
MIC2003: The Fifth Metaheuristics International Conference ??-1

A hybrid multi-objective/goal programming approach for
timetabling

João Pedro Pedroso

Dep. Ciência Computadores, Fac. Ciências, Universidade do Porto
Rua do Campo Alegre, 823, 4150-180 Porto, Portugal

jpp@ncc.up.pt

1 Introduction

We propose a goal programming, multi-criteria approach for the solution of timetabling prob-
lems. The problem is to find a time slot and a room for each element of a set of events E , such
that a set of constraints C is satisfied “as much as possible”, and in a predefined order.

Given the set of events E , a set of time slots T and a set of rooms R, the search space
is S = (E × T ×R). Any solution s ∈ S is considered feasible, i.e., all the constraints are
considered soft. Each goal is defined by one or more constraints. Let Ci be the subset of
constraints defining goal i, and vi(x) the amount of violation of constraint i of a solution
x ∈ S. Then, goal i concerns the minimization, for all the constraints in Ci, of the sum of the
weighted violation

gi(x) =
∑

k∈Ci

wkvk(x).

We will denote g(x) as the N -dimensional vector of goals, g(x) = (g1(x), . . . , gN (x)) .

Let the first goal be g∗1 = min{g1(x),∀x ∈ S}. The second goal is then g∗2 = min{g2(x),∀x ∈
S : g1(x) = g∗1}. If there are N goals, the objective of the problem is then to obtain:

g∗N = min{gN (x),∀x ∈ S : gN−1(x) = g∗N−1, . . . , g1(x) = g∗1}

An additional assumption made is that there are no constraints violated on an empty
solution, and that the number of violations in general increase through the steps of construction
of a solution.

2 Solution classification

During the search, we will classify solutions x ∈ S according to the corresponding value of the
N goals. For two solutions x, y ∈ S, we define a precedence relation between them as:

Kyoto, Japan, August 25–28, 2003



??-2 MIC2003: The Fifth Metaheuristics International Conference

g(x) ≺ g(y) ⇔ g1(x) < g1(y);
g1(x) = g1(y) and g2(x) < g2(y);
. . .

g1(x) = g1(y), g2(x) = g2(y), . . . , gN−1(x) = gN−1(y) and gN (x) < gN (y).

This relation will be used to compare solutions; notice that it can be used both for the
case of complete solutions and the case of partially constructed solutions. For the latter case,
the condition for this relation to make sense is that the number of unplaced events on the two
solutions being compared is the same.

We define a function G(g) which returns the order k from which the goals on the vector
gk and g∗k are different (hence G(g) = 1 means that g1(g) &= g∗1 , and G(g) = 3 means that
g1 = g∗1 , g2 = g∗2 , g3 &= g∗3 , for example).

3 Algorithm

The algorithm proposed is a GRASP variant, where solutions are constructed in a semi-greedy
way, and then bound into a local optimum. After that—as opposed to traditional GRASP [6],
where a new construction starts—the best found solution is partially destroyed, also in a semi-
greedy way, until the first unsatisfied goal becomes satisfied. From that partially destroyed
solution, a new semi-greedy construction starts, followed by local search.

The aim of construction/destruction cycles is to provide a good balance between intensifi-
cation and diversification, as suggested in [2], for example.

The algorithm stops when the CPU time (or the iteration count) limit is reached.

Algorithm 1: The REGRASP algorithm.
REGRASP()
(1) x = x∗ = {}
(2) while stopping criterion is not satisfied
(3) x = SemiGreedy(x)
(4) x = LocalSearch(x)
(5) if x∗ = {} or g(x) ≺ g(x∗)
(6) x∗ = x
(7) x = SemiUnGreedy(x∗)
(8) return x∗

3.1 Semi-greedy construction and destruction

On the construction procedure (Algorithm 2) we check the best placement (slot and room) for
each event that has not yet been assigned (lines 4 to 8). We update the goal evaluation for

Kyoto, Japan, August 25–28, 2003



MIC2003: The Fifth Metaheuristics International Conference ??-3

the best and worst events that can be assigned (lines 9 to 12). Then, from the events that are
to be assigned, one is selected in a semi-greedy way (lines 13 to 18). For this selection, only
events that have the same level of goal satisfiability k of the best classified event may enter
the restricted candidate list (RCL).

