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a b s t r a c t

We examine discounted penalties at ruin for surplus dynamics driven by a general spectrally negative
Lévy process; the natural class of stochastic processes which contains many examples of risk processes
which have already been considered in the existing literature. Following from the important contributions
of [Zhou, X., 2005. On a classical risk model with a constant dividend barrier. North Am. Act. J. 95–108]
we provide an explicit characterization of a generalized version of the Gerber–Shiu function in terms of
scale functions, streamlining and extending results available in the literature.
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1. Introduction

Originally motivated by the pricing of American claims, Gerber
and Shiu (1997, 1998) introduced in risk theory a function that
jointly penalizes the present value of the time of ruin, the surplus
before ruin and the deficit after ruin for Cramér–Lundberg-type
processes. This expected discounted penalty, by now known as the
Gerber–Shiu function, has been frequently and recursively studied
in settings of increasing generality as well as being the named
theme of two international workshops in 2006 and 2008. Although
far from exhaustive on account of the sheer volume of relevant
literature, a list of key papers which pertains to generalizations
of the Cramér–Lundberg process includes for example Dickson
(1992, 1993), Gerber and Shiu (1997, 1998), Gerber and Landry
(1998), Lin and Willmot (1999), Yang and Zhang (2001), Cai and
Dickson (2002), Tsai and Willmot (2002), Cai (2004), Garrido and
Morales (2006), Morales (2007) and Morales and Olivares (2008).
The general setting which fits all of these papers is to model
the risk process as having stationary and independent increments
with no positive jumps. Excluding of course the undesirable case of
monotone decreasing paths, the latter class is commonly referred
to as spectrally negative Lévy processes. In the current actuarial
setting we refer to them as Lévy insurance risk processes.
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A common feature of the existing literature is to reduce
the analysis of Gerber–Shiu functions to the study of integro-
differential equations and/or Volterra equations. In the case of a
compound Poisson jump structure the nature of these equations
boils down to conditioning on the first jump and considering the
recursive nature of the Gerber–Shiu function.
Whilst intuitively appealing, these approaches can be argued

to suffer from some limitations as far as dealing with Lévy risk
insurance processes. For example, the integro-differential equation
can itself only be worked with under the assumption that there
is sufficient smoothness in the Gerber–Shiu function, which is
a priori a highly non-trivial fact to establish. The associated
Volterra equation (see Section 4 for further details) quickly
becomes very involved, with different components of the risk
process (e.g., bounded andunbounded variation, or continuous and
discontinuous paths) requiring separate consideration. Existing
calculations show that it is a lengthy procedure to obtain a Volterra
equation for the Gerber–Shiu function in the case of infinite
activity Lévy insurance risk processes (i.e., countably infinite
negative jumps in bounded intervals of time) as this is typically
done via compound Poisson approximation. Another difficulty
for Volterra/integro-differential equations is that, apart from a
handful of exceptions, there is no general theory which offers
an identifiable solution, even in the simplest setting of a general
compound Poisson jump structure. One such exceptional example
would be the classical case of claims whose jump distribution has
a Laplace transform which is rational (c.f.: Borovkov, 1976) which
includes for example the phase-type distributions.
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Zhou (2005) makes an important contribution from the general
point of view of Lévy insurance risk processes and introduces the
use of so-called scale functions in his analysis of the Gerber–Shiu
function. Although his computations are restricted to the case
of a compound Poisson jump structure, the analysis still applies
verbatim for the case of a general spectrally negative Lévy process.
In this paper, we build on Zhou’s results and advocate

further the virtues of characterizing expected discounted penalties
through the use of scale functions and fluctuation theory of Lévy
processes when the surplus is driven by a spectrally negative Lévy
process. For a modern overview of the theory of scale functions,
see for example Bertoin (1996) and Kyprianou (2006). In these two
books one also finds further historical references regarding their
use in the work of Takács and Zolotarev in the 1960s, and the work
of the Kiev school led by Korolyuk (using what they called the
method of resolvents) from the 1970s.
As the forthcoming sample computations will hopefully

