h}}(M(\mathfrak{b},\lambda))$ is neither $\{0\}$ nor an irreducible module.
- (3) It is not true that there is always, at most, one single $i \ge 0$ such that $\mathcal{L}_i^{\mathfrak{h}}(M(\mathfrak{b},\lambda)) \neq \{0\}.$

It will also be seen (cf. theorem 4.1) that every finite-dimensional irreducible representation of $\mathfrak{sl}(1,2)$ is isomorphic to $\mathcal{L}_i^{\mathfrak{s}_0}(M(\mathfrak{p},E))$ for some parabolic subalgebra \mathfrak{p} of \mathfrak{g} , some $i \ge 0$ and some irreducible \mathfrak{s} -module E.

The author expresses his thanks to Jérôme Germoni for making him notice the existence of the short exact sequence (2), from section 2.

1. The functors

The aim of this section is to define the functors $\mathcal{L}_{i}^{\mathfrak{s}_{0}}$ and $\Gamma_{\mathfrak{s}_{0}}^{i}$ $(i \in \mathbb{Z}_{+})$. Since $\mathcal{L}_{i}^{\mathfrak{s}_{0}}$ (respectively $\Gamma_{\mathfrak{s}_{0}}^{i}$) will be defined as the *i*th derived functor of the functor $\mathcal{L}_{0}^{\mathfrak{s}_{0}}$ (resp. $\Gamma_{\mathfrak{s}_{0}}^{0}$), this functor will be defined first. See [7, §4] for further details.

Note that $\mathfrak{sl}(1,2)_0 \simeq \mathfrak{gl}(2,\mathbb{C})$; we shall identify these Lie algebras. Let $G = SL(2,\mathbb{C}) \times (\mathbb{C},+)$. Then G is a connected, simply connected complex Lie group such that its Lie algebra is isomorphic to $\mathfrak{gl}(2,\mathbb{C})$. Let R(G) be the vector space generated by the matrix coefficients of the finite-dimensional semisimple representations of G. It turns out that $(\forall f, g \in R(G)) : f \cdot g \in R(G)$ and that, therefore, R(G) has a natural structure of an algebra. The group G acts on R(G) by the natural right action, denoted by r and defined as follows: if $g \in G$ and $f \in R(G)$, then

$$(\forall h \in G) : (r(g)(f))(h) = f(hg).$$

Note that, under this action, R(G) can be decomposed as a direct sum of finitedimensional *G*-modules and that, therefore, the right natural action of *G* on R(G)induces an action of $\mathfrak{sl}(1,2)_0$. This action will also be denoted by *r*.

Let $\mathcal{M}(G)$ be the dual space of R(G) and let

$$\mathcal{M}(G) = \left\{ \psi \in \hat{\mathcal{M}}(G) \, \middle| \, \# \left\{ \gamma \in \mathfrak{sl}(1,2)_0^{\wedge} \, \middle| \, \psi(R(G)_{\gamma}) \neq \{0\} \right\} < \infty \right\},$$

where $\mathfrak{sl}(1,2)_0^{\wedge}$ stands for the set of equivalent classes of finite-dimensional irreducible representations of $\mathfrak{sl}(1,2)_0$ and $R(G)_{\gamma}$ is the sum of the submodules of R(G) that belong to the class γ . The multiplication in R(G) induces an action of R(G) in $\mathcal{M}(G)$. Then, if V is an $\mathfrak{sl}(1,2)$ -module that belongs to $\mathcal{HC}(\mathfrak{sl}(1,2),\mathfrak{s}_0)$ (where \mathfrak{s}_0 is a reductive subalgebra of $\mathfrak{sl}(1,2)_0$), we can define

$$\mathcal{L}_0^{\mathfrak{s}_0}(V) = \mathcal{M}(G) \bigotimes_{\mathcal{U}(\mathfrak{sl}(1,2)_0)} V.$$

An $\mathcal{U}(\mathfrak{sl}(1,2))$ -module structure (and, therefore, an $\mathfrak{sl}(1,2)$ -module structure) can be defined in $\mathcal{L}_0^{\mathfrak{s}_0}(V)$ in the following way: if $u \in \mathcal{U}(\mathfrak{sl}(1,2))$, choose elements $u_1, u_2, u_3, \ldots \in \mathcal{U}(\mathfrak{sl}(1,2))$ and elements $f_1, f_2, f_2, \ldots \in R(G)$ such that

$$(\forall g \in G)$$
: Ad $(g^{-1})(u) = \sum_{j} f_j(g)u_j.$

Then, if $m \otimes v \in \mathcal{L}_0^{\mathfrak{s}_0}(V)$, the action of u on $m \otimes v$ is given by:

$$u \cdot (m \otimes v) = \sum_{j} (f_j m) \otimes (u_j v).$$

Let us now define the functor $\Gamma^0_{\mathfrak{s}_0}$. As a vector space,

$$\Gamma^0_{\mathfrak{s}_0}(V) = \left(R(G) \bigotimes V \right)^{\mathfrak{sl}(1,2)}$$

where the action of $\mathfrak{sl}(1,2)_0$ on $R(G) \bigotimes V$ is $r \otimes \theta$, θ being the action of $\mathfrak{sl}(1,2)$ on V. In order to define an action of $\mathfrak{sl}(1,2)$ on $\Gamma^0_{\mathfrak{s}_0}(V)$, note that $R(G) \bigotimes V$ (and, therefore, $\Gamma^0_{\mathfrak{s}_0}(V)$) can be seen as a space of functions from G into V. Let $X \in \mathfrak{sl}(1,2), \psi \in \Gamma^0_{\mathfrak{s}_0}(V)$ and define $X\psi$ by

$$(\forall g \in G) : (X\psi)(g) = \operatorname{Ad}(g^{-1})(X)(\psi(g)).$$

With these definitions, $\mathcal{L}_0^{\mathfrak{s}_0}$ and $\Gamma_{\mathfrak{s}_0}^0$ are, respectively, a right exact functor and a left exact functor.

