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Abstract. This paper proposes a constrained nonlinear programming view of generalized autore 

gressive conditional heteroskedasticity (GARCH) volatility estimation models in financial 

econometrics. These models are usually presented to the reader as unconstrained opti 
mization models with recursive terms in the literature, whereas they actually fall into the 

domain of nonconvex nonlinear programming. Our results demonstrate that constrained 

nonlinear programming is a worthwhile exercise for GARCH models, especially for the 

bivariate and trivariate cases, as they offer a significant improvement in the quality of the 

solution of the optimization problem over the diagonal VECH and the BEKK representa 
tions of the multivariate GARCH model. 
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volatility estimation, maximum likelihood estimation 
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I. Introduction. Volatility plays an important role in several areas of current 

finance literature. It is central to portfolio selection models as efficient portfolios are 

formed by computing the maximum return for a given level of volatility. Equilib 
rium models like the capital asset pricing model (CAPM) require the estimation of 

market variance as well as the covariance of risky assets with the market portfolio. 
Prices of options are also expressed as functions of volatility. As a result, volatility 
and covariance estimation is an important research area for both academicians and 

practitioners. 

ARCH (autoregressive conditional heteroskedasticity; Engle (1982)) and GARCH 

(generalized ARCH; Bollerslev (1986)) volatility forecasting models have been the 

major tool for characterizing volatility, by using past unpredictable changes in the 

returns of an asset to predict the future time-varying second-order moments. Volatility 

clustering phenomena (Mandelbrot (1963), Fama (1965)) are the driving force for the 
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GARCH family of models. The success of these models in the univariate case for 

volatility estimation has inspired an interest in covariance estimation, which is a 

harder problem, and has led to the development and application of the multivariate 

extensions.1 The major difficulty in the multivariate case stems from the highly 
nonlinear and nonconvex nature of the resulting optimization problem. 

The first attempt to solve the multivariate GARCH model was the diagonal VECH 

model of Bollerslev, Engle, and Wooldridge (1988), who assumed constant covariances 

for solvability. This extension can be thought of as a trade-off between estimation 

intractability and practical applicability. Later, statistical tests were developed to 

check the empirical validity of the assumption of constant covariances; see Bera and 

Kim (1996) and Tse (2000). Their results for national stock markets show that the 

covariances are in fact time varying. Therefore, other solutions that can deal with the 

complexity of the multivariate estimation problem need to be developed. 
The factor ARCH model of Engle, Ng, and Rothschild (1990) and the BEKK 

model of Baba, Engle, Kraft, and Kroner (1989) were attempts to solve the same 

problem by ensuring positive definiteness of the variance-covariance matrices in the 

process of optimization, which is an important constraint in multivariate GARCH 

models. All of these specifications impose very different restrictions on the variance 

covariance matrix for computational tractability. For example, Schoenberg (1998), in 

his GAUSS-based commercial software FANPAC, claims to impose constraints on the 

eigenvalues of the variance-covariance matrices, although the details are not revealed. 

The purpose of the present paper is to solve the multivariate GARCH optimiza 
tion problem in which we follow a more general approach by taking a constrained 

nonlinear programming view of GARCH volatility estimation models without impos 

ing artificial restrictions for tractability. This is made possible by recent advances 

in numerical optimization algorithms and software. ARCH and GARCH models are 

usually presented to the reader as unconstrained optimization models with recursive 

terms in econometrics and finance texts (see, e.g., Hamilton (1987) and Gourieroux 

(1997)), whereas they actually fall into the domain of nonconvex, nonlinearly con 

strained nonlinear programming. They are usually solved by extensions of Newton 

or quasi-Newton methods that take into account the recursive nature of terms defin 

ing the objective function. Against this background a major goal of this paper is to 

test the practical solvability (i.e., computing a Karush-Kuhn-Tucker point) of these 

models as nonlinearly constrained nonconvex programs using the AMPL modeling 

language (Fourer, Gay, and Kernighan (1993)) and the state-of-the-art optimization 

packages available through the recently developed NEOS2 interface at the Argonne 
National Laboratory. 

We believe this research effort is a worthwhile undertaking, as the current fi 

nancial econometrics literature does not use these valuable sources of optimization 

software, to the best of our knowledge. Second, we establish through our computa 
tional results that the bivariate and trivariate GARCH volatility estimation models 

for which relatively few software systems exist in the market are solved very effectively 

by our approach, thus contributing a new tool to the econometric finance literature. 

xSee Engle (1987); Bollerslev, Engle, and Wooldridge (1988); Giovannini and Jorion (1989); 

Engle, Ng, and Rothschild (1990); Bollerslev (1990); Ng, Engle, and Rothschild (1991); Conrad, 

G?ltekin, and Kaul (1991); Kroner and Claesens (1991); Kroner and Sultan (1993); Lien and Luo 

(1994); Karolyi (1995); Park and Switzer (1995); Tse (2000). 
2http://www-neos.mes.anl.gov; see Cyzik, Mesnier, and Mor? (1998) 
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Furthermore, our empirical results for the DAX, FTSE, and S & P 500 indices demon 

strate that this approach tracks the variability in realized volatility better than both 

the diagonal VECH and the BEKK representations. However, we should stress that 

the major contribution of this paper lies in the proposed general approach and its 

documented superior solution quality from an optimization point of view. Although 
a visual inspection of the results and mean-square errors of the trivariate application 
is promising, a thorough empirical investigation of the forecasting accuracy is a topic 
for further research. 

