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Plants are of fundamental importance to life on Earth. The shapes of leaves, petals and whole plants are of
great significance to plant science, as they can help to distinguish between different species, to measure
plant health, and even to model climate change. The growing interest in biodiversity and the increasing
availability of digital images combine to make this topic timely. The global shortage of expert taxono-
mists further increases the demand for software tools that can recognize and characterize plants from
images. A robust automated species identification system would allow people with only limited botanical
training and expertise to carry out valuable field work.

We review the main computational, morphometric and image processing methods that have been used
in recent years to analyze images of plants, introducing readers to relevant botanical concepts along the
way. We discuss the measurement of leaf outlines, flower shape, vein structures and leaf textures, and
describe a wide range of analytical methods in use. We also discuss a number of systems that apply this
research, including prototypes of hand-held digital field guides and various robotic systems used in agri-
culture. We conclude with a discussion of ongoing work and outstanding problems in the area.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Plants form a fundamental part of life on Earth, providing us
with breathable oxygen, food, fuel, medicine and more besides.
Plants also help to regulate the climate, provide habitats and food
for insects and other animals and provide a natural way to regulate
flooding. A good understanding of plants is necessary to improve
agricultural productivity and sustainability, to discover new phar-
maceuticals, to plan for and mitigate the worst effects of climate
change, and to come to a better understanding of life as a whole.

With a growing human population and a changing climate,
there is an increasing threat to many ecosystems. It is therefore
becoming increasingly important to identify new or rare species
and to measure their geographical extent as part of wider biodiver-
sity projects. Estimates of numbers of species of flowering plants
(or angiosperms) vary from about 220,000 (Scotland & Wortley,
2003) to 420,000 (Govaerts, 2001).

The traditional approach to identifying species and their rela-
tionships is to train taxonomists who can examine specimens
and assign taxonomic labels to them. However, there is a shortage
of such skilled subject matter experts (a problem known as the
‘‘taxonomic impediment’’ e.g. Carvalho et al., 2007), as well as a
ll rights reserved.
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limit on financial resources. Furthermore, an expert on one species
or family may be unfamiliar with another. This has lead to an
increasing interest in automating the process of species identifica-
tion and related tasks. The development and ubiquity of relevant
technologies, such as digital cameras and portable computers has
bought these ideas closer to reality; it has been claimed that now
is the ‘‘time to automate identification’’ (MacLeod, Benfield, &
Culverhouse, 2010), and not just of plants. Arguing that we need
to train more expert taxonomists, while also embracing new tech-
nologies, Quentin Wheeler writes that ‘‘[d]igital images are to mor-
phological knowledge what the Gutenberg Press was to the written
word’’ (Wheeler, 2004).

Botanists collect specimens of plants and preserve them in ar-
chives in herbaria. For example, the herbarium at the Royal Botanic
Gardens, Kew in London houses over 7 million dried specimens,1

some of which are more than 200 years old. These are annotated
and sorted using the expert knowledge of the botanists, subject to
revision over time. Herbarium collections can therefore be seen as
major, structured repositories of expert knowledge. In order to im-
prove access, these collections are increasingly being digitized to
form databases with images that are annotated with species’ names,
collectors’ names, dates, locations and so on. Other significant
sources of knowledge include flora, taxonomic keys and monographs
(see Table 1 for definitions).
1
 http://apps.kew.org/herbcat/navigator.do.
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Table 1
Some botanical terminology. Note that some terms have different meanings in plant science compared to computer science or statistics. See also Fig. 2 for terms relating to the
anatomy of a leaf.

