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1 Introduction

Glaucoma is a group of eye diseases that cause optic nerve damage. The
eye pressure plays a role in harm the fibres of the optic nerve. When significant
number of fibres are damaged, blind spots develop in the field of vision. Once
this occurs, visual loss is permanent.

In a healthy eye, the aqueous humor is continuously produced and drained
from the ciliary body through the trabecular mesh and leave through the Schlemm
canal. In the Figure 1 we can see the anatomy of the human eye.

In glaucoma, the trabecular mesh become inflamed and the circulation of
aqueous humor is not possible. This causes an increase of the ocular pressure.

Diseases associated with anterior part of the eye are treated mainly by topic
administration of eye drops in the anterior conjuntival fornix. However, the pro-
cess is extremely inefficient since, once the eye drop is in the eye, the drug stays
in the conjuntival sac a short period of time, less than 5 minutes. Furthermore,
the amount of drug that penetrates in the cornea and reaches the intra-ocular
tissues is just about 1-5% (See [1]).

Figure 1: Anatomy of the eye ([2]). Figure 2: Lenses ([3]).

For avoiding the inconveniences of topic administration, therapeutic lens
(Figure 2) are designed for improve the ocular drugs distribution. Polymers are
combined with the drug to obtain a predefined drug release profile (See [1]).

There are several types of lens: simple polymeric membranes with disperse
drug, polymeric platforms containing disperse particles that encapsulate drug;
and multilayer lens.

Figure 3: Unbound par-
ticles to the polymer
chain.

Figure 4: Unbound and
bound particles to the
polymer chain.

Figure 5: Unbound,
bound and encapsu-
lated particles to the
polymer chain.

The main objective of this work is to study the evolution of drug in the
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anterior chamber using different types of polymeric platforms to distribute the
drug (Figures 3-5).

2 Initial considerations and some concepts

Let us suppose that the lens and the cornea are isotropic medias.

Figure 6: Reference element.

Let V represented in Figure 6 a reference element in one of these medium
and let c be the drug concentration in (x, y, z) at time t. Let A be a cross
section with fixed area A. We suppose that

c(x, y, z, t) = c(x, 0, 0, t)

for all (x, y, z) ∈ A. We represent by c(x, t) the concentration c(x, 0, 0, t).
In the reference element V we have a diffusion process whose evolution is

described by Fick’s law. If we represent by J(x, t) the drug mass flux at x at
time t, then

J(x, t) = −D ∂c

∂x
(x, t),

where D represents the diffusion coefficient (See [4]).
We establish in what follows the diffusion equation, that has a central role

in this work. Let M(t) be the drug mass in a sector defined by xmin < x1 ≤
x2 < xmax then

M(t) = A

∫ x2

x1

c(x, t) dx,

and the time variation of M(t) is given by

M ′(t) = A

∫ x2

x1

∂c

∂t
(x, t) dx (2.1)
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We remark that M ′(t) = AJ(x1, t)−AJ(x2, t), and using Fick’s law we get

M ′(t) = −A D
∂c

∂t
(x1, t) +A D

∂c

∂t
(x2, t) =

= A

∫ x2

x1

∂

∂x

(
D
∂c

∂x

)
dx. (2.2)

From (2.1), (2.2) we conclude that

A

∫
x2

x1

[
∂c

∂t
(x, t)−

(
D

∂c

∂x
(x, t)

)]
dx = 0. (2.3)

As x1, x2 are arbitrarily and if c,
∂c

∂t
,
∂c

∂x
,
∂2c

∂x2
are continuous in [xmin, xmax],

then from (2.2) we obtain

∂c

∂t
(x, t)− ∂

∂x

(
D

∂c

∂x
(x, t)

)
= 0, ∀x ∈]xmin, xmax[. (2.4)

Equation (2.4), called diffusion equation, plays a crucial role in what follows.
It must be observed that if a reaction defined by R occurs in the sector

[x1, x2] then (2.2) is replaced by

M ′(t) = −A D
∂c

∂t
(x1, t) +A D

∂c

∂t
(x2, t) +A

∫ x2

x1

R(x) dx =

= A

∫ x2

x1

∂

∂x

(
D
∂c

∂x

)
+R(x) dx. (2.5)

Thus, we obtain

∂c

∂t
(x, t)− ∂

∂x

(
D

∂c

∂x
(x, t)

)
+R(x) = 0, ∀x ∈]xmin, xmax[, (2.6)

which is called diffusion-reaction equation.
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3 A coupled model for the drug distribution

Figure 7: 3D simplified geometry.
Figure 8: Cross section of the 3D
model.