We organize the rest of this paper as follows. In section 2, we review the uni var?ate 

GARCH model. Section 3 is devoted to a review and discussion of the multivariate 

and, in particular, the bivariate and trivariate GARCH models on which we concen 

trate. In section 4, we illustrate our approach by applying it to daily returns of the 

S & P 500, FTSE 100, and DAX indices, report our results, and compare them with 

the diagonal VECH and BEKK representations. Section 5 concludes the paper. 

2. Univariate GARCH Model. The analysis of time series dynamics of economic 

data is usually based on observations of relevant processes, e.g., the behavior of short 

and long-term interest rates, rate of inflation, stock prices, etc. In general terms, an 

observed time series is viewed as a realization of a stochastic process, i.e., a sequence of 

random variables that are defined on some state space ?2. These random variables may 
be unidimensional, leading to univariate econometric models, or multidimensional, in 

which case multivariate models are appropriate. Furthermore, the random variables 

are indexed by time, where we assume that observations are recorded at regularly 

spaced intervals, which allows one to consider time indices taking only integer values. 

The stochastic process is denoted by 

Y = (Yt,teT), 

where the index set T is the set of nonnegative integers or the set of natural numbers. 

In the present paper we consider the following autoregressive process for stock index 

returns, which explains the behavior of the random variable in terms of its past values 

as 

Yt = 
(t>\Yt-i + <fclt-2 + + (?mYt-m + eu 

where e = 
(et) is a weak white noise satisfying the martingale difference sequence 

condition 

E{et\et-i) 
= 

0, 

where the notation E(.) denotes mathematical expectation and et-i = 
{et-i,et-2, } 

represents the vector of past values. It is important to model the level of financial time 

series {Yt}, but sometimes it might be even more important to model the volatility 
of the series to quantify the risks involved in a specific trading strategy, especially 
when the empirical evidence suggests that the level process {Yt} shows no particular 
time dependence, whereas the volatility process exhibits a certain time dependence. 
Instead of assuming that the conditional variance of the noise, i.e., E(e^\et-i), is 

time independent, we allow for time dependence through an autoregressive equation 
for the squared error terms (innovations) as follows: 

q p 

(2.1) E{e2t\et-i) 
= ht = c + J2a^t-i 

+ Y.^ht-j 
i=l j=l 
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The above model is referred to as GARCH(p,q).3 In the case p = 
0, we have the 

ARCH(q) model: 

(2.2) E{?2t \?t-i) 
= ht = c + J2 ai? 

i=\ 

An important consideration in the study of time series is the stationarity properties 
of the time series in the interest of forecasting ability. Imposing stationarity is a 

vital part of modeling. In particular, if {Yt} is stationary, the mean, variance, and 

autocorrelations can usually be well approximated by sufficiently long time averages. 

Formally, a stochastic process with a finite mean and variance is called covariance (or 

second-order) stationary if for all t, t ? 
s, 

(2.3) E(Yt) = E(Yt-.) = n, 

(2-4) E[(Yt 
- 

M)2] 
= E[(Yt.a 

- 
/x)2] 

= 
4, 

(2.5) E[(Yt 
- 

/i)(rt_. 
- 

/,)] 
= 

E[(Yt-j 
- 

?)(Yt-j-s 
- 

/x)] 
= la, 

where /?, g\ , and 7S are all constants. Simply put, a time series is covariance 

stationary if its mean and all auto-covariances are unaffected by a change of time 

origin. In the above models, </> G SRm, a G 5R++, ? G 5R++ (the notation ??++ and 

5?++ represent the space of q- and p-dimensional real vectors with strictly positive 

components, respectively), c is a positive scalar, and 

q p 

(2.6) I>i + ][><1 
?=i ?=i 

is sufficient to ensure second-order stationarity asymptotically. For further details the 

reader is referred to Property 3.19 of Gourieroux (1997). 
An important tool in the estimation of the above parameters is the technique of 

maximum likelihood estimation. Assuming a normal distribution for Yt given the 

past observations, application of the maximum likelihood technique in the case of 

GARCH(p,q) leads to the following optimization problem: 

T 1 T 1 T 
?2 

(2.7) max_ 
iog27r--^log/li__^-l ? ? 

t=i 
? 

t=i nt 

subject to the stationarity condition (2.6), the specification of conditional variances 

ht given by (2.1), and the nonnegativity condition on c,a,?. 