Identification Recognition of the identity of an organism. (Synonymous with classification in computer science and statistics.)
Classification Grouping items based on similarity. (Synonymous with cluster analysis or segmentation in computer science and statistics.)
Nomenclature Assigning names to organisms
Taxonomy Identification, formal description and naming of organisms
Taxon Group of organisms assumed to be a unit; e.g. a species
Taxonomic rank Relative position in taxonomic hierarchy; e.g. ‘‘species’’, ‘‘family’’
Dichotomous key A binary tree that allows a user to identify members of a taxon through a series of questions
Flora A book describing plant life in a particular geographic region
Monograph A book providing a (near) complete description of a particular taxon, typically a genus
Taxonomic key Structured series of questions used to identify specimens
Herbarium A reference collection of preserved plant specimens.
Systematics The taxonomic study of evolutionary origins and environmental adaptations
Cladistics The study of the pathways of evolution, with the aim of identifying ancestor–descendant relationships
Phenetics The study of relationships between organisms defined by the degree of physical similarity between them
Homology The similarity of a structure in different organisms resulting from shared ancestry
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In many cases, species (or higher taxa such as genera or fami-
lies) can be distinguished by characters derived from their leaf or
flower shape, or their branching structure. Shape is of course
important in many other disciplines, and morphometric tech-
niques are applied in structurally-based research in zoology, geol-
ogy, archaeology and medicine, although these are beyond the
scope of this review.

Morphometrics, the study of shape, has been applied to plants
and their organs for many years. Leaves are readily apparent struc-
tures on many plants, and they are available for examination for
much of the year in deciduous or annual plants or year-round in
evergreen perennials, unlike more transient reproductive organs.
As such, leaf characters, including those involving shape, have been
used extensively in traditional text-based taxonomic keys for plant
identification since the beginnings of botany. Examples of such
studies include those on Tilia (Schneider, 1912), Ulmus (Melville,
1937, 1939) and Betula (Natho, 1959), but there are many more.
To use such a key, which has been compiled by an expert in the
group in question, the user makes a series of choices between con-
trasting statements, finally reaching a species name. Even given
such a key, the user must make a number of judgements that require
specific botanical knowledge, so these cannot be used naively. Fur-
ther details on taxonomic keys can be found in Stace (Stace, 1992).

In recent years, high quality digital cameras have become ubiq-
uitous, increasing interest in creating hand-held field guides. These
are prototypes built around smart phones or personal digital assis-
tants (PDAs) that are designed to allow a user in the field to pho-
tograph a specimen of interest and instantly receive information
about it, such as the likely species name (see also Section 3). One
advantage of such systems is that they require little infrastructure
at the point of use, so can be used even in the least developed and
most remote parts of the world. However, the scope of such sys-
tems is currently very limited, restricting their practical use.

A second consequence of cheap digital cameras and scanners is
the creation of vast databases of plant images. For example, the
Royal Botanic Gardens, Kew provides a digital catalogue of over
200,000 high-resolution images, with more being added continu-
ously as part of an ongoing digitization project. We maintain an
annotated list of botanical image sets online,2 describing various
publicly available sets, including images of single-leaves, herbarium
specimens, and whole plants.

1.1. Challenges in botanical morphometrics

Although morphometrics and image processing are well-estab-
lished and broad disciplines, botanical morphometrics presents
2 http://www.computing.surrey.ac.uk/morphidas/ImageSets.html.
some specific challenges. Here, we discuss some of these, including
specimen deformations, unclear class boundaries, feature selection
and terminology.

Leaves and flowers are non-rigid objects, leading to a variety of
deformations. Many leaves have a three-dimensional nature,
which increases the difficulty of producing good quality leaf
images and also results in the loss of useful structure information.
Archived specimens may also be damaged as they are dried and
pressed, but even live specimens may have insect, disease or
mechanical damage. Automated systems must be robust to such
deformations, making soft computing and robust statistics highly
attractive.

One source of confusion when botanists and computer scien-
tists collaborate concerns terms such as ‘‘classify’’ and ‘‘cluster’’.
In taxonomy, ‘‘classification’’ may be defined as the process of
grouping individuals based on similarity, in order to define taxa
such as species or genera (Stuessy, 2006). ‘‘Identification’’ is then
the process of deciding to which of a number of pre-defined taxa
a particular individual belongs. In computer science by contrast,
‘‘classification’’ refers to the assigning of an individual example
to one of a finite number of discrete categories, whereas ‘‘cluster-
ing’’ refers to the discovery of groups within a set of individuals,
based on similarities (Bishop, 2007, p.3). Care must be taken when
using such terms to avoid confusion.

