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Overview

Dynamic Neural Fields

1. Neurophysiological motivation

2. Mathematical analysis of pattern formation
• single- and multi-bump solutions
• new mathematical challenges

3. Application for the design of Cognitive Artifical Agents
• case study: learning sequential tasks

o human-robot interactions 
o intelligent diver assistant

4. Outlook
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What is Mathematical Neuroscience?

Development and analysis of mathematical models
that help to elucidate the fundamental mechanisms
responsible for experimentally observed behaviors in
neuroscience at all relevant scales, from the
molecular world to that of cognition.



Levels of Description:
From Molecules to Neural Networks



Neural Information Processing

all-or-none principle

Electrical signal: the change of voltage
in the cell membrane of a neuron
results in a voltage spike called an
Action Potential which propagates along
the axon.
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Neural Firing: 
The Hodgkin-Huxely Model (1952)
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FitzHugh–Nagumo model (1961)

Reduction to two-dimensional model for analytical treatment
• a brief stimulus leads to nonlinear increase of membrane 

voltage , diminished over time by a slower, linear 
recovery variable 

Phase plane analysis 
Spike train 



Impressive Numbers

Human Brain

of cortex 1 billion connections



Computational Neuroscience

• Flagship European Blue Brain Project (http://bluebrain.epfl.ch/)
• US Brain Initiative (https://braininitiative.nih.gov/)

Using supercomputers to simulate all the cells and most of the
synapses in an entire brain, thereby hoping to “challenge the
foundations of our understanding of intelligence and generate
new theories of consciousness.”



Neural Field Approach

Neural field models consider: 

 a spatial continuum approximation  of the network, neural population 

activity described by a field in terms of a time and a spatial 

coordinate 

 population firing rates measured in a certain short time interval of a 

few milliseconds;

 firing rate function;

 connection strength to a neuron separated by a distance 

system is assumed to be spatially homogeneous and isotropic.
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Mathematical Formulation
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 one-dimensional field,  
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Amari’s Model of Lateral Inhibition 
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: inhibition much faster than excitation (Amari 1977)

 u : activity at position and time 

 distance-dependent 

 :   sigmoidal output function

 :   global inhibition, defines resting state

 :  time-dependent localized input 

 Possible generalization to the case 13



Formation of different Patterns

• space-time plots of a one-dimensional  fields

multi-bump

breather

traveling bump
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activation field

• neural fields are spanned over continuous dimensions, 
e.g., movement direction, color, tone pitch …..

• self-stabilized, localized excitation patterns or bumps
triggered by external input  are the units of representation

Basic Concepts of Dynamic Field Theory

• operate in bi-stable regime:
homogeneous resting state 
co-exists with bump attractor,
transient input may switch   
between the two stable states
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Field Dynamics: Cognitive Functions

transient external input S(x,t)
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Neural evidence for localized activity
patterns in parametric space

Center-out  task

Neural tuning curve
Example: Movement direction
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DPA method: Premotor cortex of monkey    

Bastian et al. NeuroReport (1998)
Erlhagen et al, J. Neuro Methods(1999)

Distributed Population Activation (DPA) technique:

 




 

௨ , 


 neural firing rate of neuron in experimental condition 

 basis function contributed by each neuron (e.g., normalized tuning curve) 
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Amari’s analysis of bump solutions: 
Heaviside world

:

Stationary localized excitation pattern or bump (case S(x)=0): 

With the definition and the choice of the 
Heaviside function 

it follows
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Mathematical Analysis: Heaviside World 

A stationary bump of width satisfies:

Since a necessary condition for existence is
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Existence of Bump Solutions

h

xଵ ଶ

)

Coupling function of
lateral inhibition type

Two quantities to caracterize  field properties: 
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Stability of  Bump Solutions
• consider a bump solution not necessarely an equilibrium with the

excited region at time given by : ଵ ଶ

ଵ

డ௨(௫,௧)

డ௫  + డ௨(௫,௧)

డ௧

• track the motion of the boundary points by: 

• since  at time it follows: 

డ௨(௫,௧)