demonstrate, working with scale functions allows one to deal with
Lévy insurance risk processes, without having to disentangle, for
example, a perturbation from a claims component. The approach
equally applies to risk processes characterized by components of
bounded and unbounded variation, finite and infinite activity as
well as by continuous and discontinuous paths, providing in turn
solutions that only require inversion of a single Laplace transform.
From the computational point of view, the scale function ap-

proach can rely on the vast literature of Laplace transform meth-
ods, which has grown extensively over the last few years, and has
found numerous applications in option pricing (e.g.: Duffie et al.,
2000; Lee, 2004) and integro-differential equations (e.g.: Kythe and
Puri, 2002; Babolian and Shamloo, 2008). Rogers (2000) and Surya
(2008) have provided robust methods for numerically computing
scale functions. Until recently there were only a handful of explic-
itly known examples of scale functions (this fact is also reflected
by the small variety of concrete examples of the Gerber–Shiu func-
tion). Recent work however has produced many completely ex-
plicit examples of scale functions (e.g.: Hubalek and Kyprianou,
2008; Patie, 2008; Chaumont et al., 2009) and in particular Hubalek
and Kyprianou (2008); Kyprianou and Rivero (2008) and Patie and
Kyprianou (unpublishedmanuscript) outline amethod fromwhich
many more examples can be computed than the articles them-
selves had the space for.
Other advantages of scale functions can be seen in recent

literature that looks at dividend payments (for example in the
form of reflection or refraction strategies) and have proved to
be key in understanding optimal barrier strategies (see: Zhou,
2005; Renaud and Zhou, 2007; Kyprianou and Palmowski, 2007;
Albrecher et al., 2008; Kyprianou and Zhou, 2009; Loeffen, 2009;
Kyprianou et al., 2008b; Kyprianou and Loeffen, 2008; Loeffen,
2008a,b). In the context of last ruin times Chiu and Yin (2005)
and Baurdoux (in press) also make extensive use of the theory
of scale functions. It can be argued that the role and functional
robustness of the scale function across this broad range of topics
provides a unified reading. Moreover, there is a setting to which
the use of more general analogues of scale functions pertains; that
is the first passage problem of a general Lévy process and similar
such processes such as Markov additive processes and positive
self-similar processes. Here one also finds a growing body of work
(e.g.: Doney and Kyprianou, 2006; Klüppelberg and Erder, 2008;
Breuer, in press; Kyprianou et al., 2008a; Chaumont et al., 2009;
Caballero and Chaumont, 2006; Chen and Sheu, 2009).
On the downside, scale functions are arguably a particular

phenomenon of risk processes with stationary and independent
increments and negative jumps. For example, models of risk which
depart from the Poissonian jump structure or introduce path
dependencies (and therefore destroy the convenience of stationary
independent increments) do not necessarily have a comfortable
analogue of the theory of scale functions. Moving outside the
class of Lévy insurance risk processes however is not completely
hopeless as far as scale functions are concerned. For example, the
recent paper of Gerber et al. (2006) shows that a more general
notion of the scale function exists for risk processes which are
modelled as strong Markov processes with stationary increments
and no positive jumps. Whilst it is not clear exactly how far
one may push the theory of scale functions, it is worthy of note
that in cases where the use of scale functions fail, the use of
Volterra/integro-differential equations is often still applicable.
The remainder of this note is organized as follows: In Section 2,

we look inmore detail at the decomposition of a spectrally negative
Lévy process in relation to existing models and consider a general
class of expected discounted penalty functions (as introduced
in Biffis and Morales, 2008) for which we shall exemplify the use
of scale functions with some sample computations collected in the
form of a main theorem and proof. In Section 3 we give concrete
examplesmakinguse of recent explicit examples of scale functions.
Section 4 offers some concluding remarks.

2. Lévy insurance risk processes and discounted penalties

Recall that the Cramér–Lundberg model corresponds to a Lévy
process X = {Xt : t ≥ 0} with law P and characteristic exponent
given by

Ψ (θ) = − log
∫

R
eiθxP (X1 ∈ dx) = −icθ

+ λ

∫
(0,∞)