In Figure 7 we represent a simplified geometry of the lens L, the cornea C,
and the anterior chamber S, and in Figure 8 a correspondent cross section.

We suppose that the therapeutical lens is composed by a polymeric matrix
where the drug has 3 different states: free that is allowed to diffuse, bound that
is linked with the polymeric structure and encapsulated in polymeric particles
dispersed in the lens.

Let Cl, Cb, Ce, Cc and Ca denotes the free, bound and encapsulated concen-
tration in the lens, the drug concentration in the cornea, and anterior chamber,
respectively. We consider in what follows the evolution of Cl, Cb, Ce and Cc in
the spatial domains ]l1, l2[ and ]l2, l3[, respectively.

We remark that the bound and encapsulated drug can be converted into free
drug that diffuses through to the polymeric structure and in the cornea reach-
ing the anterior chamber. To simplify the presentation we introduce different
models, that describe the drug evolution in different type of lenses:

(i) Lenses with dispersed drug (Figure 3);

(ii) Lenses with bound and dispersed drug (Figure 4);

(iii) Lenses with dispersed, bound and encapsulated drug (Figure 5).

We introduce now several parameters that are needed in the mathematical
description of the drug evolution.

Let Dl and Dc represent the drug diffusion coefficients in the lens and cornea,
respectively. By δ1 we denote the unbinding rate coefficient. As the encapsu-
lated drug can be converted in free drug, by δ2 we represent such rate transfer-
ence coefficient.

In the anterior chamber the drug can be absorbed by the trabecular mesh
or metabolised. The drug degradation rate (also called clearance rate) here is
denoted by γ.

We describe now the evolution of the drug in different types of lens.

Model I: Lens with unbound drug particles

According to mass conservation law (2.4), the reaction term, R(c(x, t)), is
null since we do not have bound or encapsulated drug. Hence, the governing
diffusion equation that describes the drug dynamics in the lens is

∂Cl

∂t
= Dl

∂2Cl

∂x2
, x ∈ (0, l1) , t > 0, (3.1)

4



Dimensional analysis of the Equation 3.1:[
∂Cl

∂t

]
= g cm−3s−1 [Dl] = cm2 s−1

[
∂2Cl

∂x2

]
= g cm−5,

where by [H] we represent the units of the quantity H.

Model II: Lens with free and bound drug

We assume that the drug is in two different states: dispersed in the polymeric
matrix and linked to polymeric chain.

In this case, the reaction term, R(c(x, t)), in the diffusion equation is not
null since connections between drug particles and the polymer will be broken.
Hence, the governing diffusion equation that describes the drug dynamics in the
lens is,

∂Cl

∂t
= Dl

∂2Cl

∂x2
+ γ(Cb − Cl), x ∈ (0, l1) , t > 0 (3.2)

∂Cb

∂t
= −γ(Cb − Cl), x ∈ (0, l1) , t > 0, (3.3)

Dimensional analysis of the Equations 3.2:[
∂Cl

∂t

]
= g cm−3s−1 [Dl] = cm2 s−1

[
∂2Cl

∂x2

]
= g cm−5

[γ] = s−1 [Cb] = [Cl] = g cm−3

Dimensional analysis of the Equations 3.3:[
∂Cb

∂t

]
= g [γ] = s−1 [Cb] = [Cl] = g cm−3

Model III: Lens with free, bound and encapsulated drug

In this case, we assume that bound and encapsulated drug can be converted
into free drug depending such conversation on the difference between free and
bound drug, and free and encapsulated drug.

• Free drug concentration:

∂Cl

∂t
= Dl

∂2Cl

∂x2
+ δ1(Cb − Cl) + δ2(Ce − Cl) x ∈ (0, l1) , t > 0 (3.4)

This equation describes the time and space evolution of the free drug
concentration in the polymeric lens. The bound and encapsulated drug
have a source role in the evolution of the free drug.