Therefore, for the GARCH(p,q) case we can formulate the following optimization 

problem: 

max 
1 T 1 T r2 

? 
t=i 

? 
t=i nt 

s.t. c + 
^ati&i 

+ 
^?jht-j 

= h V? = 
l,...,r, 

?=i j=i 

3Excellent references are available on this important topic. The interested reader is referred to 

Droesbeke, Fichet, and Tassi (1994); Gourieroux (1997); and Hamilton (1987) for details. 
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m 

Y,<t>iYt-i 
+ et = Yt W = 

1,...,T, 
i=l 

q p 

i=l ?=1 

ht > 0 Vi = 
1,...,T, 

c > 0, 

a? > 0 Vi = 
l,...,g, 

?i > 0 V? = 
l,...,p, 

where we have replaced the strict inequality in (2.6) with a nonstrict inequality in the 

interest of computational tract ability. This modification did not create any problems, 
as this constraint turned out to be inactive (satisfied as a strict inequality) at the 

reported solution in our computational tests (see values of o?\ and ?\ in Table 1, 
section 4). 

Regarding issues of convexity in the above model, we notice that the function 
2 

log ht + jf- is a quasi-convex function in (et, ht). Unfortunately, the sum of quasi 
convex functions is not necessarily quasi-convex. Therefore, we do not expect to 

detect hidden convexity in the objective function of the above model. The constraints 

are also of a polynomial nature and obviously nonconvex. These observations imply 
that any attempt at numerical solution of the above model is bound to yield at best 

a Karush-Kuhn-Tucker point (not necessarily a local maximum). 

3. Multivariate Model. When the error term et is a multivariate process of 

dimension n, we can introduce the same formulation as in the univariate case for 

all the components of the conditional variance-covariance matrix. Now, for all t = 

1,..., T we have Yt G 5Rn and et G 5Rn with components Yu and eu, I = 
1,..., n, 

respectively. We denote the components of the nxn conditional variance-covariance 

matrix Ht = 
E(eteJ\et-\) by hku- The log-likelihood function to be maximized in 

the multivariate case is given as 

1 T 

--^ogdetHt 
+ ejH^et). ? 

t=i 

Following Kraft and Engle (1982) and Bollerslev, Engle, and Wooldridge (1988), 
a multivariate extension of univariate GARCH (2.1) is as follows: 

q p 

(3.1) vech(#t) = vech(C) + ]T ^vech(et_^_J + ̂  Bj vech(fft_j)> 
*=1 3=1 

where vech is the operator that consists in stacking up the lower triangular and the 

diagonal portions of the columns of a symmetric matrix into a vector, the matrices 

Ai and Bj are of size n^ 
' x 

n^n2+ ', 
and C is a symmetric matrix of size nxn. 

This general formulation is termed the VECH model by Engle and Kroner (1995). 

Now, we consider the following estimation problem that we refer to as the con 

strained nonlinear programming (NLP) formulation: 
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max -- 
]T(logdet Ht + ejHt 1et) ? 
t=i 

q p 

s.t. vech(Ht) 
= 

vech(C) + ̂  Aivech(et-ieJ_i) + ̂ Bjvech(Ht-j) 
i=l j=l 

Vt = 
l,...,T, 

m 

Y,<t>uYi,t-i 
+ eit 

= 
Yu Vt = 

l,...,T,Z 
= 

l,...,n, 

HthO Vt = 
l,...,T, 

where the symbol y means "symmetric, positive semidefinite." The above mathe 

matical program is the most general multivariate GARCH specification model, from 

which simplified specifications were obtained by imposing certain restrictions on ma 

trices Ai and Bj 
. Below we briefly review the most important two from the literature 

in sections 3.1 and 3.2, respectively. 
We obtained above a nonlinear programming problem with semidefiniteness con 

straints. In this case, the stationarity condition is not easy to incorporate into the 

above problem, as it requires that the roots of the determinant of I ? 
Yll=i ^iz% 

~ 

YTj=i Bjz^ be greater than 1. However, this condition considerably simplifies to an 

implement able constraint in the bivariate case. It is easy to verify that for n = 2, the 

stationarity condition is equivalent to 

(3.2) I - A - B y 0, 

which can be incorporated as nonlinear constraint(s) into the model, where we take 

A = Ai and B = B\ to be symmetric for tractability.4 Notice also that the function 

^^2t=l(logdetHt + ?r[H^1?t) is a difference of convex functions since the second 

component function is a convex function in Ht, ?t (see Vanderbei and Benson (1999)), 
and the negative of the first component function is also known to be convex in Ht. 

We now compare the above approach with the diagonal VECH and the BEKK 

representations, the two competing models used in the present paper. 

3.1. The Diagonal VECH Model. The diagonal VECH representation was pro 

posed by Bollerslev, Engle, and Wooldridge (1988), who took the matrices Ai and Bj 
to be diagonal. For a G ARCH (1,1) process the entries hijt of the matrix are specified 

according to the recursion 

(3.3) hijt 
= 

Wij + ?ijhijj-i + o?ij?i?-i?j,t-i, 

where ?t is a multivariate process of dimension n. 