Proposition 1.1. Let $V \in \mathcal{HC}(\mathfrak{sl}(1,2),\mathfrak{s}_0)$ and suppose that, up to isomorphism, there are only a finite number of $\mathfrak{sl}(1,2)_0$ -modules that are irreducible and isomorphic to $\mathfrak{sl}(1,2)_0$ -submodules of $\mathcal{L}_0^{\mathfrak{s}_0}(V)$. Then there is a surjective homomorphism $\eta: V \twoheadrightarrow \mathcal{L}_0^{\mathfrak{s}_0}(V)$ and, furthermore, if W is a quotient of V that belongs to the category $\mathcal{HC}(\mathfrak{sl}(1,2),\mathfrak{sl}(1,2)_0)$ and $\pi: V \twoheadrightarrow W$ is the projection of V onto W, then there is a surjective homomorphism $\psi: \mathcal{L}_0^{\mathfrak{s}_0}(V) \twoheadrightarrow W$ such that $\psi \circ \eta = \pi$. Up to isomorphism, $\mathcal{L}_0^{\mathfrak{s}_0}(V)$ is the only $\mathfrak{sl}(1,2)$ -module in the category $\mathcal{HC}(\mathfrak{sl}(1,2),\mathfrak{sl}(1,2)_0)$ with this property.

See [7, proposition 4.3] for a proof of this proposition (in a more general context).

Note that in the previous proposition the hypothesis that says that, up to isomorphism, there are only a finite number of $\mathfrak{sl}(1,2)_0$ -modules irreducible and isomorphic to $\mathfrak{sl}(1,2)_0$ -submodules of $\mathcal{L}_0^{\mathfrak{s}_0}(V)$ is certainly valid when $\mathcal{L}_0^{\mathfrak{s}_0}(V)$ is finitedimensional. It happens that, according to [7, proposition 4.10], this is always the case when $V = M(\mathfrak{p}, E)$ for some finite-dimensional \mathfrak{s} -module E. This observation, together with proposition 1.1, shows that when E is a finite-dimensional \mathfrak{s} -module, $\mathcal{L}_0^{\mathfrak{s}_0}(M(\mathfrak{p}, E))$ is the greatest quotient of $M(\mathfrak{p}, E)$ in $\mathcal{HC}(\mathfrak{sl}(1,2),\mathfrak{sl}(1,2)_0)$, that is, the greatest quotient of $M(\mathfrak{p}, E)$ that, as an $\mathfrak{sl}(1,2)_0$ -module, can be written as a direct sum of finite-dimensional irreducible modules.

It was also proved in [7, §4] that if V belongs to the category $\mathcal{HC}(\mathfrak{sl}(1,2),\mathfrak{s}_0)$, then $\Gamma^0_{\mathfrak{s}_0}(V)$ is the greatest submodule of V in $\mathcal{HC}(\mathfrak{sl}(1,2),\mathfrak{sl}(1,2)_0)$.

2. Borel subalgebras

Let

$$\mathfrak{h} = \left\{ \begin{pmatrix} h_1 + h_2 & 0 & 0 \\ 0 & h_1 & 0 \\ 0 & 0 & h_2 \end{pmatrix} \middle| h_1, h_2 \in \mathbb{C} \right\}.$$

Then \mathfrak{h} is a Cartan subalgebra of $\mathfrak{sl}(1,2)$. Let $\alpha, \beta \in \mathfrak{h}^*$ be defined by

$$\alpha \begin{pmatrix} h_1 + h_2 & 0 & 0\\ 0 & h_1 & 0\\ 0 & 0 & h_2 \end{pmatrix} = h_1 \quad \text{and} \quad \beta \begin{pmatrix} h_1 + h_2 & 0 & 0\\ 0 & h_1 & 0\\ 0 & 0 & h_2 \end{pmatrix} = h_2$$

and let

$$h_{\alpha} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad h_{\beta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

The even roots of $(\mathfrak{sl}(1,2),\mathfrak{h})$ are $\pm(\alpha-\beta)$ and the odd roots are $\pm\alpha$ and $\pm\beta$. If $\lambda \in \mathfrak{h}^* \setminus \{0\}$, then we define

$$\mathfrak{sl}(1,2)_{\lambda} = \{ X \in \mathfrak{sl}(1,2) | (\forall H \in \mathfrak{h}) : [H,X] = \lambda(H)X \}$$