Dimensional analysis of the Equation 3.4:[
∂Cl

∂t

]
= g cm−3s−1 [Dl] = cm2 s−1

[
∂2Cl

∂x2

]
= g cm−5 [δ1] = s−1

[δ2] = s−1 [Cb] = g cm−3 [Cl] = g cm−3 [Ce] = g cm−3
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• Bound drug concentration:

∂Cb

∂t
= −δ1(Cb − Cl) x ∈ (0, l1) , t > 0 (3.5)

This equation describes the evolution in time and space of the bound
drug concentration. As this drug does not diffuse, this equation do not
have a diffusion term. We remark that while the term (Cb −Cl) works as
a source in equation (3.4), in equation (3.5) this term has a sink role.

Dimensional analysis of the Equation 3.5:[
∂Cb

∂t

]
= g cm−3s−1 [δ2] = s−1 [Ce] = g cm−3 [Cl] = g cm−3

• Encapsulated drug concentration:

∂Ce

∂t
= −δ2(Ce − Cl) x ∈ (0, l1) , t > 0 (3.6)

We observe that the encapsulated drug is not allowed to diffuse and while
the term (Cl − Ce) works as a source in equation (3.4), in last equation
this term has a sink role.

Dimensional analysis of the Equation 3.6:[
∂Ce

∂t

]
= g cm−3s−1 [δ1] = s−1 [Cb] = g cm−3 [Cl] = g cm−3

Drug evolution in cornea:

The free drug diffuses through the lens entering in the cornea where it also
diffuses. We do not consider the possible links between the drug and the cornea
tissue and its degradation. Consequently, the evolution of the drug in the cornea
is described by the simple diffusion equation

∂Cc

∂t
= Dc

∂2Cc

∂x2
x ∈ (l1, l2) , t > 0. (3.7)

Cornea can be seen as a transfer layer since its properties may slow down
or speed up the drug admission into anterior chamber, according to a higher or
lower dilution level.

Dimensional analysis of the Equation 3.7:[
∂Cc

∂t

]
= g cm−3s−1 [Dc] = cm2 s−1

[
∂2Cc

∂x2

]
= g cm−5

Drug evolution in the anterior chamber:

The drug that diffuses in the cornea enters in the anterior chamber by the in-
volving surface. So the time evolution of the concentration depends on the drug
success flux entering by this surface as well as on its degradation. Consequently,
we consider the following differential equation

∂Ca

∂t
=

1

Va
(−SDc

∂Cc

∂x
(l2, t))− γCa, t > 0 (3.8)
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where Va denotes the volume of the anterior chamber, S the area of the surface
which is the limit of the cornea that is in contact with the aqueous humour and
γ represents the degradation rate.

Dimensional analysis of the Equation 3.8:[
∂Ca

∂t

]
= g cm−3s−1

[
1

Va

]
= cm−3 [Dc] = cm2 s−1

[
∂Cc

∂x

]
= g cm−4

[δ] = s−1 [Ca] = g cm−3

The drug evolution in the lens, cornea and anterior chamber when only dis-
persed drug is considered in the lens is described by Model I which is composed
by equations (3.1), (3.7) and (3.8). Equations (3.2), (3.3), (3.7) and (3.8) define
Model II where the drug in the lens has two different states: free and bound.
Finally, Model III is defined by equations (3.4), (3.5), (3.6), (3.7) and (3.8). In
this model we consider that the drug is dispersed, bound and encapsulated. We
remark that Model III has as particular cases Models I and II. In fact if we take
in (3.4) δ1 = δ2 = 0 then Model III is reduced to Model I and to model II if we
take δ2 = 0, δ1 6= 0.

Parameter δ1 Parameter δ2

Model I 0 0
Model II 6= 0 0
Model III 6= 0 6= 0

To complete the definitions of the mathematical problems we need to specify
initial, boundary and transition conditions that define the variables at t = 0, at
the boundary of the spatial domain, and at the interface between the lens and
the cornea, and between the cornea and the anterior chamber.