In matrix notation, we can cast the associated log-likelihood maximization model 

as follows: 

1 T 
max 

~?X^logdetjff*+e^Hilet^ 1 
t=i 

s.t. Ht = C + AOeM^+BO?-i V? = 1,...,T, 
m 

^tiiYij-i 
+ eu = Ylt Vt = 

l.T,i 
= l.n, 

Ht h 0 Vt = l,...,T, 

4This is to be able to conveniently decompose I - A ? B into LDLT factors. However, we also 

have computational results where this constraint was omitted. The results are similar to the results 

obtained when using the constraint, and they are available to the interested reader upon request. 
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where the notation 0 is used to represent the componentwise product (Hadamard 

product) of two matrices of conformable dimensions, and C, A, and B are nxn 

symmetric matrices. 

3.2. The BEKK Model. As the positive semidefiniteness conditions of the general 
VECH model were found hard to handle, Engle and Kroner (1995) proposed to model 

the variance and covariance functions with quadratic forms, which is called the BEKK 

representation. Now, the conditional variance-covariance matrices are represented in 

the form 

(3.4) Ht = CTC + BTHt-iB + ATet^1e't_1 A, 

where A, B, and C are nxn (not necessarily symmetric) matrices. Clearly, this 

model ensures positive semidefiniteness of Ht at the expense of increasing the number 

of parameters to be estimated in comparison to the diagonal VECH model. From a 

numerical optimization point of view, the BEKK model also increases the nonlinearity 
of the constraints by utilizing a higher order polynomial representation in comparison 
to specification (3.1). 

3.3. Bivariate and Trivariate Examples. The bivariate case is of special interest 

since we can give an explicit NLP formulation in this case using a simple formula 

for the determinant or a Cholesky-type decomposition. The trivariate case is also 

amenable to solution using an LDLT representation that we discuss below. For ease 

of exposition let us consider the simpler ARCH(l) process. We have three distinct 

conditional variance-covariance components: 

ftn,t 
= 

E(elt\et-i), 

hi2,t 
? 

E(eite2t\et-i), 

h22,t 
= 

E(e2t\et-i)> 

The recurrence relation (3.1) becomes 

hn,t 

h22,t 

Cll 

C22 

+ 

an ?12 ^13 

?21 ?22 ^23 

?31 &32 a33 

fcl,t-l 

?l,t-l?2,t-l 
P2 
?2,t-l 

Hence, we have the following optimization problem: 

lr^i, /, i ,2 n . e\th22,tJre\th\\t-c^e\te2th\2,t max 
~o ?^ l??(hn,th22,t 

- 
h(2t) +->?-?-?-2 ? 

fr? \ h>n,th>22,t 
- 

12,t 

s.t. 
ftll,t 

= 
Cn + 011^1 t-l + a12^1,i-1^2,t-l + ^13^2,i-l 

vt = 
i,...',r. L, . . . , J. , 

~2 , ^ ^ ? i ? Jl 
^12,t 

= 
Ci2 + 021^1 t-l + ?22^1,t-1^2,t-l + ?23^2,t 

Vt = 
l,...,T, 

u 2 2 
22,t 

= 
C22 + 031^1 t-l + a32?l,t-1^2,t-l + ?33^2,t 

Vt = 
l,...,T, 

-i 

-i 

J2 <i>uYht-i + elt = lit Vi = 
1,..., T, 

2=1 
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J2 fa&2,t-i + 62t = Y2t \/t = 
1,..., T, 

?=1 

hnjth22,t 
- 

h\2t 
> 0 Vt = 

l,...,T, 

An,? 
> O V?=1,...,T. 

We refer to the above formulation as the de?errmnan?-constrained NLP formula 
tion. 

Note that the constraints can be rewritten as 

^ii,t 
= en + ( ?\,t-\ ?2,t-i ) 

^ Ol3 

^12,? 
= Ci2 + ( ?l,i-l ^2,t-l ) 

02l ^ 
T ?23 

?31 a~f 
a~f ?33 All,* 

= Cu + ( ?l,t-l ?2,t-l ) 

More succinctly, the above constraints can be put as 

/ * 
jT r<\( ?i,*-i ?2,t-i 0 0 \ / -. 

?\,t 

?2,t 

?l,t 

?2,t 

?l,t 

?2,t 

an ^ ai2 

T ?13 T 
?21 ^f2- a3i 

2 "23 2 ?2,i-l 

It suffices that the matrices C and 

/ an 2*2. ai2 2 

A, 

Q22 

^ Ol3 ̂  ?23 
021 *?* 131 ̂  
Q22 

?23 
0^2. ?33 / 

be positive semidefinite to guarantee positive semidefiniteness of Ht. 
An alternative formulation to the determinant-VECH formulation is obtained by 

parameterizing the matrices Ht as Ht = 
LtDtLf, t ? 

1,... , T, where L? is a unit 

lower triangular matrix, and Dt is a diagonal matrix. Clearly, the requirement that 

Ht be positive (semi)definite is equivalent to the requirement that the entries of the 

diagonal matrix Dt be positive (nonnegative). More precisely, within the context of 

the above example, the LDLT model would translate into 

1 T 
max ~o Yl (los(dit) + log(d2t) + eitwit + s2tw2,t) 

7 2 2 
s.t. dit 

= en + an^i^-x + ai2?i,t-i?2,t-i + 
ai3^2,?-i 

Vt = 
l,...,T, 

dlthlt 
? 