Any system that is concerned with distinguishing between dif-
ferent groups of plants must be aware of the large intra-class, and
small inter-class variation that is typical of botanical samples (see
Fig. 1). A number of classifiers have been developed that identify
the species of a specimen from a digital image, as we discuss
throughout this paper, and these must be robust to this challenge.
Similar issues apply to the tasks of discovering how many groups
exist in a set of examples, and what the class boundaries are. See
Figs. 3 and 7 for further examples of the variety of leaf shapes
found.

Distinguishing between a large number of groups is inherently
more complex than distinguishing between just a few, and typi-
cally requires far more data to achieve satisfactory performance.
Even if a study is restricted to a single genus, it may contain many
species, each of which will encompass variation between its con-
stituent populations. The flowering plant genus Dioscorea, for
example, contains over 600 species (Govaerts, Wilkin, Raz, &
Téllez-Valdés, 2010), so even single-genus studies can be very chal-
lenging. On a related note, the shape of leaves may vary continu-
ously or discretely along a single stem as the leaves develop
(known as leaf heteroblasty), which can further confound shape
analysis unless careful attention is paid to sources of the
specimens.

Different features are often needed to distinguish different cat-
egories of plant. For example, whilst leaf shape may be sufficient to
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Fig. 1. Variation in leaves taken from a single specimen of Quercus nigra.

Fig. 2. The main features of a typical leaf.
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distinguish between some species, other species may have very
similar leaf shapes to each other, but have different coloured
leaves. No single feature, or kind of feature, may be sufficient to
separate all the categories, making feature selection a challenging
problem.

Besides these botany-specific issues, more general image pro-
cessing issues, such as the ambiguity caused by unknown illumina-
tion, pose etc., remain potentially problematic. This is especially
true in field conditions with less control over the image capturing
process.

1.2. Outline

The scope of this paper is focussed on approaches to plant spe-
cies identification using digital images combined with domain
knowledge. We aim to review current methods and applications,
to highlight parallel streams of research and to motivate greater ef-
forts to solve a range of important, timely and practical problems.
This paper provides a thorough introduction to the main issues in
this large and important field. We assume some basic familiarity
with computing issues and terminology, but aim to introduce the
reader to a range of concepts and issues in botany throughout
the text, some of which are highlighted in Table 1.

The rest of this paper is organized as follows. In Section 2, we
review a range of methods that have been applied to analyzing leaf
shape, venation, leaf margin features, leaf texture and so on. We
then discuss a number of systems designed for practical use in
the field in Section 3, before a concluding discussion.

2. Leaf analysis methods

There are many aspects of a plant’s structure and appearance
that are used by expert botanists in plant morphological research.
The most useful of these features are usually the two-dimensional
outline shape of a leaf or petal (Section 2.1), the structure of the
vein network (Section 2.2), and the characters of the leaf margin
(Section 2.3). Of these, the outline shape has received by far the
most attention when applying computational techniques to botan-
ical image processing.

As well as being useful in their own right, the automatic extrac-
tion of such features is also an essential component of larger sys-
tems for species identification and related tasks. All forms of
shape analysis can been viewed as methods to represent the impli-
cit data of a raw image in a more useful form for subsequent
processing.

2.1. Leaf shape

There are several reasons underlying the focus on leaf shape.
Firstly, the shape has perhaps the most discriminative power.
Although leaves from the same plant may differ in detail, it is often
the case that different species have characteristic leaf shapes, and
these have often been used by botanists to identify species.
Whereas differences in margin character or vein structure may
be fairly subtle, shape differences are often more obvious, even
to the non-expert. In many cases, leaf size is largely determined
by the environment, while shape is more heritable. Secondly, this
is the easiest aspect to automatically extract. If a leaf is imaged
against a plain black or white background, then simple threshold
techniques can be used to separate the leaf from the background,
and the outline can then be found by simply isolating those pixels
of the leaf that border the background. Thirdly, there are numerous
existing morphometric techniques which can be applied to leaf
shape that have already proven their worth for other biological
problems and which may already be familiar to many botanists. Fi-
nally, the gross structure of a leaf may be preserved even if the leaf
specimen is damaged, possibly through age. For example, many
dried leaves turn brown, so colour is not usually a useful feature
by itself. Note also that many of the shape-based methods dis-
cussed here have also been applied to petal, sepal or whole flower
shape, as discussed in Section 2.6.