Let C0
l , C0

b and C0
e represent the drug concentration at t = 0 in the three

different states: free, bound and encapsulated. Initially we do not have drug in
the cornea and in the anterior chamber. Then

Cl(x, 0) = C0
l x ∈ (0, l1)

Cb(x, 0) = C0
b x ∈ (0, l1)

Ce(x, 0) = C0
e x ∈ (0, l1)

Cc(x, 0) = 0 x ∈ (l1, l2)

Ca(0) = 0

(3.9)

Boundary conditions:

• At x = 0: As the lens surface in contact with air is isolated, the mass flux
in the surface is null and this conditions is described by

∂Cl

∂x
(0, t) = 0. (3.10)

Transition conditions:

• Lens-Cornea surface: We assume that the mass flux that leaves the lens
enters in the cornea, which means that the two mass fluxes are equals

−Dl
∂Cl

∂x
(l1, t) = −Dc

∂Cc

∂x
(l1, t), t > 0. (3.11)
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Moreover we assume that in the interface between the lens and the cornea
we have continuity of the concentrations, this means that

Cl(l1, t) = Cc(l1, t), t > 0. (3.12)

• Cornea-Anterior chamber surface: The drug mass flux that enter in the
anterior chamber comes from the cornea and it depends on the perme-
ability of the contact surface (α). Moreover we assume that the mass flux
depends on the difference between the two concentrations: in the cornea
and in the anterior chamber. These assumptions are mathematically de-
scribed by

−Dc
∂Cc

∂x
(l2, t) = α(Cc(l2, t)− Ca(t)), t > 0. (3.13)

Remark. The coupled model: (3.4), (3.5), (3.6), (3.7), (3.8), (3.9), (3.10), (3.11),
(3.12) and (3.13) present several challenges in what concerns its mathematical
analysis: well-posedness in traditional sense, this means it has unique solution
and it is stable, in the sense that if we perturb the initial conditions (3.9) then
the correspondent solution is a perturbation of the solution defined by (3.9).

The mathematical analysis of the initial boundary problem (3.4), (3.5), (3.6),
(3.7), (3.8), (3.9), (3.10), (3.11), (3.12) and (3.13) will not be included in this
work.

As the main motivation of this work is the construction of the mathematical
model III and its qualitative behaviour, in what follows we present its numerical
simulation.
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4 Numerical Simulation

4.1 Introduction

To illustrate the behavior of the different drug concentrations defined by the
initial value problem (3.4), (3.5), (3.6), (3.7), (3.8), (3.9), (3.10), (3.11), (3.12)
and (3.13) we need to introduce a discretization of this problem.

Different approaches can be used to introduce such discrete model, namely,
finite element or finite difference approaches. In what follows, we use the finite
difference approach and the discrete model will be implemented in Matlab.

We start by the introduction of the finite difference method that is con-
structed using an implicit-explicit approach. Finally, we present some numeri-
cal experiments that aim to illustrate the qualitative behaviour of the coupled
model defined by (3.4), (3.5), (3.6), (3.7), (3.8), (3.9), (3.10), (3.11), (3.12) and
(3.13).

4.2 Discrete Method

In the spacial domain Ω̄ = [0, l2], we introduce the uniform partition 0 =
x0 < x1 < · · · < xI < · · · < xN−1 < xN = l2, xI = l1. Let be h = xi−xi−1, i =
1, . . . , N and let x−1 = −h. By D2 we denote the second order centred difference
operator

D2uh(xi) =
uh(xi−1)− 2uh(xi) + uh(xi+1)

h2
,

by D−x the backward difference operator

D−xuh(xi) =
uh(xi)− uh(xi−1)

h
,

and by Dx the progressive difference operator

Dxuh(xi) =
uh(xi+1)− uh(xi)

h
.