Cl2 + ^l^l t_l + a22?l,t-lff2,t-l + ?23^2 t-1 

Vt = 
l,...,T, 

duhlt + ^2,t 
= 

C22 + 
a3l?l,t_l + a32^1,t-l?2,t-l + ^33^2 i-1 

Vi = 
l,...,T, 
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? <t>uYltt-i + elt = Ylt V* = 
1,..., T, 

?=i 

X) *K^2,i-i + ?2* = Y2t Vt = 
1, . . . , T, 

dit, d2? > 0 V? = 
1,...,T, 

i=l 

where i?it and u>2t, t = 
1,...,T, are "implied" variables used to simplify the ob 

jective function that involves the inverse H^1 of Ht, t = 
1,..., T. These variables 

are incorporated into the model as definition-type AMPL constraints which simply 

implement the forward substitution, diagonal solve, and backward substitution steps 
to compute the term Ht~1et in the objective function: ^it = ? 

Y^iLi <f*iiYi?-i + Yit, 
u2t = - 

TdLi <t>2iY2,t-i + Y2t 
- 

hituu, vit = 
uu/du, v2t = 

u2t/d2t, w2t = v2t, and 

wit 
= 

vu 
- 

hitVJ2t for alii = 
1,..., T. 

We utilize both the LDLT model and the determinantal model in our tests, 
wherever computationally appropriate. All our bivariate formulations also include 

the stationarity condition (3.2) as a constraint similar to the LDLT decomposition 
of fit's. 

For the above example, the diagonal VECH representation takes the following 
form: 

An,* 

hi2,t 

hi2,t 

h22,t 

en 

Cl2 

Cl2 

C22 
+ 

an 

?12 

?12 

?22 
0 ci,t-i 

?i,?-i?2,?-i 

^1,?-I^2,t-1 

?2,t-l 

The BEKK model yields the following recursion for the bivariate example: 

?n,t 

h\2,t 

hi2,t 

h22,t 

en 

Cl2 

C21 

C22 

Cll 

C21 

Cl2 

C22 

+ 
an 

?12 

?21 

?22 

-l,t?1 ?l,?-1^2,?-l 

?2,t-l 

an 

?21 

?12 

^22 ?i,t-i?2,t-i 

Notice that ^4 and C no longer need to be symmetric. 
When we have a trivariate model, we use the following mathematical program, 

which is a direct extension of the bivariate LDLT representation to the trivariate 

case: 
T 

max -- 
22 0?g(dit) + log(?2?) + log(d3t) + eitwit + e2tW2,t + ?3fW3,t) 

s.t. dit = Cu +011^1^-1 + ^12^1,t-1^2,i-l +ai3?35t_i?l,t_i 

+dl4?2,t-l +ai5^3,i-l?2,t-l -Hai6^i,t-1' 

dithit 
? C2i + a2ief t-1 + a22?i,t-i?2,t-i + 023^3^-1^1,<-i 

2 
' 

2 
-fa24^2,i-l +a25^3,t-1^2,i-l + ?26^3,t-l' 

dlthlt = C3i + a3i i t_! + a32?l,t-l?2,t-l 

ditllit + d2,t 

a33?3,t-i?i,t-i 
2 2 

+<234?2,t-l + ?35^3, t-1^2, t-l +^36^3,t_i, 
i 2 . 

C22 + 041^1 t-l + a42?M-l?2,i-l ' 
2 2 

+a43?3,t-l?l,t-l +?44^2,t-l + a45^3, t-1^2,t-l +a46?3jt_1, 

dlt?21t?31t + <?2,t?32t 
= C32 + a5l?i5t_i + 052^1,t-1^2,t-l 

^lt?31t + ^2,t^32t + <fet 

+?53^3, t-1^1, t-l +?54^2,t-l +a55^3,t-l?2,t-l + 056^3^-1, 

C33 "h ?61^i t_i + a62^1,t-1^2,t-l ' 
2 2 

+a63?3,i-l?l,t-l +a64^2,t-l + a65^3,t-1^2,t-l + ?66^3,^-1 

Vt=l,...,T, 
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m 

^?liVi.t-i+eit 

= Vit V?=l,...,T, 

?=i 

m 

]T02iV2,t-i+?2t 

= V2t V*=1,...,T, 

i=l 

m 

^?2<t>3iY3,t-i+e3t 

= Yst Vt = 
l,...,T, 

?=1 

du, d2t, d>3t > 0 Vt = 
l,...,T, 

where wit, W2t> ^3t5 t = 
1,...,T, are "implied" variables used to simplify the 

objective function that involves the inverse H^1 of Ht, t = 
1,..., T: u\t = ? 