Fig. 2 shows some of the main features of leaves with their cor-
responding botanical terms, while Fig. 3 illustrates some of the
variety of leaf shapes found.

We now discuss a number of approaches to leaf shape analysis,
including Fourier analysis, contour signatures, landmark analysis,
shape features, fractal dimensions and texture analysis.
2.1.1. Elliptic Fourier descriptors
One of the most common shape analysis technique applied to

leaves is elliptic Fourier descriptors (EFDs, or elliptic Fourier anal-
ysis; EFA) (Kuhl & Giardina, 1982). Here, leaf shape is analyzed in
the frequency domain, rather than the spatial domain. A set num-
ber of Fourier harmonics are calculated for the outline, each of



Fig. 3. Example of leaf shapes.
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which has only four coefficients. This set of coefficients forms the
Fourier descriptor, with higher numbers of harmonics providing
more precise descriptions. (Hearn (2009) suggests that 10 Fourier
harmonics are necessary to accurately represent leaf shape to dis-
tinguish between a range of species.) Typically, principal compo-
nent analysis (PCA) is then applied to the descriptor, to reduce
dimensionality and aid discrimination. An early example of this ap-
proach is by White, Prentice, and Verwijst (1988), who found EFA
to be superior to landmark measures, chain codes and moment
invariants when characterizing leaf outlines. Elliptic Fourier
descriptors can easily be normalised to represent shapes indepen-
dently of their orientation, size or location, easing comparison be-
tween shapes.

One advantage of EFDs is that a shape can be reconstructed from
its descriptor, as shown in Fig. 4. A useful method for helping to ex-
plain shape variation is to reconstruct the shape for some ‘‘average’’
descriptor, and then to create reconstructions from this descriptor
as it is modified along the first few principal components.

McLellan and Endler (1998) compared Fourier analysis with
several other methods for describing leaf shape. They demonstrate
Fig. 4. An example of elliptic Fourier analysis. As more harmonics are
that Fourier analysis can discriminate successfully between vari-
ous leaf groups. They also point out that few landmarks are readily
identifiable on most leaves (see Section 2.1.3), except perhaps
those that have regular lobes, making EFA methods suitable. They
do note however that none of the methods they considered was
greatly superior to any other.

Hearn (2009) used a combination of Fourier analysis and Pro-
crustes analysis (Goodall, 1991) (a simple shape registration meth-
od, based on rotation, translation and scaling) to perform species
identification using a large database of 2420 leaves from 151 dif-
ferent species. Du, Huang, Wang, and Gu (2005) successfully com-
bined Fourier analysis with a radial basis function neural network
to identify plant species from leaf images. Other recent examples of
the use of EFDs to analyze leaf shape include Andrade, Mayo, Kirk-
up, and Van Den Berg (2008), Furuta, Ninomiya, Takahashi, Ohmor-
i, and Ukai (1995), Neto, Meyer, Jones, and Samal (2006) and Lexer
et al. (2009).

A closely related method is ‘‘eigenshape analysis’’. Here, the se-
quence of angular deviations that define a contour is measured,
typically being normalized by choosing a common starting point
used to reconstruct the original outline, more detail is preserved.