(
1− e−iθx

)
F(dx),

for θ ∈ R such that limt↑∞ Xt = ∞. In other words, X is a com-
pound Poisson process with arrival rate λ > 0 and negative jumps,
corresponding to claims, having common distribution function F
with finite mean 1/µ as well as a drift c > 0, corresponding
to a steady income due to premiums, which necessarily satisfies
c − λ/µ > 0; the safety loading condition.
As mentioned in the Introduction, we work with a general

spectrally negative Lévy process X = {Xt : t ≥ 0} and refer to
it as a Lévy insurance risk process. The analogous condition to the
safety loading condition in this general setting (that is to say, the
necessary and sufficient condition that ensures limt↑∞ Xt = ∞)
is E(X1) ∈ (0,∞). (Note that it is impossible for the latter
expectation to equal +∞, cf. Chapter VII of Bertoin, 1996,
or Chapter 8 of Kyprianou, 2006). Under the latter assumption the
Lévy–Khintchine formula for the characteristic exponent of a Lévy
insurance risk process may always be written in the form

Ψ (θ) = − log
∫

R
eiθxP(X1 ∈ dx)

= −iθa+
1
2
σ 2θ2 +

∫
(0,∞)

(1− e−iθx − iθx)Π(dx) (1)

for θ ∈ R, where a > 0, σ ≥ 0, the Lévy measure, Π , is concen-
trated on (0,∞) and necessarily satisfies

∫
(0,∞)(x ∧ x

2)Π(dx)
< ∞. Note that, although jumps are negative, we have made
the unusual arrangement in the Lévy–Khintchine formula of
supporting the LévymeasureΠ on the positive half line.Moreover,
not using a truncation function against the linear term in the
integrand ofΨ , restricting a > 0 and allowing integrability against
Π of (x∧x2) as opposed to the usual (1∧x2) are all adjustments to
the usual form of the Lévy–Khintchine formula which are possible
thanks to the safety loading condition E(X1) ∈ (0,∞).
Different authors interpret the different parts of the charac-

teristic exponent, and the associated Lévy–Itô decomposition, in
different ways. The case that Π(0,∞) < ∞ corresponds to
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compound Poisson jumps with arrival rate λ = Π(0,∞) and
jump distribution F(dx) = Π(dx)/Π(0,∞). In particular when,
in addition, σ = 0, this is the classical Cramér–Lundberg model
with c = a +

∫
(0,∞) xΠ(dx). The case that Π(0,∞) = ∞ but∫

(0,1) xΠ(dx) < ∞ is the case of a bounded variation jump pro-
cess and therefore X is necessarily the difference of a linear drift,
also with rate a +

∫
(0,∞) xΠ(dx), and an infinite activity subordi-

nator plus an independent Brownianmotion with volatility σ . This
model was the subject of the recent work of, for example, Morales
(2007). The case thatΠ(0,∞) = ∞ but

∫
(0,1) xΠ(dx) = ∞ is the

case of an unbounded variation jump part. When σ = 0, this latter
case includes, for example, the model of Furrer (1998) involving
stable processes of index α ∈ (1, 2).
Many authors (including the aforementioned) also prefer to talk

about perturbation of the classical Cramér–Lundberg process by
another Lévy process, a typical and general case at hand being
found in the work of Huzak et al. (2004) and Morales and Olivares
(2008). Since the sum of two independent Lévy processes is again a
Lévy process, the concept of perturbation is contained in the above
setting by decomposingΠ = Π (1)

+Π (2), whereΠ (1) corresponds
to the Lévy measure of the Cramér–Lundberg process and Π (2) is
that of the perturbation process. If the perturbation is a Brownian
motion, then this simply corresponds to the case σ 6= 0.
The generalized version of the Gerber–Shiu function that

we shall be interested in here for the purpose of exemplifying
the mathematical robustness of scale functions, was recently
presented in Biffis and Morales (2008). It includes information on
the distribution of the last minimum of the surplus before ruin,
X τ− := inft<τ Xt , with τ := inf{t > 0 : Xt < 0} denoting the
ruin time of X .