డ௧
= ଶ ଵ

௫మ(௧)

௫భ(௧)
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ଶ
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Stability of  Bump Solutions

= 

Bump is stable if and only if
h

xଵ ଶ

W(x)

with ଶ ଵ

The change of lenght of the excited region is governed by the equation

The equilibrium lenght is given by

 Generalization to sigmoid nonlinearity using 
tools from functional analysis
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Linear Stability Analysis
• perturbation of the stationary solution 
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• eigenvalues of  ି ା
𝟐 𝒘(𝒂)

𝒘 𝟎 ି𝒘(𝒂) ା)< 0 if 



Continuous Bump Attractor

 zero eigenvalue 

bump marginally stable to  perturbations in position 
a

ct
iv

a
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n
, u

(x
,t)

dimension, x

input S(x)

Bump searching for the maximum of 
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Robotics Application

Bicho et al., Int. J. Rob. Res. (2000)

Detection and tracking of a moving object
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Computer Vision Application

 2D tracking of multiple moving fish larvae

Kamkar at al, Neural Networks (2022)
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Field Equation with Additive Noise: 
Diffusive Bump Drift

• Bump attractor dynamics in PFC  
explains behavioral precision in a 
working memory task.

Wimmer et al.,  Nature Neuroscience (2014)

ାஶ

ିஶ

𝟏
𝟐ൗ

where is the increment of a spatially correlated Wiener process. 

Neural evidence in 
monkey Prefrontal Cortex (PFC):



New Mathematical Challenges

• Bump attractor of Amari model insufficient as a neural substrate 
of a working memory (WM) function.

1. Non-existence of multi-bump solutions as  model of multi-
item memory.

2. Bump shape should depend on  input caracteristics such as 
for instance  strength and duration to express WM quality.

3. Bump attractor should be robust to perturbations of the 
assumed symmetry of the coupling function. 



 Competition 

Amari Model with Two Localized Inputs

Attraction Repulsion

 Distance-dependent interaction effects

• Mexican-hat coupling function

𝑆 𝑥 = 8𝑒ି
௫ିସହ మ

ଵ଼ + 6𝑒ି 
௫ି మ

ଵ଼ − 0.5



1. Challenge: Oscillatory Coupling Function

(H1) is symmetric, i.e., for all x 
(H2) is both continuous and integrable on
(H3) is an oscillatory function that tends to zero as x
(H4) and has  infinite positive zeros at values 

ି ௧ with and 

The coupling function has zeros given by:



Laing et al, SIAM J. Appl. Math. (2002)
Ferreira et al, PhysicaD (2016)
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Existence and Stability of a Two-bump Solution

Theorem: Assume that for an oscillatory coupling function statisfying

(H1)-(H4)  the following hypothesis holds:

ଶ
ଵ ଶ

ଶగ
ఈ

ଵ ଶ ଶ ଶ

If
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and  ଶ ଷ such that ଵ ଶ then 
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defines a stable two-bump solution with
ା

ଶ
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ଶ

ି

ଶ
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(Fereira et al, PhysicaD, 2016)

32



Input-driven Two-Bump Solutions 
External input ) of bimodal shape centered at statisfies:

(SH1) is  continuous on and symmetric in relation to the center.
(SH2) on ଵ ଶ on ଵ ଶ and  ଵ ଶ

(SH3) is increasing on ௫̅మି௫̅భ

ଶ
and is decreasing on ௫̅మି௫̅భ

ଶ
.

“ON”

“OFF”
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Input-driven Two-bump Solutions

• Additional conditions on input shape necessary to guarantee that the
solution with is in the basin of attraction of the two-bump
solution when the input is removed:

మ భ ,   భ , మ య

and ర

(Theorem 6,  Ferreira et al. 2016)
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Input-driven  Two-bump Solution

𝑆 𝑥 = 8𝑒ି
௫ିସହ మ

ଵ଼ + 6𝑒ି 
௫ି మ

ଵ଼ − 0.5

• oscillatory coupling function
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36