7566 J.S. Cope et al. / Expert Systems with Applications 39 (2012) 7562–7573
defined by a landmark. Singular value decomposition is then used
to identify the principal components (MacLeod, 1999), which can
be used as inputs to a subsequent classifier or for comparison.
Ray has extended this work and applied it to leaf shape analysis
(Ray, 1992). This work consisted of dividing the outline into several
segments using recognizable landmarks (see Section 2.1.3), and
then analyzing each segment using singular value decomposition.
One difficulty with this approach is the problem of identifying
homologous landmarks in leaves. While this can be difficult within
a single species, it is often impossible between species, as we dis-
cuss further in Section 2.1.3.
2.1.2. Contour signatures
A number of methods make use of contour signatures. A con-

tour signature for a shape is a sequence of values calculated at
points taken around a leaf’s outline, beginning at some start point,
and tracing the outline in either a clockwise or anti-clockwise
direction. One of the most straightforward of these is the cen-
troid-contour distance (CCD). This signature consists of the se-
quence of distances between the centre of the shape, and the
outline points. Other such signatures include the centroid-angle,
and the sequence of tangents to the outline. As with EFDs, the
aim of creating contour signatures is to represent the shape as a
vector, independent of orientation and location. Normalisation
can also be applied to also enforce independence of scale.

Meade and Parnell (2003) attempted to increase accuracy when
applying the CCD to leaves by correlating the frequency of points
for measurement with the extent of curvature, whilst Wang, Chi,
Dagan, and Wang (2000), Wang, Chi, and Dagan (2003) applied a
thinning-based method to the shape to identify consistent start
points for the CCD, avoiding the need to align the signatures before
they can be compared. Ye and Keogh (2009) used time-series shap-
elets. These are local features found in a contour signature that can
be matched, rather than needing to compare entire signatures, and
allows existing time-series analysis methods to be applied.

One major difficulty for boundary-based methods, to which
contour signatures are particularly sensitive, is the problem of
‘‘self-intersection’’. This is where part of the leaf overlaps another
part of the same leaf, and can result in errors when tracing the out-
line unless particular care is taken. Self-intersection occurs quite
often with lobed leaves, and may, moreover, not even occur consis-
tently within a particular species. One attempt to overcome this
problem was made by Mokhtarian and Abbasi (2004). They as-
sumed that darker areas of the leaf represented regions where
overlap occurred, and used this to try to extract the true outline.
They then used the curvature scale space method (CSS) to compare
outlines. The main limitation of this method is that it will only
work with thin and/or backlit leaves, where sufficient light can
pass through the leaf to create the darker areas of overlap.
2.1.3. Landmarks and linear measurements
Another common morphometric method is the use of land-

marks and linear measurements. A landmark is a biologically
definable point on an organism, that can be sensibly compared be-
tween related organisms. It typically requires domain-specific ex-
pert knowledge to choose a suitable set of landmarks. In some
cases, these are homologous points, but may instead be local max-
ima or minima of a boundary, as discussed by Bookstein (1986).
Linear and angular measurements between them can then be used
to characterize the organism’s shape. Landmark methods have
been successfully applied to various animal species, and have the
advantage of being easy for a human to understand. ‘‘Traditional
morphometrics’’ analyzes measurements such as the overall length
and width of an object, in contrast to ‘‘geometric morphometrics’’,
which uses either outlines (such as methods discussed in
Section 2.1.1) or specific landmarks and the distances between
them (Adams, Rohlf, & Slice, 2004).

Haigh, Wilkin, and Rakotonasolo (2005) used leaflet lengths and
widths along with measurements of flowers and petioles to differ-
entiate two closely related species of Dioscorea. Jensen, Ciofani, and
Miramontes (2002) studied three species of Acer using the angles
and distances between the manually located lobe apices and sinus
bases. Warp deformation grids were also used to study variation.
Young, Dickinson, and Dengler (1995) used leaf landmarks to com-
pare plants of a single species grown in different conditions. The
plants were also imaged at different ages to discover when the
method would have the best discriminatory ability. A related
method is the inner-distance measure, a metric based on the
lengths of the shortest routes between outline points without pass-
ing outside of the shape, which was used by Ling and Jacobs (2007).

A number of limitations exist, however, when applying land-
mark methods to leaves or other plant organs. The first of these
is the difficulty of automatic extraction. For example the leaf’s apex
(tip) may be hard to distinguish from the tip of a lobe, whilst the
appearance of the insertion point (where the petiole, or leaf stalk,
meets the leaf blade) may vary greatly depending on the base angle
and how the petiole has been cut during specimen preparation.
Furthermore, even the length of a leaf may be hard to measure if
the leaf is asymmetrical and the main vein does not align with
the shape’s primary axis. For these reasons, studies involving land-
marks and linear measurements (including those mentioned
above) have often involved manual data extraction by experts, se-
verely limiting the scale of any system based on them.