Algorithm 2: Semi-greedy solution construction.
SemiGreedy(x)
(1) U = set of events with no attributed room/slot on x
(2) while U &= {}
(3) foreach e ∈ U
(4) for s = 1 to NS
(5) for r = 1 to NR
(6) x̄ = x ∪ {(e, s, r)}
(7) if g∗ not initialized or g(x̄) ≺ g∗

(8) s∗[e] = s; r∗[e] = r; g∗[e] = g(x̄)
(9) if gmin not initialized or g∗(e) ≺ gmin

(10) gmin = g∗[e]
(11) if gmax not initialized or G(gmax) = G(g∗[e]) and gmax ≺ g∗[e]
(12) gmax = g∗[e]
(13) foreach e ∈ U
(14) α = rand[0, 1] k = G(g∗[e])
(15) if k = G(gmin) and g∗k[e] < gmin

k + α (gmax
k − gmin

k )
(16) RCL = RCL ∪ {e}
(17) e =RandomChoice(RCL)
(18) x = x ∪ {(e, r∗[e], s∗[e])}
(19) U = U\{e}
(20) return x

The destruction procedure (Algorithm 2) selects, from the events that can be removed
from the solution, those that lead to greatest improvements in the solution, in a semi-greedy
way. This is done by checking, for all the events in the solution, what is the partial objective
if the event is removed, and updating the best and worst removal possibilities (lines 4 to 11).

Then, from the events assigned, one is selected in a semi-greedy way (lines 12 to 17).
As for the construction case, for this selection only events that have the same level of goal
satisfiability k of the best classified event may enter the restricted candidate list (RCL).

3.2 Neighborhoods and local search

We propose two neighborhoods for local search. For a given solution x, the first neighborhood
considered, N1(x) consists of the solutions that can be obtained from x by changing the slot
and/or room of each of the events.

The second neighborhood, N2(x) consists of the solutions that can be obtained from x by
exchanging the slot and room of an event with the slot and room of another.

The neighborhoods are explored using ideas borrowed from a strategy called variable neigh-

Kyoto, Japan, August 25–28, 2003



??-4 MIC2003: The Fifth Metaheuristics International Conference

Algorithm 3: Semi-greedy solution destruction.
SemiUnGreedy(x)
(1) A = set of events with attributed room/slot on x
(2) k = G(g(x))
(3) while g∗k < gk(x)
(4) foreach e ∈ A
(5) x̄ = x\{e})
(6) if gmin not initialized or g(x̄) ≺ gmin

(7) gmin = g(x̄)
(8) if G(g(x̄)) < k
(9) k = G(g(x̄)); gmax = g(x̄)
(10) if gmax not initialized or G(g(x̄)) = k and gmax ≺ g(x̄)
(11) gmax = g(x̄)
(12) foreach e ∈ A
(13) α = rand[0, 1] x̄ = x\{e})
(14) if G(g(x̄)) = k and g(x̄) < gmin

k + α (gmax
k − gmin

k )
(15) RCL = RCL ∪ {e}
(16) e =RandomChoice(RCL)
(17) x = x\{(e, r∗[e], s∗[e])}
(18) A = A\{e}
(19)return x

borhood search [3], searching neighborhoods by increasing size.

