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The goal of this note is to prove the fundamental theorem of algebra. To be more
precise, we show that the degree of an irreducible polynomial in R[X ] is either 1 or 2.
The same method can be used to prove that the degree of an irreducible polynomial in
C[X ] is always 1.

Let n be an integer larger than 1, and let P be an irreducible polynomial in R[X ]
of degree n. We assert that n = 2. Denote by 〈P〉 the ideal generated by P in the ring
R[X ]. Since P is irreducible, the quotient of the ring R[X ] by 〈P〉 is a field. If we define
ψ : Rn −→ R[X ]/〈P〉 by

(a0,a1, . . . ,an−1) 7→ a0 +a1X + · · ·+an−1Xn−1 + 〈P〉,

then ψ is a group isomorphism from (Rn,+) onto (R[X ]/〈P〉,+). This isomorphism
induces in the obvious way a field structure in Rn, the addition being the usual one.
The product of two elements x and y of Rn is denoted by x · y, and the identity element
for the product is denoted by 1. The product, which is a bilinear function from Rn×Rn

into Rn, is continuous.
Let | · | be a norm in Rn (with respect to its usual real vector space structure) such

that |1|= 1 and define
‖x‖= sup

|y|=1
|x · y|

for each x in Rn. This is just the norm of the endomorphism y 7→ x · y of Rn. Then
‖1‖= 1 and ‖x · y‖ ≤ ‖x‖‖y‖ holds for all x and y in Rn. The series

+∞

∑
n=0

xn

n!
,

+∞

∑
n=1

(−1)n+1 (x−1)n

n

are both absolutely and locally uniformly convergent with respect to this norm, the
first one in Rn and the second one in {x ∈ Rn |‖x− 1‖ < 1}. Their sums are denoted
by exp(x) and log(x), respectively. Since the product is commutative, it is easy to
prove that exp(x + y) = exp(x) · exp(y) for all x and y in Rn. Furthermore, we never
have exp(x) = 0, because exp(x) · exp(−x) = exp(x− x) = exp(0) = 1. We have thus
defined a continuous group homomorphism exp : (Rn,+)−→ (Rn \{0}, ·).

It can be proved, just as it is in the case of matrices (see [1, sec. 2.1] or [3, sec. 4.B]),
that

exp
(
log(x)

)
= x (x ∈ Rn, ‖x−1‖< 1) (1)

and
log

(
exp(x)

)
= x (2)
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for any x in Rn such that ‖exp(x)−1‖< 1.
It follows from (1) that, if V is a neighborhood of 0, then exp(V ) is a neighborhood

of 1. Therefore, since exp is also a group homomorphism, it is an open mapping. It
can be deduced from this fact that exp is surjective. Indeed, if G = exp(Rn), then G is
an open subgroup of (Rn \{0}, ·), and if x belongs to (Rn \{0})\G, then

G · x ⊂
(
Rn \{0}

)
\G.

Accordingly, the complement of G in Rn \ {0} is also an open set. Therefore, since
Rn \{0} is connected, the complement of G must be empty. In other words, exp(Rn) =
Rn \{0}.

It is a consequence of (2) that ker(exp) is discrete, and it is well known (see [2,
chap. 7, sec. 1.1] or [4, sec. 1.12]) that, unless ker(exp) = {0}, this implies the existence
of linearly independent vectors v1, . . . ,vm in Rn (m≥ 1) such that ker(exp) =

⊕m
k=1 Zvk.

A second application of the fact that exp is an open mapping shows that it induces a
homeomorphism from Rn/ker(exp) (which is homeomorphic to (S1)m ×Rn−m) onto
Rn \{0}. But if n > 2, the space Rn \{0} would be simply connected, whereas (S1)m×
Rn−m is not simply connected when 1≤m≤ n. To avoid a contradiction, it would have
to be the case that ker(exp) = {0}. Therefore, Rn \{0} would be homeomorphic to Rn.
However, this is impossible. This can be proved using homology groups, and it also
follows from the fact that in Rn every compact set K is a subset of some other compact
set whose complement is connected, whereas in Rn \{0} this is not true (consider, for
instance, K = Sn−1, the unit sphere in Rn). Therefore, n = 2 and the theorem is proved.
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