Input on 𝑆(𝑥) ≠ 0

Input off 𝑆 𝑥 = 0

2nd Input 4th Input 5th Input

ି ௧ with and 

Input-driven Multi-bump Solutions 



2. Challenge: Novel Two-field Model

• bump shape should reflect input characteristics beyond position
• model of a robust neural integrator of external inputs

ାஶ

ିஶ

ାஶ

ିஶ

• Mexican-hat or oscillatory connectivity function

Wojtak et al., Biol. Cybern. (2021)
Wojtak et al., NCA (2021)

• threshold 



Bumps with Input Characteristics

Input strength

Input width

Continuously increasing input strength
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Two sequential inputs 
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• two-dimensional continuous attractor: position and amplitude



Measuring and Reproducing Time Intervals

• activity level at end of measurment reflects elapsed time 

• build-up rate of ramping activity during production is inversely 
proportional to 

M. Jazayeri and M. Shadlen , Curr. Biol., 2015
Recordings in Lateral Intraparietal Cortex (LIP)



Two-Field Neural Integrator

• Mesurement

• Production

Wojtak et al, ICDL (2019)
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Analysis of Bump Solutions
Analytical techniques used for the Amari equation 
• initial condition 
• derive ODE describing the change of lenght of the excited region 

ଶ ଵ

భ మ
with భ మ

• existence of bump solutions of width 
determined by the roots of

+ k+ W( )=0

• a bump of width is stable if  
holds and unstable otherwise. 



Analysis of Bump Solutions
 Numerical continuation  technique to track solutions as  model 

parameters change

Bifurcation curves with threshold 
• example solutions at points ଵ ଷ (stable) and ଶ .

Different 
input 

strenghts



Analysis of Bump Solutions
Two-dimensional  case: 

.

ஐ

.

ஐ

Wojtak et al., Cog. Neurodynamics (in press)

Radially symmetric bump solutions (with radius R)
stable unstable



Difference to 1D Model
• Low-order perturbations of a radially symmetric 2D bump exhibiting  symmetry
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Numerical Continuation

Bifurcation curves for threshold parameter of the 2D model

• determine range of parameter values supporting a bump solution

Different initial 
conditions

Top view of 2D  bumps 
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3. Challenge: Structual Stability of 
Bump Formation

• Any perturbation of the assumed perfect symmetry of 
the interaction kernel distroys the continuous bump 
attractor of the Amari model

Example: 2D Mexican-hat kernel with noise 

(a,b) Cross sections of kernel  

(c) Bump drift in a single trial
(d) Trajectories of bump centroid 
over 100 trials, starting at  r=(0,0) 



Structual Stability of Bump Formation
• The novel two-field model does not require the biologically 

unrealistic symmetry assumption
Model of robust working memory

Example: 2D Mexican-hat kernel with noise 

(e) Stationary 2D bump at r=(0,0)

(f) Trajectories of bump centroid   

over 100 trials, starting at  r=(0,0)

(g,h) Cross sections of 2D bump 



Two-field model 
with  β = 1, θ = 3, b1 = 0.7, b2 = 0.6, 
α1 = 2.15, α2 = 0.5, s1 = 0.6, s2 = 0.25 and 
q = 2cos(π/5).

Amari model 
with  β = 0.39,
θ = 2.371,
b1 = 0.691, 
b2 = 0.619106, 
α1 = 2.144141, 
α2 = 0.518136,
s1 = 0.574835, 
s2 = 0.236861
and q = 2cos(π/5).

t = 300

t = 300

Numerical continuation result

The kernel w is given by:

w(r) = α1p(r,b1,s1,1) + α2p(r,b2, s2,q),

where

p(r,b,s,q) = exp(-sr)[cos(qr)+b sin(qr)]

Quasicrystal Patterns



Application for Cognitive Artifical Agents

Case study: Sequence learning 

Many of our everyday activities involve the production of 
ordered sequences of basic actions:

• preparing a cup of tea,
• assemble a piece of furniture from its components,
• playing a melody, 
• daily traveling routine.