Algorithm 4: Local search main cycle.
LocalSearch(x)
(1) s = Improve(x)
(2) while s &= x
(3) x = s
(4) s = Improve(x)
(5) return s

Algorithm 5: Improvements.
Improve(x)
(1) S = N1(x)
(2) while S &= {}
(3) s = RandomChoice(S)
(4) if s is better than x
(5) return s
(6) S = S\{s}
(7) S = N2(x)
(8) while S &= {}
(9) do the same as above
(10) return x

Kyoto, Japan, August 25–28, 2003



MIC2003: The Fifth Metaheuristics International Conference ??-5

4 Results and conclusion

Some preliminary tests of this algorithm with the benchmark problems of the International
Timetabling Competition (ITC) [5] (more details on the benchmark test suite and on other
meta-heuristics for this problem are presented in [1]) and some variants of it indicate that the
algorithm provides a valid strategy for automated timetabling. In particular, feasible solutions
(i.e., with no room clashes, no student clashes, and no features missing for any event) for the
original benchmarks were found in less than 600 seconds of CPU time on a computer running
the Linux operating system, with a pentium CPU at 1000 MHz.

In the ITC problem, the first goal (which defines “feasible” solutions) corresponds to having
no room or student clashes, and have all rooms are compatible with the events placed there.
Quality of the solutions is measured on a second goal, and comprises three (soft) constraints:
on student schedules there should be no three or more events on a row, there should be no
single-event days, and there should be no events on the last slot of the day.

All the instances provided in the ITC had an optimal solution with no violations on any
of the constraints, and this information was available at the time of the competition. The
method proposed in this paper does not make use of this; it is usable even on instances which
do not have any satisfiable constraint. Hence, it is not fully comparable to other methods
presented in the ITC. Anyway, in this contest were presented methods much faster than the
one we propose here. Table 1 presents a comparison of the results of the approach presented
in this paper to those of the winner of the ITC [4].

The algorithms presented in this paper are not problem-specific, and are hence employable
unchanged in a wide range of problems. As timetabling problems are very unsteady, changing
from institution to institution, and often changing with the time too, it is expected that the
approach introduced is of practical relevance.

References

[1] K. Socha M. Sampels M. Manfrin. Ant algorithms for the university course timetabling
problem with regard to the state-of-the-art. Technical report, IRIDIA, Université Libre de
Bruxelles, Belgium, 2003.

[2] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston, 1997.

[3] Pierre Hansen and Nenad Mladenovic. Variable neighborhood search: Principles and ap-
plications. European Journal of Operational Research, 130:449–467, 2001.

[4] Philipp A. Kostuch. Timetabling Competition – SA-based heuristic. Internet repository,
2003. http://www.stats.ox.ac.uk/ kostuch/TTcomp.pdf.

[5] Ben Paechter. International timetabling competition. Internet repository, 2003.
http://www.idsia.ch/Files/ttcomp2002.

[6] M. G. C. Resende and C. C. Ribeiro. Greedy randomized adaptive search procedure. In
Fred Glover and G. Kochenberger, editors, State of the Art Handbook in Metaheuristics.
Kluwer Academic Publishers, 2001.

Kyoto, Japan, August 25–28, 2003



??-6 MIC2003: The Fifth Metaheuristics International Conference

Problem Violation Winner
number T D L Total Results
1 91 6 109 206 45
2 80 4 103 187 25
3 88 8 111 207 65
4 198 19 275 492 115
5 225 8 260 493 102
6 189 12 126 327 13
7 183 12 251 446 44
8 132 4 152 288 29
9 113 8 113 234 17
10 80 3 174 257 61
11 121 7 143 271 44
12 114 8 228 350 107
13 165 5 199 369 78
14 213 14 306 533 52
15 169 13 199 381 24
16 64 5 102 171 22
17 210 22 186 418 86
18 77 6 59 142 31
19 136 11 371 518 44
20 114 8 91 213 7
Sum 6503 1011

Table 1: Results for the International Timetabling Competition benchmarks, and comparison
to the algorithm that won the competition. All the solutions are feasible (i.e., there are no
room or student clashes, and all the rooms are compatible with the events placed there).
Quality of the solutions: T is the number of three or more events on a row, D the number of
single-event days, and L the number events on the last slot of the day, on student schedules.

Kyoto, Japan, August 25–28, 2003