Note that this is done for $\lambda \neq 0$ only; the reason for this is that the notation $\mathfrak{sl}(1,2)_0$ is reserved for the even part of $\mathfrak{sl}(1,2)$. Let

$$\mathfrak{b}_{+} = \mathfrak{h} \bigoplus \mathfrak{sl}(1,2)_{\alpha-\beta} \bigoplus \mathfrak{sl}(1,2)_{\alpha} \bigoplus \mathfrak{sl}(1,2)_{\beta},$$
$$\mathfrak{b}_{-} = \mathfrak{h} \bigoplus \mathfrak{sl}(1,2)_{\alpha-\beta} \bigoplus \mathfrak{sl}(1,2)_{-\alpha} \bigoplus \mathfrak{sl}(1,2)_{-\beta}$$

and

$$\mathfrak{b}_{\pm} = \mathfrak{h} \bigoplus \mathfrak{sl}(1,2)_{\alpha-\beta} \bigoplus \mathfrak{sl}(1,2)_{\alpha} \bigoplus \mathfrak{sl}(1,2)_{-\beta}$$

then \mathfrak{b}_+ , \mathfrak{b}_- and \mathfrak{b}_\pm are Borel subalgebras of \mathfrak{g} and, up to conjugacy, these are the only ones, as can be easily seen (or deduced from [2, §2.5.4]). They all have the same even part, namely $\mathfrak{h} \bigoplus \mathfrak{sl}(1,2)_{\alpha-\beta}$. If $\lambda \in \mathfrak{h}^*$, then λ is a weight if and only if $\lambda = n(\alpha - \beta)/2 + t(\alpha + \beta)$ with $n \in \mathbb{Z}$ and $t \in \mathbb{C}$. It will be said that λ is a dominant weight when $n \in \mathbb{Z}_+$ and that λ is a regular weight when $\lambda(h_\alpha - h_\beta) \neq 0 \iff (\lambda, \alpha - \beta) \neq 0$).

In this article, when we speak of "dominant weight" or "highest weight" this is meant to correspond to the choice of $\{\alpha - \beta\}$ as a set of positive roots of $\mathfrak{sl}(1,2)_0$.

If $\lambda \in \mathfrak{h}^*$ is a dominant weight, then let $L_0(\lambda)$ denote the finite-dimensional irreducible $\mathfrak{sl}(1,2)_0$ -module whose highest weight is λ . If

$$\mathfrak{sl}(1,2)_+ = \mathfrak{sl}(1,2)_\alpha \bigoplus \mathfrak{sl}(1,2)_\beta \text{ and } \mathfrak{sl}(1,2)_- = \mathfrak{sl}(1,2)_{-\alpha} \bigoplus \mathfrak{sl}(1,2)_{-\beta},$$

then $\mathfrak{sl}(1,2)_+$ and $\mathfrak{sl}(1,2)_-$ are supercommutative ideals of $\mathfrak{sl}(1,2)_0 \bigoplus \mathfrak{sl}(1,2)_+$ and $\mathfrak{sl}(1,2)_0 \bigoplus \mathfrak{sl}(1,2)_-$ respectively and therefore every $\mathfrak{sl}(1,2)_0$ -module M becomes an $\mathfrak{sl}(1,2)_0 \bigoplus \mathfrak{sl}(1,2)_+$ -module (resp. an $\mathfrak{sl}(1,2)_0 \bigoplus \mathfrak{sl}(1,2)_-$ -module) with $\mathfrak{sl}(1,2)_+$ (resp. $\mathfrak{sl}(1,2)_-$) acting trivially in M. Let

$$K_{+}(\lambda) = \mathcal{U}(\mathfrak{sl}(1,2)) \bigotimes_{\mathcal{U}(\mathfrak{sl}(1,2)_{0} \bigoplus \mathfrak{sl}(1,2)_{+})} L_{0}(\lambda)$$

and

$$_{-}(\lambda) = \mathcal{U}(\mathfrak{sl}(1,2)) \bigotimes_{\mathcal{U}(\mathfrak{sl}(1,2)_{0} \bigoplus \mathfrak{sl}(1,2)_{-})} L_{0}(\lambda);$$

these are the Kac modules in the specific case of $\mathfrak{sl}(1,2)$ (cf. [3, §2.2]).

 K_{\cdot}

Note that the functors $\mathcal{L}_i^{\mathfrak{s}_0}$ and $\Gamma_{\mathfrak{s}_0}^i$ can be defined for every basic classical Lie superalgebra. It will be useful for what will be done later to see now in more detail what is $\mathcal{L}_0^{\mathfrak{s}_0}(V)$ and $\mathcal{L}_1^{\mathfrak{s}_0}(V)$ in the specific case of the Lie algebra $\mathfrak{sl}(1,2)_0$ when $\mathfrak{s}(=\mathfrak{s}_0)$ is the standard Cartan subalgebra \mathfrak{h} (that is, the subalgebra whose elements are the diagonal matrices), \mathfrak{b} is the set of upper triangular matrices and V is a Verma module $M(\mathfrak{b},\lambda)$ (where $\lambda \in \mathfrak{h}^*$ is a weight). In this situation, the functors $\mathcal{L}_0^{\mathfrak{s}_0}$ and $\mathcal{L}_1^{\mathfrak{s}_0}$ will be represented by \mathcal{L}_0^0 and \mathcal{L}_1^0 respectively. Notice that the Weyl

group of $(\mathfrak{sl}(1,2)_0,\mathfrak{h})$ has only two elements: the identity and the automorphism $w:\mathfrak{h}\longrightarrow\mathfrak{h}$ that exchanges α and β . With this notation, the description is quite simple:

$$\mathcal{L}_0^0(M(\mathfrak{b},\lambda)) \simeq \begin{cases} L(\mathfrak{b},\lambda) & \text{if } \lambda \text{ is dominant} \\ \{0\} & \text{otherwise} \end{cases}$$

and

$$\mathcal{L}_1^0(M(\mathfrak{b},\lambda)) \simeq \begin{cases} L(\mathfrak{b},w(\lambda) - \alpha + \beta) & \text{if } w(\lambda) - \alpha + \beta \text{ is dominant} \\ \{0\} & \text{otherwise.} \end{cases}$$

This is just a particular case of the Borel-Weil-Bott theorem (see [4, §IV.11]).