Definition 1. Let f : R3 → [0,∞) be a bounded measurable
function such that f (0, ·, ·) = 0 and x, q ≥ 0. For a Lévy insurance
risk process, X , starting at x (whose law and expectation operator
we shall denote by Px and Ex respectively), the discounted penalty
function associated with f and q is given by

φf (x, q) = Ex
(
e−qτ f (−Xτ , Xτ−, X τ−)1{τ<∞}

)
. (2)

Our method for handling the general form of φf (x, q) given
above revolves around the simple fact that any such function
may always be written as an integral of f against a (possibly
defective) probability kernel. The latter being the time-discounted
triple law coding the overshoot–undershoot distribution of
(−Xτ , Xτ−, X τ−). Our main theorem, below, provides an exact
analytical characterization of this kernel in terms of scale functions
which we now formally introduce.
Firstly let

ψ(θ) = −Ψ (−iθ) = logE
(
eθX1

)
be the Laplace exponent of X which is known to be finite for at
least θ ∈ [0,∞). The asymptotic behaviour of X is characterized
by ψ ′(0+), so that X drifts to ±∞ (oscillates) accordingly as
±ψ ′(0+) > 0 (ψ ′(0+) = 0).
For every q ≥ 0 there exists a function W (q)

: R → [0,∞)
such that W (q)(x) = 0 for all x < 0 and otherwise is absolutely
continuous on (0,∞) satisfying,∫
∞

0
e−λxW (q)(x)dx =

1
ψ(λ)− q

, for λ > Φ(q), (3)

whereΦ(q) is the largest solution to the equationψ(θ) = q (there
are at most two solutions). For short we shall write W (0)

= W .
When X has paths of unbounded variation then it is known that
W (q) is in fact continuously differentiable on (0,∞). In particular,
when X has a Gaussian component thenW (q) is twice continuously
differentiable on (0,∞); cf. Chan et al. (2009). Otherwise, when
X has paths of bounded variation, a necessary and sufficient
condition forW (q) to be continuous is that the jumpmeasureΠ has
no atoms (cf. Lambert, 2000; Kyprianou et al., 2008b). However,
the continuous differentiability of W (q) is used nowhere in the
statement or proof of our main result below.
The following theorem characterizes the discounted penalty (2)

in terms of scale functions of Lévy insurance risk processes.

Theorem 1. Suppose that X is a Lévy insurance risk process. The
expected discounted penalty function defined in (2) is then given by

φf (x, q) =
∫
(0,∞)3

1{v≥y}f (u, v, y) K (q)x (du, dv, dy),

where

K (q)x (du, dv, dy) = e
−Φ(q)(v−y) {W (q)′(x− y)

− Φ(q)W (q)(x− y)
}
Π(du+ v)dydv.

Remark 1. Insisting that f (0, ·, ·) = 0 simply means that the
function φf (x, q) concerns itself only with the joint law of
the overshoot and undershoots. It is known from the general
phenomenon of creeping of Lévy processes that X τ− = Xτ− = 0
on {Xτ = 0} and this occurs with probability

Ex(e−qτ ; Xτ = 0) =
σ 2

2

{
W (q)′(x)− Φ(q)W (q)(x)

}
(cf. Pistorius, 2005). Note thatwe take advantage of the fact that the
quantityW (q)′ is well defined for all x ≥ 0 when σ 6= 0 (according
to remarks earlier concerning smoothness properties ofW (q)). The
possibility of creeping accounts for the fact that K (q)x is defective
when σ 6= 0.

Proof of Theorem 1. Throughout this proof we shall make fre-
quent reference towhat, by now,may be considered to be standard
facts concerning scale functions. The reader is directed to Chapter
8 of Kyprianou (2006) for further background reading.
We prove the result for the case that q > 0. The result for

the case q = 0 follows simply by taking limits as q ↓ 0, taking
account of the fact that Φ(0) > 0 if and only if E(X1) < 0. It
will be convenient to introduce the spectrally positive Lévy process
Y = −X . Then the problem is to compute

E
(
e−qσx f (Yσx − x, x− Yσx−, x− Y σx−)1{σx<∞}

)
or equivalently

E
(
e−qσx; Yσx − x ∈ du, x− Yσx− ∈ dv, x− Y σx− ∈ dy

)
,

where σx := inf{t > 0 : Yt > x}, Y σx− := supt<σx Yt , and in
the second expectation, for convenience we implicitly understand
σx <∞.
According to the quintuple law (see Example 8 in Doney and

Kyprianou, 2006), in the case that X drifts to∞ (and hence Φ(0)
= 0), we have for u, v > 0 and 0 < y ≤ v ∧ x,