Sili 
?\iY\,t-i + Y\U u2t = - 

Sill 02t*2,t-i + *2t 
- 

hltUlt, U3t = ~ 
Sill 02t*2,t--i + 

*2t 
- 

feltUlt 
- 

/32t^2t, Vit 
= 

Un/du, v2t 
= 

u2t/d2t, v3t 
= 

Uzt/dsu wat 
= 

^3t, 

W2t 
= 

^2t 
- 

h2tW3t, and ii/it 
= 

vit 
- 

?3it^3t 
- 

?2it^2t for all t = 
1,... ,T. 

4. Estimation and Empirical Results. To test our approach first we apply the 

constrained NLP formulation to the univariate case. In the univariate case our 

data consist of daily returns of the S & P 500 index with 2000 data points.5 The 

data set covers the period from 25.4.1988 to 13.3.1996. Table 1 reports the coef 

ficients, standard errors, and the log-likelihood values for the GARCH(1,1) model 

with the traditional univariate GARCH formulation and the constrained NLP for 

mulation proposed in the present paper. The standard errors in this context refer 

to the variance-covariance matrix of the maximum likelihood estimates of the coef 

ficients and are computed approximately using the second derivative matrix of the 

log-likelihood function. The traditional GARCH estimation is carried out using the 

S-PLUS GARCH module implementing the BHHH algorithm (see Hamilton (1987) 
for a discussion of the BHHH algorithm), and the NLP estimation is carried out us 

ing the FILTER software (see Fletcher and Leyffer (1998)) for constrained NLP. The 

results demonstrate that the coefficient values obtained by the two models are very 
close to each other with comparable standard errors. There is a slight improvement 
in the log-likelihood function for the constrained NLP approach. The value of this 

exercise is that it validates our formulation prior to an application to the multivariate 

setting. 

For the multivariate application we start with the bivariate case. Our data consist 

of daily returns of two stock indices, the S & P 500 and the FTSE 100 with 1500 

data points covering the period from 18.5.1990 to 12.3.1996. The time period was 

chosen using the Ljung-Box test, which is used to diagnose the presence of GARCH 

effects. We compare the constrained NLP approach with the most popular bivariate 

specifications available in the S-PLUS GARCH module, namely diagonal VECH and 

the BEKK specifications. To solve the constrained NLP for the bivariate case we 

use the SNOPT software (see Gill, Murray, and Saunders (1997)). The nonlinear 

programs resulting from this exercise have 4506 constraints and 4525 variables. 

Table 2 reports the coefficients, standard errors, and log-likelihood values for 

these three specifications. As in the univariate case, the standard errors represent 
the variance-covariance matrix of the maximum likelihood estimates of the model 

coefficients. We would like to note here that the coefficients are not very easy to in 

terpret intuitively for either constrained NLP or BEKK, compared to diagonal VECH. 

5For GARCH diagnosis, autocorrelation functions and Ljung-Box statistics were checked. The 

data can be supplied upon request. All data were obtained from Salomon Brothers' database. 
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Table I Results with the univariate model on S & P 500 data. 

Method OL\ ?l Log-likelihood value 

Constrained NLP 

(St. Err.) 
SPLUS 
(St. Err.) 

0.00201931 

(0.0015) 
0.00285 

(0.000762) 

0.978463 

(0.00784) 
0.97250 

(0.003177) 

0.0180615 

(0.00103) 
0.02204 

(0.0034232) 

-2179.67 

-2181.8 

Table 2 Results with the bivariate model on S & P 500 and FTSE 100 data (numbers in parentheses 
are standard errors). 

Coefficients Constrained NLP D-VECH BEKK 
en 

C12 

C22 

-0.198775 

(0.00597) 
1.24346 

(0.00471) 
-0.121942 

(0.00211) 

0.021812 

(0.07542) 
0.016743 

(0.010096) 
0.005688 

(0.001437) 

0.126516 

(0.026245) 
0.005078 

(0.018835) 
0.059896 

(0.009138) 
an 

ai2 

?21 

ai3 

ai3 

G22 

?23 

?33 

0.20436 

(0.00036) 
-0.384304 

(1.27 x 10~9) 

0.17964 

(0.000106) 
0.17964 

(0.000106) 
0.959926 

(0.000824) 
-0.382031 

(0.000346) 
0.248888 

(0.0001308) 

0.04509 

(0.009925) 
0.026886 

(0.011565) 

0.033912 

(0.005841) 

0.196017 

(0.024318) 
-0.013858 

(0.024476) 
-0.003001 

(0.016084) 

0.171552 

(0.017128) 

bn 

&12 

&21 

&13 

&22 

&23 

&33 

0.396459 

(0.01033) 
2.11141 

(0.01133) 

-0.446092 

(0.002658) 
-8.53698 

(0.11985) 
1.62468 

(0.007876) 
0.509248 

(0.004097) 

0.930056 

(0.016520) 
0.885738 

(0.062685) 

0.954386 

(0.007181) 

0.971880 

(0.007864) 
0.001883 

(0.005981) 
0.003817 

(0.004755) 

0.980089 

(0.004033) 

Log-likelihood -2572.48 -3453.05 -3461.91 

AIC 5176.96 6924.1 6945.82 

SIC 5261.01 6971.91 7004.26 

However, log-likelihood values show that constrained NLP brings a substantial im 

provement over the diagonal VECH and BEKK representations in the solution of 

the multivariate GARCH formulation. One might be led to think that comparing 
likelihood values for different models with differing number of parameters may not 

be fair. Therefore, to make a fair comparison, we use the AIC and SIC statistics, 
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which are standard tests of comparison between GARCH models in the literature. 