In what follows, $\mathcal{L}_i^{\mathfrak{s}_0}$ and $\Gamma_{\mathfrak{s}_0}^i$ will be replaced by \mathcal{L}_i and Γ^i whenever it is clear from the context what subalgebra of \mathfrak{g}_0 is being taken. It was proved in [7, §4] that, for any basic classical Lie superalgebra \mathfrak{g} , any parabolic subalgebra \mathfrak{p} and any finite-dimensional \mathfrak{s} -module E, $\mathcal{L}_i(M(\mathfrak{p}, E)) = \{0\}$ when $i > \dim(\mathfrak{g}_0/\mathfrak{s}_0)/2$. Therefore, $(\forall \lambda \in \mathfrak{h}^*) : \mathcal{L}_i(M(\mathfrak{b}, \lambda)) = \{0\}$ for any Borel subalgebra \mathfrak{b} of $\mathfrak{sl}(1, 2)$ and any i > 1.

We are ready to state and prove the first of the three theorems which will describe $\mathcal{L}_0(M(\mathfrak{p}, E))$ and $\mathcal{L}_1(M(\mathfrak{p}, E))$ when E is an irreducible finite-dimensional \mathfrak{s} -module. However, when $\mathcal{L}_i(M(\mathfrak{p}, E))$ $(i \in \{0, 1\})$ is isomorphic to $\{0\}$ or to \mathbb{C} , the method that will be used to prove that assertion will always be the same and we will explain it now. The generalized Verma modules $M(\mathfrak{p}, E)$ are always, as $\mathfrak{sl}(1, 2)_0$ -modules, direct sum of three modules, two of which are Verma modules whereas the third one admits a filtration by Verma modules. To be more precise, we shall denote the $\mathfrak{sl}(1, 2)_0$ -Verma module with highest weight λ by $M_0(\mathfrak{b}_0, \lambda)$. Then, for instance, in the case when $\mathfrak{p} = \mathfrak{b}_+$ and $E = \mathbb{C}_\lambda$, we have an $\mathfrak{sl}(1, 2)_0$ -module isomorphism

(1)
$$M(\mathfrak{b}_+,\lambda) \simeq M_0(\mathfrak{b}_0,\lambda) \bigoplus M_0(\mathfrak{b}_0,\lambda-\alpha-\beta) \bigoplus M,$$

where M is such that there is a short exact sequence

(2)
$$\{0\} \longrightarrow M_0(\mathfrak{b}_0, \lambda - \beta) \hookrightarrow M \twoheadrightarrow M_0(\mathfrak{b}_0, \lambda - \alpha) \longrightarrow \{0\}.$$

On the other hand, if V is an $\mathfrak{sl}(1,2)$ -module from the category $\mathcal{HC}(\mathfrak{sl}(1,2),\mathfrak{h})$ then, as an $\mathfrak{sl}(1,2)_0$ -module, $\mathcal{L}_i(V) \simeq \mathcal{L}_i^0(V)$ where \mathcal{L}_i^0 is the functor from the category $\mathcal{HC}(\mathfrak{sl}(1,2)_0,\mathfrak{h})$ to the category $\mathcal{HC}(\mathfrak{sl}(1,2)_0,\mathfrak{sl}(1,2)_0)$ built the same way as \mathcal{L}_i (see [7, proposition 4.4]). Therefore, it follows from (1) that we have

(3)
$$\mathcal{L}_{i}^{0}(M_{0}(\mathfrak{b}_{0},\lambda)) \simeq \mathcal{L}_{i}^{0}(M_{0}(\mathfrak{b}_{0},\lambda)) \bigoplus \mathcal{L}_{i}^{0}(M_{0}(\mathfrak{b}_{0},\lambda-\alpha-\beta)) \bigoplus \mathcal{L}_{i}^{0}(M)$$

and it is a consequence of (2) that there is an exact sequence

(4)
$$\{0\} \longrightarrow \mathcal{L}^0_1(M_0(\mathfrak{b}_0, \lambda - \beta)) \longrightarrow \mathcal{L}^0_1(M) \longrightarrow \mathcal{L}^0_1(M_0(\mathfrak{b}_0, \lambda - \alpha)) \longrightarrow \mathcal{L}^0_0(M_0(\mathfrak{b}_0, \lambda - \beta)) \longrightarrow \mathcal{L}^0_0(M) \longrightarrow \mathcal{L}^0_0(M_0(\mathfrak{b}_0, \lambda - \alpha)) \longrightarrow \{0\}.$$

So, to prove that some $\mathcal{L}_i(M(\mathfrak{p}, E))$ is isomorphic to $\{0\}$ or to \mathbb{C} it will be enough to use (3), (4) and the description made above of the $\mathfrak{sl}(1,2)_0$ -modules of the type $\mathcal{L}_i^0(M_0(\mathfrak{b},\lambda))$ $(i \in \{0,1\})$.

Theorem 2.1. Let $\lambda \in \mathfrak{h}^*$ be a weight.