We consider the previous operators in the discretization of spatial derivate
present in the equations of the model and let be Cl,h, Cb,h, Ce,h, Cc,h, Ce,h and
Ca,h grid functions with entries Cl,h(xi, t), Cb,h(xi, t), Ce,h(xi, t), Cc,h(xi, t),
Ce,h(xi, t) and Ca,h(xi, t). The semi-discretezed model is given by the following
ordinary differential equations:

dCl,h(xi, t)

dt
=DlD2Cl,h(xi, t) + δ1(Cb,h(xi, t)− Cl,h(xi, t)) (4.1)

+ δ2(Ce,h(xi, t)− Cl,h(xi, t)), i = 0, . . . , I − 1, t > 0,

dCb,h(xi, t)

dt
= −δ1(Cb,h(xi, t)− Cl,h(xi, t)), i = 1, . . . , I − 1, t > 0, (4.2)

dCe,h(xi, t)

dt
= −δ2(Ce,h(xi, t)− Cl,h(xi, t)), i = 1, . . . , I − 1, t > 0, (4.3)

dCc,h(xi, t)

dt
= DcD2Cc,h(xi, t), i = I + 1, . . . , N − 1, t > 0, (4.4)

dCa,h(t)

dt
=

1

Va
(−SDcD−xCc,h(xN , t))− γCa,h(t), t > 0. (4.5)
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Being this equations coupled with the following initial conditions

Cl,h(xi, 0) = C0
l , i = 1, . . . , I − 1

Cb,h(xi, 0) = C0
b , i = 1, . . . , I − 1

Ce,h(xi, 0) = C0
e , i = 1, . . . , I − 1

Cc,h(xi, 0) = 0, i = I + 1, . . . , N − 1

Ca,h(0) = 0.

(4.6)

To conclude the definition of the coupled semi-discrete approximation we need
to introduce the semi-discrete boundary and transition conditions. For the
boundary condition in x = 0 we need to consider an auxiliary mesh point
Cl,h(x−1, t), that, from the boundary condition (4.7), it is given by

Cl,h(x−1, t) = Cl,h(x1, t), (4.7)

The transition conditions (4.8), (4.9) and (4.10) are replaced by

−DlD−xCl,h(xI , t) = −DcDxCc,h(xI , t), t > 0, (4.8)

Cl,h(xI , t) = Cc,h(xI , t), t > 0, (4.9)

−DcD−xCc,h(xN , t) = α(Cc,h(xN , t)− Ca,h(t)), t > 0. (4.10)

The semi-discrete model Ck,h, k ∈ {l, b, e, c, a} is defined by (4.1)-(4.10).
Now we need to integrate in time the introduced semi-discrete problem. To

do that, we introduce a time grid {tn, n = 0, . . . ,M} with t0 = 0, tn = T and
tn+1 − tn = ∆t.

In time integration we use an implicit-explicit approach: the diffusion terms
are discretized implicitly and the reaction term in equation (4.1) is discretized
explicitly; the differential equations (4.2), (4.3), (4.4) are integrated using the
implicit-Euler method.

Let Cm
k,i, k ∈ {a, l, b, e, c} represent the numerical approximations for Ck(xi, t

m),
k ∈ {a, l, b, e, c}, that are defined in what follows:

1. For i = 0, . . . , I − 1, j = 1, . . . ,M we consider

Cj+1
l,i − C

j
l,i

∆t
= Dl

Cj+1
l,i−1 − 2Cj+1

l,i + Cj+1
l,i+1

h2
+δ1(Cj

b,i−C
j
l,i)+δ2(Cj

e,i−C
j
l,i);

2. For i = 1 . . . , I − 1, j = 1, . . . ,M

Cj+1
b,i − C

j
b,i

∆t
= −δ1(Cj+1

b,i − C
j+1
l,i ),

Cj+1
e,i − C

j
e,i

∆t
= −δ2(Cj+1

e,i − C
j+1
l,i );

3. For i = I + 1, . . . , N1, j = 1, . . . ,M

Cj+1
c,i − C

j
c,i

∆t
= Dl

Cj+1
c,i−1 − 2Cj+1

c,i + Cj+1
c,i+1

h2
;
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4. For Cj
a,h, j = 1, . . . ,M we have

Cj+1
a − Cj

a

∆t
=

1

Va

(
−SDc

Cj+1
c,N − C

j+1
c,N−1

h

)
− γCj+1

a ;

5. We consider the initial conditions (4.6);

6. As boundary and transition conditions, for all t = j∆t, j = 1 . . . ,M is
given by (4.7), (4.8), (4.9) and (4.10).

Remark. The theoretical support for the previous numerical method will not
be developed in this work. We observe that the method is consistent, provided
that the solution Ck, k ∈ {l, b, e, c, a} is smooth enough, in the sense that when
∆t→ 0, h→ 0, the correspondent truncation error goes to zero. Moreover, the
diffusion errors are implicit discretized, we expect that the method is at least
conditionally stable.