AIC and SIC statistics are used for model selection purposes and enable us to com 

pare models with different numbers of coefficients and different numbers of observa 

tions. They are calculated as AIC = ?2 log-likelihood -f 2 number of coefficients, 
and SIC = ?2 log-likelihood + 2In (number of observations) number of coefficients.6 

Based on the AIC and SIC tests, we can say that constrained NLP parameter esti 

mates are superior to both diagonal VECH and BEKK specifications, although all 

three provide a solution to the same multivariate GARCH estimation problem. Fur 

thermore, the diagonal VECH model seems to do slightly better than the BEKK 

representation. As explained in previous sections the log-likelihood function to be 

maximized is identical in all three approaches compared in the present paper. We 

believe this result is due to the following three factors: 1. The constrained NLP 

approach uses a more general representation compared to its competitors. 2. It incor 

porates the stationarity condition as a side constraint. 3. It employs state-of-the-art 

optimization software. 

Although an empirical investigation of the forecasting accuracy of the so-called 

GARCH representations is beyond the scope of this paper, we include visual compar 
isons of our approach to the competing estimations of the same model. To this end, we 

plot conventional comparison measures of realized volatility7 versus estimated volatil 

ities from three different specifications. We use annualized volatility, as practitioners 

quote volatilities in annualized terms using 252 trading days. In Figures 1 and 2 we 

plot the annualized realized volatility, which is defined as Vuaily-returns2 x 252, and 

the conditional annualized volatility obtained from GARCH specifications, defined as 

^/conditional variances obtained from the estimations x 252 

for the last 500 data points. The solid lines in the figures are the model's conditional 

annualized volatilities, whereas the dotted lines represent the benchmark annualized 

realized volatility. In Figure 3 we plot realized covariances defined as daily return 

S & P 500 x daily return FTSE 100 and the conditional covariances obtained from the 

three different specifications. The better estimation should approximate the dotted 

lines more closely. A visual inspection of the figures shows that constrained NLP has 

higher variability, which seems to follow the variability of the realized volatility. 
We observe from the figures that the diagonal VECH and BEKK results exhibit 

rather similar behavior in that the series tend to follow a certain mean value with 

very small variations. A possible explanation for this behavior can be given as fol 

lows. It is highly likely that the numerical optimization algorithm used in S-PLUS 

diagonal VECH and BEKK implementations (BHHH algorithm) lands on very close 

Karush-Kuhn-Tucker points. On the other hand, the constrained NLP results display 
series which seem to follow more closely the trends in realized volatility and covari 

ances, although it has a tendency to overestimate at times. It is conceivable that the 

sequential quadratic programming algorithm used in SNOPT lands at a completely 
different Karush-Kuhn-Tucker point compared to the diagonal VECH and BEKK 

representations. 

6Geweke and M?ese (1981) report that asymptotically, SIC correctly identifies an ARMA model, 
whereas AIC tends to overfit the model. For completeness, we report both. The smaller the statistic, 
the better the model fit. 

7There is still ongoing academic debate about the definition and proper calculation of realized 

volatility, as the observed daily return is just one realization out of many, and volatility is not an 

observed quantity in the market, but rather estimated. Therefore, the true volatility is unknown. 

However, we employ the most conventional realized volatility definition in our comparisons. 
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Fig. I Volatility for the FTSE. 

In Figures 4-6 we report the results of our trivariate tests, where we used 500 

data points from the S & P 500, FTSE, and DAX8 indices for the period 5.7.1988 to 

8The results we obtained for the DAX were very similar to the results for the S & P 500. 

Therefore, to keep the paper a reasonable length, we do not report the DAX results here. They can 

be found at http://www.ie.bilkent.edu.tr/~mustafap/pubs/dax.gz. 
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Fig. 2 Volatility for the S & P 500. 

14.6.1990. As in the bivariate case the data were chosen using the Ljung-Box test. 

The constrained NLP approach (4575 variables and 4491 constraints) with the SNOPT 

solver in NEOS yields a log-likelihood objective function value of ?437.02, while the 

competing diagonal VECH and the BEKK representations in the package S-PLUS 
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Conditional Covariance of S&P 500 and FTSE - VECH Model 
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Days 

Conditional Covariance of S&P 500 and FTSE - BEKK Model 

Conditional Covariance of S&P 500 and FTSE - Constrained NLP Model 

Fig. 3 Conditional covariances of the S&P 500 and the FTSE. 

give the values -1910.51 and -1949.95. The AIC statistic is equal to 958.04 for 

constrained NLP, whereas it is equal to 3862.78 and 3953.9 for diagonal VECH and 

BEKK, respectively. The SIC statistic has a value equal to 1396.1 for constrained 