- (1) If λ is dominant, then
 - (a) $\mathcal{L}_0(M(\mathfrak{b}_+,\lambda)) \simeq K_+(\lambda);$
 - (b) $\mathcal{L}_1(M(\mathfrak{b}_+,\lambda)) \simeq \{0\};$
 - (c) $\mathcal{L}_0(M(\mathfrak{b}_-,\lambda)) \simeq K_-(\lambda);$
 - (d) $\mathcal{L}_1(M(\mathfrak{b}_-,\lambda)) \simeq \{0\}.$
- (2) If λ is not dominant and $\lambda + (\alpha \beta)/2$ is regular, then,

- (a) $\mathcal{L}_0(M(\mathfrak{b}_+,\lambda)) \simeq \{0\};$
- (b) $\mathcal{L}_1(M(\mathfrak{b}_+,\lambda)) \simeq K_+(w(\lambda)-\alpha+\beta);$
- (c) $\mathcal{L}_0(M(\mathfrak{b}_-,\lambda))\simeq\{0\};$
- (d) $\mathcal{L}_1(M(\mathfrak{b}_-,\lambda)) \simeq K_-(w(\lambda) \alpha + \beta).$
- (3) If λ is not dominant and λ + (α β)/2 is not regular, L₀(M(b₊, λ)), L₁(M(b₊, λ)), L₀(M(b₋, λ)) and L₁(M(b₋, λ)) are all isomorphic to {0}.
 (4) One has:
- (a) $\lambda(h_{\beta}) \neq 0 \Longrightarrow M(\mathfrak{b}_{\pm}, \lambda) \simeq M(\mathfrak{b}_{+}, \lambda + \beta);$ (b) $\lambda(h_{\alpha}) \neq 0 \Longrightarrow M(\mathfrak{b}_{\pm}, \lambda) \simeq M(\mathfrak{b}_{-}, \lambda - \alpha).$
- (5) $\mathcal{L}_0(M(\mathfrak{b}_{\pm}, 0)) \simeq \mathcal{L}_1(M(\mathfrak{b}_{\pm}, 0)) \simeq \mathbb{C}.$

Proof: Among these assertions, those which state that some $\mathcal{L}_i(M(\mathfrak{b},\lambda))$ is isomorphic to $\{0\}$ or to \mathbb{C} (where \mathfrak{b} can be either \mathfrak{b}_+ or \mathfrak{b}_-) can be proved using the method describe before the statement of the theorem. For instance, in order to prove 1b all that has to be proved is that $\mathcal{L}_1^0(M_0(\mathfrak{b},\eta)) = \{0\}$, for each $\eta \in$ $\{\lambda, \lambda - \alpha, \lambda - \beta, \lambda - \alpha - \beta\}$, but this is a consequence of the fact that, for each such $\eta, w(\eta) - \alpha + \beta$ is not dominant. Besides this, since there is an automorphism φ of $\mathfrak{sl}(1, 2)$ such that $\varphi(\mathfrak{b}_+) = \mathfrak{b}_-$, it is clear that for any result concerning \mathfrak{b}_+ there is a similar result concerning \mathfrak{b}_- . Hence, the assertions that will be proved are 1a, 2b and 4a.

It follows from proposition 1.1 and from the fact that $\mathcal{L}_0(M(\mathfrak{b}_+,\lambda))$ is finitedimensional (see [7, proposition 4.10]) that, to prove that $\mathcal{L}_0(M(\mathfrak{b}_+,\lambda))$ and $K_+(\lambda)$ are isomorphic, it will be enough to prove that when V is a quotient of $M(\mathfrak{b}_+,\lambda)$ that, as an $\mathfrak{sl}(1,2)_0$ -module, can be written as a direct sum of finite-dimensional irreducible modules, then the projection $\pi: M(\mathfrak{b}_+,\lambda) \longrightarrow V$ factors through $K_+(\lambda)$. But since λ is a maximal weight of V (unless $V = \{0\}$, but in this case there is nothing to prove), $L_0(\lambda)$ is isomorphic to a submodule $V(\lambda)$ of V. On the other hand, every weight of $M(\mathfrak{b}_+,\lambda)$ has the form $\omega - n(\alpha - \beta)$ with $\omega \in \{\lambda, \lambda - \alpha, \lambda - \beta, \lambda - \alpha - \beta\}$ and n a non-positive integer; therefore, the weights of V have the same form. It follows that $\mathfrak{sl}(1,2)_{\alpha} \bigoplus \mathfrak{sl}(1,2)_{\beta}$ acts trivially in $V(\lambda)$ and this proves that the inclusion $V(\lambda) \hookrightarrow V$ induces an $\mathfrak{sl}(1,2)$ -morphism

$$\eta: K_+(\lambda) \left(= \mathcal{U}(\mathfrak{sl}(1,2)) \bigotimes_{\mathcal{U}(\mathfrak{sl}(1,2)_0 \bigoplus \mathfrak{sl}(1,2)_+)} V(\lambda) \right) \longrightarrow V.$$

It is clear that, if Π is the projection of $M(\mathfrak{b}_+, \lambda)$ onto $K_+(\lambda)$, then $\eta \circ \Pi = \pi$. This proves the assertion 1a.

To prove the assertion 2b, take $\eta = w(\lambda) - \alpha + \beta$. Then η is a dominant weight and if π is a projection from $M(\mathfrak{b}_+, \eta)$ onto $K_+(\eta)$, then its kernel is isomorphic to $M(\mathfrak{b}_+, \lambda)$. In other words, one has a short exact sequence

$$\{0\} \longrightarrow M(\mathfrak{b}_+, \lambda) \stackrel{\iota}{\hookrightarrow} M(\mathfrak{b}_+, \eta) \stackrel{\pi}{\twoheadrightarrow} K_+(\eta) \longrightarrow \{0\}$$

which induces an exact sequence

$$\mathcal{L}_2(M(\mathfrak{b}_+,\eta)) \longrightarrow \mathcal{L}_2(K_+(\eta)) \longrightarrow \mathcal{L}_1(M(\mathfrak{b}_+,\lambda)) \longrightarrow \mathcal{L}_1(M(\mathfrak{b}_+,\eta)).$$