P(Yσx − x ∈ du, x− Yσx− ∈ dv, x− Y σx− ∈ dy)
= kW (x− dy)Π(du+ v)dv

= kW ′(x− y)Π(du+ v)dydv, (4)

where W is the 0-scale function associated to X having Laplace
transform 1/ψ(λ),W ′ is a version of its density, and k is a constant
which depends on the normalization of the local time of Y at its
supremum.
We claim that the constant k is unity. Indeed note that, on the

one hand, (4) tells us that

P(Yσx 6= x) = k
∫ x

0
dy ·W ′(x− y)

∫
∞

0
Π(z + y)dz.
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On the other hand, appealing to themethod of resolvents described
at the end of Section 8.4 of Kyprianou (2006) and recalling that X
drifts to∞ (and henceΦ(0) = 0), we also know that

Px(−Xτ ∈ du, Xτ− ∈ dv) = Π(du+ v){W (x)−W (x− v)}dv (5)

for u, v > 0. Integrating out u, v > 0 we obtain

P(Yσx 6= x) =
∫
∞

0
Π(v){W (x)−W (x− v)}dv

=

∫
∞

0
Π(v)

∫ v

0
W ′(x− y)dydv

=

∫ x

0
dy ·W ′(x− y)

∫
∞

y
Π(v)dv

=

∫ x

0
dy ·W ′(x− y)

∫
∞

0
Π(z + y)dz.

Comparing the two equations for P(Yσx 6= x) we are led to the
conclusion that k = 1, thus justifying the claim.
To complete the proof, we need to develop the expression (4) so

that it incorporates exponential discounting. However, this can be
done as a simple consequence of applying the exponential change
of measure

dPΦ(q)

dP

∣∣∣∣
Ft

= eΦ(q)Xt−qt ,

where Φ(q) = sup{λ ≥ 0 : ψ(λ) = q} and Ft = σ(Xs : s ≤ t).
Recall that underPΦ(q) the processX is still spectrally negative, and,
irrespective of the value of E(X1), still drifts to∞. Moreover, the
0-scale function of X under PΦ(q), which we write as WΦ(q)(x), is
related to the q-scale function of X under P, that is to sayW (q)(x),
via the relation

W (q)(x) = eΦ(q)xWΦ(q)(x). (6)

Making use of (4) but under the law PΦ(q) instead, we may now
write

E(e−qσx; Yσx − x ∈ du, x− Yσx− ∈ dv, x− Y σx− ∈ dy)

= eΦ(q)(x+u)PΦ(q)(Yσx − x ∈ du, x− Yσx− ∈ dv, x− Y σx− ∈ dy)

= eΦ(q)(x+u)WΦ(q)(x− dy)ΠΦ(q)(du+ v)dv

= eΦ(q)(x+u)W ′Φ(q)(x− y)ΠΦ(q)(du+ v)dydv,

where ΠΦ(q) is the jump measure associated with (X, PΦ(q)) and
W ′Φ(q) is a version of the density of WΦ(q). It is known that
ΠΦ(q)(dx) = e−Φ(x)xΠ(dx). Plugging this in we get

E(e−qσx; Yσx − x ∈ du, x− Yσx− ∈ dv, x− Y σx− ∈ dy)

= eΦ(q)(x+u)W ′Φ(q)(x− y)e
−Φ(q)(u+v)Π(du+ v)dydv

= e−Φ(q)(v−y)eΦ(q)(x−y)W ′Φ(q)(x− y)Π(du+ v)dydv. (7)

From the information given earlier on scale functions, we may
differentiate WΦ(q) almost everywhere. It follows that we may
differentiate (6) almost everywhere resulting in a density which
satisfies

W (q)′(x)− Φ(q)W (q)(x) = eΦ(q)xW ′Φ(q)(x).

Taking advantage of the above formula we deduce that

E(e−qσx; Yσx − x ∈ du, x− Yσx− ∈ dv, x− Y σx− ∈ dy)

= e−Φ(q)(v−y)
{
W (q)′(x− y)− Φ(q)W (q)(x− y)

}
×Π(du+ v)dydv,

where u, v > 0, 0 < y ≤ v ∧ x. Note in particular when
q = 0, recalling that Φ(0) = 0 as the process drift to−∞, we see
agreement with the formula (4) and the proof is complete. �
Remark 2. As alluded to in the Introduction, the identity (5) was
found in Zhou (2005) for the case of a compound Poisson jump
structure, and the method we have appealed here to obtain (5) is a
variant of the technique used by Zhou.