Learning Serial Order: Different Theories

ADG I

e.g., Wickelgreen (1969)

e.g., Bullock (2001)

Chaining theory

Ordinal theory



Ordinal Theory: Neurophysiological Evidence

 Parallel activation of all movement segments:
• strenght of pre-activation of neural populations in prefrontal cortex   

reflects the rank order of movement segments. 

Averbeck et al., PNAS (2002)

Monkeys draw geometrical shapes from a screen 



Sequence Learning

L
ea
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g 
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a

ll

Stable activation gradient  
represents memory of serial 
order and relative timing of 
events.

Example: Serial order of manipulating colored objects
• Stable multi-bump pattern as multi-item memory  

Ferreira et al., TCDS (2021)
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Model Equations

Example: Perceptual Field  



inhibitory feedback from Memory Field 

excitatory input Memory Trace         external input noise 



Activation gradient  is established by a state-dependent 
resting level dynamics:

54

Sequence Memory

1st 
2nd 

3rd 4th 5th 

Learning 
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DecisionWorking Memory

Ramp-to threshold dynamics of the baseline activity in  the decision field  

receiving the activation gradient as subthreshold input:             :

Recall



Human-robot Interaction: Pipe Assembly Task 
 Robot Sawyer learns the sequential order by observering 

a human team

 During joint task execution, Sawyer hands over to the human user 
the different pipes in the correct order  

Wojtak et al., NCA (2021)



Task Demonstration 
• 2D two-field model: object color and lenght as dimensions

Time course of activity 
in the memory field 



Joint Task Execution
• Autonomous recall of sequential order in the decision field 

Memory of already 
excuted object transfers 

Formation of the first 
bump in the decision field 58



Musical Sequence

 Challenging example for  sequence
learning models

• integration of order and timing 
• events often repeat in different contexts

 Despite its complexity, 
music is highly memorable!



Experiment with Humanoid Robot ARoS

Teacher demonstrates the “Happy Birthday” sequence
and ARoS has to perfom the sequence from memory. 

 Simplifications: Learning the “what” and “when” but not the “how”.
 Sequence is colour coded, auditory channel also possible
 6 Fingers (2 hands) of ARoS positioned over the keys 

Sequence :  C - C - D - C - F - E - C - C - D - C - G - F



Mathematics in Action: 
Observational Learning of a Musical Sequence

Mathematics in Action: 
Observational Learning of a Musical Sequence

61

Ferreira et al, IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS (2021)



Experimental Results
• here only  the first 6 events for simplicity

MemoryMemory trace



𝛽 𝑆𝑙𝑜𝑤 < 𝛽(𝐹𝑎𝑠𝑡)

63

Experimental Results 
• different execution speeds: relative timing preserved



Learning Driver Routines

• develop a cognitive system capable of learning and predicting
the habits and preferences of the occupants of a vehicle from
GPS data:

– Where to go?
– When to go?
– How long to stay there?
– Who the next driver(s)/passenger(s) is(are)?
– Which objects come in(out)?



Learning Driver Routines

• fields spanned over the GPS coordinates Longitude and Latitude



Predicting Driver Routines
• routine event: visted in two consecutive weeks
• time window for recall:  anticipation +  tolerance



Results
• Real and predicted times in minutes of two different day routines 

from two different drivers
• GPS data recorded over 11 weeks in the city of Braga

NS: number of weeks that the location was visited 
NP: number of weeks that the location  was predicted

Wojtak et al., ICCSA (2021)



Conclusions/Outlook
Mathematics of Dynamic Neural Fields                      

Analytical and numerical techniques  as complementary tools
New theoretical challenges 
 Learning a continuous attractor
 Relation to Deep Learning Neural Network

learning from big data vs. continual learning 

Neuroscience and Robotics represent highly interesting application 
domains for mathematicians

New challenges for DNF models
• DNF approach to human-robot interactions
• Multi-target tracking
• Numerosity perception
• Learning driver routines based on GPS data



Robot Intelligence?
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• Estela Bicho
• Flora Ferreira 
• Weronika Wojtak  
• Paulo Barbosa
• Paulo Vincente
• Pedro Guimarães

Thank you !

https://github.com/w-wojtak/neural-fields-matlab
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