But, since $M(\mathfrak{b}_+, \eta)$ is a Verma module, $\mathcal{L}_2(M(\mathfrak{b}_+, \eta)) \simeq \{0\}$ and, since η is dominant, the assertion 1a shows that $\mathcal{L}_1(M(\mathfrak{b}_+, \eta)) \simeq \{0\}$. Therefore,

$$\mathcal{L}_1(M(\mathfrak{b}_+,\lambda)) \simeq \mathcal{L}_2(K_+(\eta)).$$

But, according to [7, proposition 4.8], $\mathcal{L}_2(K_+(\eta))$ is isomorphic to $\Gamma^0(K_+(\eta))$. Since $K_+(\eta)$ belongs to the category $\mathcal{HC}(\mathfrak{sl}(1,2),\mathfrak{sl}(1,2)_0)$, it follows that $\Gamma^0(K_+(\eta)) \simeq K_+(\eta)$, because, as it was stated at the introduction, when V is an $\mathfrak{sl}(1,2)$ -module that belongs to the category $\mathcal{HC}(\mathfrak{sl}(1,2),\mathfrak{s}_0), \Gamma^0(V)$ is the greatest submodule of V in the category $\mathcal{HC}(\mathfrak{sl}(1,2),\mathfrak{sl}(1,2)_0)$.

Finally to prove the assertion 4a simply take $X_{\beta} \in \mathfrak{sl}(1,2)_{\beta} \setminus \{0\}$. It is easy to see that

$$\begin{array}{cccc} M(\mathfrak{b}_{\pm},\lambda) & \longrightarrow & M(\mathfrak{b}_{\pm},\lambda+\beta) \\ u \otimes c & \rightsquigarrow & u X_{\beta} \otimes c \end{array}$$

is an isomorphism.

Note that assertion 4 of the theorem is only a particular case of a much more general result; cf. $[5, \S 0.1.5]$ or [6, p. 23].

3. IRREDUCIBLE REPRESENTATIONS OF $\mathfrak{gl}(1,1)$

Theorem 2.1 proves that an $\mathfrak{sl}(1,2)$ -module of the form $\mathcal{L}_i(M(\mathfrak{b},\lambda))$, where \mathfrak{b} is a Borel subalgebra of $\mathfrak{sl}(1,2)$, is never an atypical finite-dimensional irreducible representation of $\mathfrak{sl}(1,2)$. It will be seen that such representations may be obtained by homological induction if one uses a parabolic subalgebra of $\mathfrak{sl}(1,2)$. To be more precise, it will be enough to use the parabolic subalgebras associated with one of the following sets of roots: $\{\pm \alpha, \beta\}$, $\{\pm \alpha, -\beta\}$, $\{\alpha, \pm \beta\}$ and $\{-\alpha, \pm \beta\}$. In each case, $\mathfrak{s} \simeq \mathfrak{gl}(1,1)$.

In order to study the finite-dimensional irreducible $\mathfrak{gl}(1, 1)$ -modules, we shall fix the notation. Put $X_{\beta} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $X_{-\beta} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $h_{\beta} = [X_{\beta}, X_{-\beta}] = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. If Eis a finite-dimensional irreducible $\mathfrak{gl}(1, 1)$ -module, then the usual argument shows that E is \mathfrak{h} -semisimple and that, for some weight $\lambda \in \mathfrak{h}^*$, every weight of E has the form $\lambda - n\beta$, for some non negative integer n. It will be said then that λ is the highest weight of E.

If E is a super vector space, dim $E = \dim E_0 + \epsilon \dim E_1$.

Proposition 3.1. Let *E* be a finite-dimensional irreducible representation of the Lie superalgebra $\mathfrak{gl}(1,1)$ and let λ be its highest weight. Then the dimension of *E* is 1 or ϵ if $\lambda(h_{\beta}) = 0$ and $1 + \epsilon$ otherwise.

Proof: Let $v_{\lambda} \in E_{\lambda} \setminus \{0\}$. Then $\mathbb{C}X_{-\beta}v_{\lambda} \bigoplus \mathbb{C}v_{\lambda} \bigoplus \mathbb{C}X_{\beta}v_{\lambda}$ is a submodule of *E*, since $X_{\beta}^{2}v = X_{-\beta}^{2}v = 0$ for every $v \in E$. In fact, since $\lambda + \beta$ is not a weight of *E*, $E = \mathbb{C}X_{-\beta}v_{\lambda} \bigoplus \mathbb{C}v_{\lambda}$. There are now two possibilities:

 $\lambda(h_{\beta}) \neq 0$: In this case, $X_{-\beta}v_{\lambda} \neq 0$ since

$$X_{\beta}(X_{-\beta}v_{\lambda}) = X_{\beta}(X_{-\beta}v_{\lambda}) + X_{-\beta}(X_{\beta}v_{\lambda}) = h_{\beta}v_{\lambda} = \lambda(h_{\beta})v_{\lambda} \neq 0.$$

 $\lambda(h_{\beta}) = 0$: The same argument as above shows that $\mathbb{C}X_{-\beta}v_{\lambda}$ is a submodule of E; therefore, $E = \mathbb{C}X_{-\beta}v_{\lambda}$ or $X_{-\beta}v_{\lambda} = 0$. But, since $v_{\lambda} \in E$, $E \neq \mathbb{C}X_{-\beta}v_{\lambda}$ and this implies that $E = \mathbb{C}v_{\lambda}$.