3. Examples

It was indicated in the Introduction that, until recently, a strong
criticism of the use of scale functions is that there has been little
progress in producing real concrete examples over and above the
core classical cases of the Cramér–Lundberg model with (mixed)
exponential jumps and a Brownian perturbation or the spectrally
negative stable model. We also indicated in the same paragraph
that recent process has been made in this direction, citing a small
cluster of papers dated no earlier than 2008. To give strength to
what this progress in the theory of scale functions means in this
context, we shall offer a number of explicit examples below.

Example 1. Suppose that X is a spectrally negative tempered
stable process and therefore has Laplace exponent of the form

ψ(θ) = (θ + c)α − cα,

where θ ≥ 0, c ≥ 0 and α ∈ (1, 2). Note that E(X1) = ψ ′(0+)
= αcα−1 ≥ 0 and so the process drifts to infinity if and only if
c > 0 and otherwise, when c = 0, it oscillates. The latter case
corresponds to an α-stable process which was studied by Furrer
(1998). From the analytical form of the Laplace exponent one sees
that the law of X is the result of an exponential change of measure
applied to the law of an α-stable process with stability index
α. In this respect it is straightforward to deduce that X has no
Gaussian component, is a process of unbounded variation and its
Lévy measure is given by

Π(dx) =
1

0(−α)

e−cx

x1+α
dx, x > 0.

Here 0(u) is the usual gamma function which is defined on R
with the exception of the points {0,−1,−2, . . .}. It is also an easy
exercise to show that Φ(q) = (q + cα)1/α − c . In Kyprianou and
Patie (2008) it was shown that

W (q)(x) = e−cxxα−1Eα,α((q+ cα)xα),

where

Eα,β(x) =
∞∑
n=0

xn

0(αn+ β)

is the two-parameter Mittag–Leffler function.
Next recalling that WΦ(q)(x) = e−Φ(q)xW (q)(x) we may note

from (7) that for u, v, y > 0 and y ≤ v,

Ex(e−qτ ;−Xτ ∈ du, Xτ− ∈ dv, X τ− ≤ y)

=
1

0(−α)
e((q+c

α)1/α−c)(x−v) e
−c(u+v)

(u+ v)1+α

×

{
e−(q+c

α)1/αxxα−1Eα,α((q+ cα)xα)

− e−(q+c
α)1/α(x−y)(x− y)α−1Eα,α((q+ cα)(x− y)α)

}
dudv

which, although somewhat ugly, is sufficiently explicit to work
with in the context of a programme such as MATLAB or
Mathematica. •

The situation becomes somewhat more amicable when q = 0
and one is only concerned with the overshoot and undershoots as
the next examples illustrate.
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Example 2. Consider the case that X is a spectrally negative Lévy
process with Laplace exponent given by

ψ(θ) = κθ + c0(−β)θ(γ β − (γ + θ)β),

where θ, κ ≥ 0 and β ∈ (0, 1). It was shown in Hubalek and
Kyprianou (2008) that the process X has no Gaussian component,
has paths of unbounded variation, and its Lévymeasure is given by

Π(dx) = ce−γ x
(
γ x+ (β + 1)

xβ+2

)
dx.

Wemay easily check thatψ ′(0+) = κ showing that the process X
drifts to infinity if and only if κ > 0 and otherwise, when κ = 0, it
oscillates. It was also shown in the aforementioned paper that

W (x) = −
1

c0(−β)

∫ x

0
e−γ yyβ−1Eβ,β

(
κ + c0(−β)γ βyβ

c0(−β)

)
dy.