4.3 Numerical Results

In this section we present some numerical results that intend to illustrate
the behaviour of the constructed model. We present the time evolution of the
drug concentration that reaches the anterior chamber for different parameter
values. As we do not consider real parameter values, we fix the parameter of
interest in a fixed interval.

Figure 9: Influence of the coefficient: Dl ∈ [0.2, 1].

In Figure 9 we plot the evolution of the concentration Ca for different values
of the coefficient Dl. This numerical experiment can be used to illustrate the
drug evolution when different drugs or different polymeric matrices are used.
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We observe that if we increase the drug diffusion coefficient then we increase
the drug available in the anterior chamber.

The same behaviour is observed in Figure 10 if we increase the drug diffusion
coefficient in the cornea.

Figure 10: Influence of the coefficient: Dc ∈ [0.2, 1].

The results in Figure 10 can be used to illustrate the effect of the same drug
in different patients, because Dc is different for each cornea.

A larger values of Dc corresponds with a easier drug diffusion in the cornea,
thus the drug goes faster from the lens to the anterior chamber. Also, we can
conclude that Dc have a greater effect in results than Dl and that the lens used
in each patient must be adapted to each case.

Figure 11 intend to illustrate the role of γ coefficient. We recall that γ
represents a clearance rate due to the drug absorption or degradation.
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Figure 11: Influence of the coefficient: γ ∈ [0, 0.4]

Different drugs have different degradation rates. Different patients have
different absorption rate. Then Figure 11 can be used to illustrate the drug
evolution for different drugs in the same patient or different patients for the
same drug.

For the results presented in Figure 11 we conclude that when γ increases,
the drug available in the anterior chamber decreases.

In Figure 12 we can see the influence of the α coefficient. Different patients
have different corneas and consequently different permeability coefficients α.
Different drugs have different permeability coefficients α. Different drug have
different permeabilities for the same patient. In Figure 12 we plot the time
evolution of the drug concentration in the anterior chamber.
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Figure 12: Influence of the coefficient: α ∈ [0.2, 1]

In a fixed patient, if the drug permeability coefficient increases, the drug
concentration in the anterior chamber increases too. For a fixed drug, if the
permeability of the contact zone of the cornea with the anterior chamber in-
creases, then the drug concentration in this region increases.

In Figure 13 we plot the drug concentration in anterior chamber when the
unbinding rate δ1 changes. These results can be used to illustrate the drug time
evolution when a drug is fixed and we change the polymeric matrix or the lens
is fixed and we change the drugs.

Figure 13: Influence of the coefficient: δ1 ∈ [0.1, 0.4]
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If the unbinding coefficient increases then we decrease the drug available in
the anterior chamber. Moreover we decrease the residence time of the drug.

Finally, in Figure 14 we plot the evolution of the drug concentration in the
anterior chamber when the release rate for the encapsulated particles increases.

Figure 14: Influence of the coefficient: δ2 ∈ [0.01, 0.04]

When δ2 increases, the drug concentration in the anterior chamber decreases.
Moreover, the residence period of the drug in the anterior chamber also de-
creases. We can analyse Figure 14 likewise we analyse Figure 13 but for encap-
sulated drug.
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5 Conclusions

The diseases of the anterior segment of the eye are traditionally treated using
topical drug administration. Since this type of treatment is very inefficient,
several approaches were proposed to increase the treatment efficacy.

The use of therapeutic lens to treat glaucoma arises as an efficient and safe
alternative to the traditional methodology. This work aims to model the drug
release from different types of lenses: lenses with drug dispersed, lenses with
drug in two different states - dispersed and bound to the polymeric structure and
dispersed, bound and encapsulated drug. We remark that the use of particles
loaded with drug that are dispersed in the polymeric matrix aims to increase
the drug loading as well as to increase the time period of drug availability in
the anterior chamber.

From the results presented in this work we conclude that if we decrease the
unbinding coefficient then we increase the residence period of time for the drug
in the anterior chamber. The same behaviour is observed if we decrease the
transference rate from encapsulating particles.
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