4. PARABOLIC SUBALGEBRAS

We will deal now with the case where $\mathfrak{p} = \mathfrak{h} \bigoplus (\bigoplus_{\eta \in \Psi} \mathfrak{sl}(1, 2)_{\eta})$, where Ψ is one among the following four sets: $\{\pm \alpha, \beta, -\alpha + \beta\}$, $\{\pm \alpha, -\beta, \alpha - \beta\}$, $\{\alpha, \pm \beta, \alpha - \beta\}$ and $\{-\alpha, \pm \beta, -\alpha + \beta\}$. Since all these cases are similar, it will be enough to do things in detail for one of these cases; this will be done with $\Psi = \{\alpha, \pm \beta, \alpha - \beta\}$. Therefore $\mathfrak{s} = \mathfrak{h} \bigoplus \mathfrak{sl}(1, 2)_{\beta} \bigoplus \mathfrak{sl}(1, 2)_{-\beta} (\simeq \mathfrak{gl}(1, 1))$.

Theorem 4.1. Let E be an irreducible finite-dimensional \mathfrak{s} -module and let λ be its highest weight.

- (1) If λ is dominant, then
 - (a) if $\lambda(h_{\beta}) \neq 0$, $\mathcal{L}_0(M(\mathfrak{p}, E)) \simeq K_+(\lambda)$;
 - (b) if $\lambda(h_{\beta}) = 0$, $\mathcal{L}_0(M(\mathfrak{p}, E))$ is irreducible with highest weight λ (in other words, $\mathcal{L}_0(M(\mathfrak{p}, E)) \simeq L(\mathfrak{b}_+, \lambda)$);
 - (c) $\mathcal{L}_1(M(\mathfrak{p}, E)) \simeq \{0\}.$
- (2) If λ is not dominant, then

- (a) $\mathcal{L}_0(M(\mathfrak{p}, E)) \simeq \{0\};$
- (b) if $\lambda(h_{\beta}) \neq 0$, $\mathcal{L}_1(M(\mathfrak{p}, E)) \simeq K_+(w(\lambda) \alpha + \beta)$, unless $w(\lambda) \alpha + \beta$ is not dominant, in which case $\mathcal{L}_1(M(\mathfrak{p}, E)) \simeq \{0\}$;
- (c) if $\lambda(h_{\beta}) = 0$, $\mathcal{L}_1(M(\mathfrak{p}, E))$ is irreducible with highest weight $w(\lambda) \alpha + \beta$ (that is, it is isomorphic with $L(\mathfrak{b}_+, w(\lambda) \alpha + \beta)$), unless $\lambda = \beta$, in which case $\mathcal{L}_1(M(\mathfrak{p}, E)) \simeq \mathbb{C}$.

Proof: By the argument presented before the statement of theorem 2.1, the cases where it is stated that $\mathcal{L}_i(M(\mathfrak{p}, E))$ is isomorphic either to $\{0\}$ or to \mathbb{C} are easy to establish.

Take $X_{\pm\alpha} \in \mathfrak{sl}(1,2)_{\pm\alpha}$ and $X_{\pm\beta} \in \mathfrak{sl}(1,2)_{\pm\beta}$ such that $h_{\alpha} = [X_{\alpha}, X_{-\alpha}]$ and $h_{\beta} = [X_{\beta}, X_{-\beta}]$. Suppose that λ is dominant and that $\lambda(h_{\beta}) \neq 0$. If V is a quotient of $M(\mathfrak{p}, E)$ that belongs to the category $\mathcal{HC}(\mathfrak{sl}(1,2),\mathfrak{sl}(1,2)_0)$ and if π is the projection of $M(\mathfrak{p}, E)$ onto V, then, in order to be able to use proposition 1.1 (and the remark made after its statement), it must be proved that π factors through $K_+(\lambda)$. Let $v \in E_{\lambda} \setminus \{0\}$ and let $w = \pi(1 \otimes v)$; it can (and will) be assumed that $w \neq 0$. Since $w \in V_{\lambda}$ and since V belongs to the category $\mathcal{HC}(\mathfrak{sl}(1,2),\mathfrak{sl}(1,2),\mathfrak{sl}(1,2)_0)$, there is an $\mathfrak{sl}(1,2)_0$ -submodule of V isomorphic to $L_0(\lambda)$ and the inclusion of this module into V induces an $\mathfrak{sl}(1,2)$ -morphism $F: K_+(\lambda) \longrightarrow V$ such that, for some $v^* \in L_0(\lambda)_{\lambda} \setminus \{0\}, F(1 \otimes v^*) = w$. Since $\lambda(h_{\beta}) \neq 0, \mathbb{C}(1 \otimes v^*) \bigoplus \mathbb{C}(X_{-\beta} \otimes v^*) \simeq E$ (as a $\mathfrak{gl}(1,1)$ -module) and X_{α} acts trivially on $\mathbb{C}(1 \otimes v^*) \bigoplus \mathbb{C}(X_{-\beta} \otimes v^*)$, there is an $\mathfrak{sl}(1,2)$ -morphism $\eta : M(\mathfrak{p}, E) \longrightarrow K_+(\lambda)$ such that $\eta(v) = 1 \otimes v^*$. Therefore $(F \circ \eta)(v) = w = \pi(v)$; since v generates $M(\mathfrak{p}, E), F \circ \eta = \pi$. This proves the assertion 1a.