Appealing to (4) we see that for u, v, y > 0 and y ≤ v,

Px(−Xτ ∈ du, Xτ− ∈ dv, X τ− ∈ dy)

= −
1

0(−β)
e−γ (x−y+u+v)

(
γ (u+ v)+ (β + 1)

(u+ v)β+2

)
× (x− y)β−1Eβ,β

(
κ + c0(−β)γ β(x− y)β

c0(−β)

)
dudydv,

which is again sufficiently explicit to work with numerically if not
analytically. •

Example 3. Now consider the spectrally negative Lévy process
with Laplace exponent

ψ(θ) =
θ0(ν + βθ + λ)

cβ0(ν + βθ)
,

where θ ≥ 0, β, c > 0, ν ≥ 0 and λ ∈ (0, 1). In Kyprianou and
Rivero (2008) it was shown that the underlying Lévy process has
no Gaussian component and its Lévy measure satisfies

Π(x,∞) =
λ

cβ20(1− λ)
ex(1−ν)/β

(ex/β − 1)λ+1
.

A straightforward calculation shows that

ψ ′(0+) =
0(ν + λ)

cβ0(ν)
≥ 0

which implies that X drifts to infinity if and only if ν > 0 and
otherwise it oscillates. In the same paper it was also shown that

W (x) = c
∫ x

0

e−z(ν+λ−1)/β

0(λ)
(ez/β − 1)λ−1dz.

In that case

Px(−Xτ > u, Xτ− ∈ dv, X τ− ∈ dy)

=
λ

β20(1− λ)0(λ)
e−(x−y)ν/β(1− e−(x−y)/β)λ−1e(u+v)(1−ν)/β

(e(u+v)/β − 1)λ+1
dydv.

Again this is a formula which has a degree of analytical simplicity
and otherwise is suitable for numerical use. •
We close this section by reiterating that these three examples

are by nomeans special. Hubalek and Kyprianou (2008), Kyprianou
and Rivero (2008) and Kyprianou and Patie (2008) contain many
more examples as well as methodologies for generating a plethora
of other explicit examples; that is to say, examples for which the
scale function and the characteristic triplet of the underlying Lévy
process may be expressed in full analytic detail. At the same time,
it is fair to say that these articles offer a lot more in terms of scale
functions with q = 0 than the case q > 0. In this respect there
is still more that can be done with regard to producing explicit
examples of scale functions when q > 0.
4. Conclusion

In this short communication, our aim has been to provide a
convincing case for the re-alignment of the classical ruin problem
with the modern theory of scale functions for spectrally negative
Lévy processes. We have provided an explicit expression for a
(generalized) version of the Gerber–Shiu functionwhich umbrellas
all previously considered cases of risk processes with stationary
and independent increments and no positive jumps. From the
point of view of numerical or detailed analytical examples,
the Gerber–Shiu function requires the inversion of one Laplace
transformand, in both cases, a solid base of literature already exists
for further exploitation. We feel that it is also important to note
that the benefits of scale functions are not only to be seen when
moving out of the class of Cramér–Lundberg models into more
exotic examples of Lévy insurance risk processes. As Zhou (2005)
himself illustrates together with the case we have made here, in
the classical setting alone, all of the virtues of scale functions are
still of pertinent value.
Finally, let us close with some remarks on the relationship be-

tween scale functions, integro-differential equations and Volterra
equations as this is not necessarily as clear as one might hope for.
The following toy example gives some insight. Firstly we recall the,
by now, classical two sided exit formula (cf. Chapter 8 of Kyprianou,
2006)

Ex(e−qTa1{Ta<τ }) =
W (q)(x)
W (q)(a)

, (8)

where x, q ≥ 0, a > 0 and Ta = inf{t > 0 : Xt > a}. Making
use of the fact that XTa = a on {Ta < ∞}, W (q)(x) = 0 for
x < 0 andW (q)(0) = 0 when X creeps below zero, one notes that
W (q)(XTa∧τ )/W

(q)(a) = 1{Ta<τ }. A well known argument which
follows from the latter observation and an application of the strong
Markov property, tells us that

Ex
(
e−qTa1{Ta<τ }

∣∣Ft) = Ex

(
e−q(Ta∧τ)

W (q)(XTa∧τ )
W (q)(a)

∣∣∣∣Ft)
= e−q(t∧Ta∧τ)Ez

(
e−q(Ta∧τ)

W (q)(XTa∧τ )
W (q)(a)

)∣∣∣∣
z=Xt∧Ta∧τ

= e−q(t∧Ta∧τ)Ez
(
e−qTa1{Ta<τ }

)∣∣
z=Xt∧Ta∧τ

= e−q(t∧Ta∧τ)
W (q)(Xt∧Ta∧τ )
W (q)(a)