NLP, whereas it is equal to 4343.0 and 4421.9 for diagonal VECH and BEKK, re 

spectively. According to log-likelihood, AIC, and SIC criteria, the constrained NLP 

approach performs far better than the other specifications. In Figures 4 and 5 the 

solid lines represent as usual the model's conditional annualized volatilities, whereas 

the dotted lines represent the annualized realized volatility. In Figure 6, the solid 

lines represent the model's conditional covariances, while the dotted lines are used to 

plot realized conditional covariances. We observe that the constrained NLP results 

follow the dotted lines more closely, especially in the case of the S&P 500 index, 

compared to competitive specifications, the diagonal VECH and BEKK. 

In addition to visual inspection we also report in Table 3 the mean-square errors 

associated with the above figures. The mean-square error is calculated as the average 

of the squared differences of daily forecast volatility and realized volatility values for 

each figure. Table 3 shows that in the bivariate case constrained NLP mean-square 
errors are higher for volatilities and covariances. This could be due to the upward 
bias also observed in the figures. For the trivariate case, constrained NLP has smaller 

mean-square errors except for FTSE volatility, where all models are comparable. By 
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FTSE Volatility from the Trivariate VECH Model 

Days 

FTSE Volatility from the Trivariate BEKK Model 
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FTSE Volatility from the Trivariate Constrained NLP Model 
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Days 

Fig. 4 Volatility for the FTSE in the trivariate case. 

itself, the mean-square error is only a summary measure for forecasting accuracy. 

Moreover, there exists a variety of more sophisticated methods, both parametric and 

nonparametric, to judge the forecasting ability of a particular model. On the other 

hand, the forecasting ability of the multivariate GARCH models is an important 

empirical research question, and it should be addressed in a more elaborate fashion 

with different data sets for various time periods. This is obviously a topic for further 

research. 

As a final remark, the computing times using SNOPT on NEOS platforms tend 

to be rather long for bivariate and trivariate examples, reaching as much as 
2^ hours 

for the bivariate tests and 23 hours for the trivariate tests (SNOPT uses four times 

as many iterations in the trivariate case as in the bivariate example), while the S 

PLUS results were usually obtained within a few minutes, although the diagonal 
VECH model failed to converge to a solution and computation was stopped after 100 

iterations. However, the purpose of our tests was not so much computational efficiency 
as the quality of the solution, which seems to be clearly superior in the constrained 

NLP approach to the competing specifications. Furthermore, the constrained NLP 

results were obtained on NEOS over the World Wide Web, whereas the S-PLUS 

solvers were available on our personal desktop. Therefore, the times are not directly 

comparable, and thus should give only a rough indication to the reader. 
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S&P500 Volatility from the Trivariate VECH Model 

Days 

S&P500 Volatility from the Trivariate BEKK Model 

S&P500 Volatility from the Trivariate Constrained NLP Model 

Fig. 5 Volatility for the S&P 500 in the trivariate case. 

In summary, the present paper shows that the early simplifications in the estima 

tion of the multivariate GARCH model (e.g., diagonal VECH and BEKK specifica 

tions) proposed in the literature in the interest of solvability are unnecessary from an 

optimization point of view given the current state-of-the-art in optimization technol 

ogy. Therefore, the additional investment in the constrained NLP approach seems to 

be paying off in terms of solution quality. However, there is certainly a need for further 

research to ascertain the comparative advantage of the constrained NLP approach, 

especially from a forecasting accuracy point of view. 

5. Conclusions. This paper proposed a constrained nonlinear programming view 

of multivariate generalized autoregressive conditional heteroskedasticity (GARCH) 
volatility estimation models in financial econometrics. These models are usually pre 
sented to the reader as unconstrained optimization models consisting of the maximiza 

tion of a nonconvex, nonlinear likelihood function defined through recursive terms in 

the literature, whereas they actually fall into the domain of nonconvex constrained 

NLP. Our results showed that constrained NLP is a worthwhile exercise for GARCH 

estimation problems as demonstrated by examples of bivariate and trivariate data, 
and that it is a significant competitor to the diagonal VECH and the BEKK repre 
sentations popular in the literature. 
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Conditional Covariance of FTSE and S&P 500-Trivariate VECH Model 
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Fig. 6 Conditional covariances for the S&P 500 and the FTSE in the trivariate case. 

Table 3 Mean-square errors in bivariate (last 500 observations) and trivariate tests (last 100 ob 

servations). 

Index Diag. VECH BEKK CNLP 
Panel A: Bivariate 

FTSE 
S & P 500 
FTSE and S & P 500 

0.3064 

0.1816 

0.3451 

0.3094 

0.1826 

0.3495 

0.6706 

0.4528 

0.4650 

Panel B: Trivariate 

FTSE 
S & P 500 
FTSE and S & P 500 

0.3541 

0.2551 

0.4769 

0.3708 

0.2554 

0.4993 

0.3804 

0.0783 

0.3741 
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