Suppose now that λ is dominant and that $\lambda(h_{\beta}) = 0$. In this case, and since proposition 3.1 tells us that $E = \mathbb{C}v$ for some $v \in E$ whose weight is λ , the $\mathfrak{sl}(1,2)_0$ module $M(\mathfrak{p}, E)$ is the direct sum of two Verma modules whose highest weights are λ and $\lambda - \alpha$. Observe that, since $\lambda(h_{\beta}) = 0$ and λ is dominant, $\lambda = n\alpha$ for some non-negative integer n. There are two possibilities:

 $\lambda \neq 0$: Then λ and $\lambda - \alpha$ are both dominant weights and therefore, as an $\mathfrak{sl}(1,2)_0$ -module, $\mathcal{L}_0(M(\mathfrak{p},E))$ is isomorphic to the direct sum

$$L_0(\lambda) \bigoplus L_0(\lambda - \alpha).$$

Let ω_1 be an element of $\mathcal{L}_0(M(\mathfrak{p}, E))_{\lambda}$ different from 0 and define $\omega_2 = X_{-\alpha}\omega_1$. Then the weight of ω_2 is $\lambda - \alpha$ and $\omega_2 \neq 0$ since

 $X_{\alpha} \cdot \omega_2 = X_{\alpha} \cdot (X_{-\alpha} \cdot \omega_1) = -X_{-\alpha} \cdot (X_{\alpha} \cdot \omega_1) + h_{\alpha} \cdot \omega_1 = \lambda(h_{\alpha})\omega_1$

and both $\lambda(h_{\alpha})$ and ω_1 are different from 0. Since, as an $\mathfrak{sl}(1,2)_0$ -module, $\mathcal{L}_0(M(\mathfrak{p},E))$ is the direct sum of two irreducible modules, generated by ω_1 and ω_2 , $\omega_2 = X_{-\alpha}\omega_1$, and $X_{\alpha} \cdot \omega_2 = \lambda(h_{\alpha})\omega_1$, the $\mathfrak{sl}(1,2)$ -module $\mathcal{L}_0(M(\mathfrak{p},E))$ is irreducible and generated by ω_1 ; it is therefore isomorphic to $L(\mathfrak{b}_+,\lambda)$.

 $\lambda = 0$: Then $\lambda - \alpha = -\alpha$ and therefore it is not a dominant weight. In this case then, as a $\mathfrak{sl}(1,2)_0$ -module, $\mathcal{L}_0(M(\mathfrak{p},E))$ is simply $L_0(\lambda)(=L_0(0))$, which is isomorphic to \mathbb{C} . Therefore, $\mathcal{L}_0(M(\mathfrak{p},E)) \simeq \mathbb{C} \simeq L(\mathfrak{b}_+,0) = L(\mathfrak{b}_+,\lambda)$.

Finally, the statements concerning $\mathcal{L}_1(M(\mathfrak{p}, E))$ when λ is not dominant can be proved in the same way as in theorem 2.1.

There are only two parabolic subalgebras \mathfrak{p} left (distinct from $\mathfrak{sl}(1,2)$), namely

$$\mathfrak{p} = \mathfrak{sl}(1,2)_0 \bigoplus \mathfrak{sl}(1,2)_+ \text{ and } \mathfrak{p} = \mathfrak{sl}(1,2)_0 \bigoplus \mathfrak{sl}(1,2)_-.$$

We shall simply describe the $\mathfrak{sl}(1,2)$ -modules homologically induced that can be obtained from the first of these two parabolic subalgebras; the proof is similar (in fact, easier) to the proofs of theorems 2.1 and 4.1.

Theorem 4.2. Let $\mathfrak{p} = \mathfrak{sl}(1,2)_0 \bigoplus \mathfrak{sl}(1,2)_+$ and let E be an irreducible finitedimensional $\mathfrak{sl}(1,2)_0$ -module with highest weight $\lambda \in \mathfrak{h}^*$. Then $\mathcal{L}_0(E) \simeq K_+(\lambda)$ and $\mathcal{L}_1(E) \simeq \{0\}$.

5. FINAL REMARKS

The description made in sections 2 and 4 of the $\mathfrak{sl}(1,2)$ -modules that are homologically induced show that

- (1) no single parabolic subalgebra of $\mathfrak{sl}(1,2)$ is enough to obtain every irreducible finite-dimensional $\mathfrak{sl}(1,2)$ -module by homological induction;
- (2) every homologically induced $\mathfrak{sl}(1,2)$ -module is indecomposable and, furthermore, every indecomposable $\mathfrak{sl}(1,2)$ -module is homologically induced.

Remember that it was stated at the beginning of the article that all our modules are \mathfrak{h} -semisimple. In fact, there are $\mathfrak{sl}(1,2)$ -modules which are indecomposable but that are not \mathfrak{h} -semisimple (see [1]).

References

- J. Germoni. Indecomposable representations of special linear Lie superalgebras. J. Alg., 209:367–401, 1998.
- [2] V. G. Kac. Lie superalgebras. Adv. Math., 26:8–96, 1977.
- [3] V. G. Kac. Representations of classical Lie superalgebras. In Differential Geometrical Methods in Mathematical Physics, volume 676 of Lecture Notes in Math., pages 597–626. Springer-Verlag, 1978.
- [4] A. W. Knapp and D. A. Vogan. Cohomological induction and unitary representations. Number 45 in Princeton Mathematical Series. Princeton University Press, 1995.
- [5] I. Penkov and V. Serganova. Representations of classical Lie superalgebras of type I. Indag. Math., N. S. 3:419–466, 1992.
- [6] J. C. Santos. Induction homologique dans les super algèbres de Lie basiques classiques. Thèse de Doctorat, Université Paris VII, 1996.
- [7] J. C. Santos. Foncteurs de Zuckerman pour les superalgèbres de Lie. J. Lie Theory, 9:69–112, 1999.

Departamento de Matemática Pura, Rua do Campo Alegre, 687, 4169–007 Porto, Portugal

E-mail address: jcsantos@fc.up.pt