, (9)

where Ft is the natural filtration generated by {Xs : s ≤ t}
satisfying the usual conditions and the last equality follows
from (8). This shows that the quantity on the right hand
side above is a martingale and in particular, assuming that
W (q) is sufficiently smooth, by considering its semi-martingale
representation, it must follow that (0 − q)W (q)(x) = 0 for
x ∈ (0,∞), where 0 is the infinitesimal generator of X . The
line of reasoning which leads to the latter is standard, however,
we give a brief sketch proof here none the less. Let us assume
for convenience that X has a compound Poisson jump structure,
then a straightforward application of Itô’s formula, taking note of
the Lévy–Itô decomposition and that W (q) is twice continuously
differentiable on (0,∞), implies that

e−q(t∧Ta∧τ)W (q)(Xt )−W (q)(x)

= − q
∫ t∧Ta∧τ

0
e−qsW (q)(Xs)ds+

1
2
σ 2
∫ t∧Ta∧τ

0
e−qsW (q)′′(Xs)ds

+ c
∫ t∧Ta∧τ

0
e−qsW (q)′(Xs)ds+ σ

∫ t∧Ta∧τ

0
e−qsW (q)′(Xs)dBs

+

∫ t∧Ta∧τ

0

∫
(0,∞)
{f (Xs− − y)− f (Xs−)}Π(dy)ds+Mt , (10)
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where B = {Bt : t ≥ 0} is the Brownian component with
coefficient σ ≥ 0, c is a real-valued constant which must satisfy
c > 0 if σ = 0 (which avoids the possibility that X has monotone
paths) and

Mt =
∑

s≤t∧Ta∧τ

{f (Xs)− f (Xs−)}

−

∫ t∧Ta∧τ

0

∫
(0,∞)
{f (Xs− − y)− f (Xs−)}Π(dy)ds.

Recall that for x > 0

(0 − q)W (q)(x) =
1
2
σ 2W (q)′′(x)+ cW (q)′(x)

+

∫
∞

0
{W (q)(x− y)−W (q)(x)}Π(dy)− qW (q)(x). (11)

Noting that the stochastic integralwith respect to B and the process
M are local martingales, as is the left-hand side of (10), it follows
that the bounded variation terms in (10), which are equal to∫ t∧Ta∧τ

0
(0 − q)W (q)(Xs)ds,

must be equal to zero. This implies that (0 − q)W (q)(x) = 0 for
x ∈ (0, a) and since we may choose a > 0 arbitrarily, we have, as
claimed, that

(0 − q)W (q)(x) = 0 for x ∈ (0,∞). (12)

The above line of reasoning, although becoming more technical,
also works for a general spectrally negative Lévy process.
From (12) one may then proceed to convert this integro-

differential equation into a Volterra equation by simply integrating
the generator equation twice in x. A perfect example of how this
is carried out can be seen in full detail in the paper of Yin and
Wang (2008). Indeed, suppose further to the assumptions made
above that the Gaussian coefficient is σ > 0. In that case it can
easily be derived from the definition (3) that W (q)(0+) = 0 and
W (q)′(0+) = 2/σ 2 (see for example Chan et al., 2009). Setting the
right-hand side of (11) equal to zero and integrating twice (this
requires judicious integration by parts), the generator equation
(12) reduces to the Volterra equation

W (q)(x)+W (q)
∗ g(x) =

2
σ 2
x

for x > 0, where

g(x) =
2
σ 2

(∫ x

0
Π(0, y)dy+ c − (q+Π(0,∞))x

)
.

To complete the circle of computations, one may also take Laplace
transforms of the above Volterra equation and deduce that for β
sufficiently large

2
σ 2β2

=

(∫
∞

0
e−βxW (q)(x)dx

)
×

[
1+

2
σ 2

(
1
β2

∫
∞

0
e−βxΠ(dx)+

c
β
− (q+Π(0,∞))

1
β2

)]
,

which is equivalent to (3) when one takes account of the fact that

ψ(β) =
1
2
σ 2β2 + cβ −

∫
∞

0
(1− e−βx)Π(dx), β ≥ 0.
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