The other major problem here is the inconsistency in available
landmarks between different species or other taxa, as demon-
strated by the variety of shapes shown in Fig. 3. Indeed, the only
landmarks present in almost all leaves are the apex and the inser-
tion point (Fig. 2), and in the case of peltate leaves (where the stalk
is connected near the middle of the blade), the latter does not even
appear in the outline shape. As a result, most of the studies using
landmarks concentrate on specific taxa where the required fea-
tures are known to be present. One exception is work by Corney,
Clark, Tang, and Wilkin (2012) who describe software that auto-
matically analyses herbarium images to identify the leaf tip and
petiole insertion point landmarks. From these, and from the whole
leaf boundary, it automatically extracts features including the leaf
blade’s length and width, as well as area, perimeter and various
other shape features.

One of the most significant developments in comparative biol-
ogy in the last 30 years has been the development of phylogenetic
reconstruction methods using morphological data, and latterly nu-
cleic acid or protein sequence data. These methods differ from
those dealt with elsewhere in this paper in that they use only
shared derived characters to infer (phylogenetic) relationship
rather than using total overall resemblance for identification or
species delimitation (compare cladistics versus phenetics; see Ta-
ble 1). The concept of homology has particular importance in cla-
distics and is perhaps more tightly defined (Patterson, 1982).
There has been theoretical debate over the use of continuous and
hence morphometric morphological character data in cladistics.
Several approaches have been suggested, such as that of Thiele
(1993). Zelditch, Swiderski, and Fink (2000) even attempted to
use geometric morphometric methods, such as partial warps, to ac-
quire novel phylogenetic character data in fish, although such tech-
niques have not been widely used in systematics as a whole or
been taken up by plant systematists.

2.1.4. Shape features
Similar to linear measurements are shape features, which are

also typically limited to analysing the outline of a shape. These
are various quantitative shape descriptors that are typically



Fig. 5. Example of leaf vein structure.
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intuitive, easy to calculate, and applicable to a wide variety of
different shapes. Commonly used features include the shape’s
aspect ratio, measures of rectangularity and circularity, and the
perimeter to area ratio, amongst others. Some studies have also
used more leaf-specific features, for example Pauwels, de Zeeum,
and Ranguelova (2009) uses a measure of ‘‘lobedness’’. A more gen-
eral set of features are ‘‘invariant moments’’, which are statistical
descriptors of a shape that are invariant to translation, rotation
and scale (Hu, 1962, Teague, 1980). Flusser, Suk, and Zitov (2009)
provides a modern, comprehensive review of moment invariants
for pattern recognition generally.

When analyzing leaves, Lee and Chen (2006) argue that ‘‘region-
based features’’, such as compactness and the aspect ratio, are
more useful than outline contour features because of the difficulty
in identifying meaningful landmark points, or in registering differ-
ent contours against each other. They found that a simple nearest-
neighbour classifier using region-based features produced better
results than a contour based method, at least on the 60 species
they used as a test case.

Once such a set of features has been extracted from the images,
a variety of classifiers can be used in their analysis. A ‘‘move med-
ian centres’’ (MMC) hypersphere classifier was developed by Du
and colleagues (Du, Wang, & Zhang, 2007, Wang et al., 2008) that
uses a series of hyperspheres to identify species in a space defined
by a set of shape features and invariant moments. Another study
using shape features was carried out by Wu et al. (2007), who used
an artificial neural network to identify 32 species of Chinese plants
from images of single leaves, and compared the results against a
number of other classifiers.

While shape features have achieved some positive results, they
are of limited use for aiding understanding of variation. Although
the effects of some features may be obvious, such as changes to
the height-to-width ratio, variation in other features may be hard
to understand because of the difficulty or impossibility of recon-
structing shapes from features. For example, the perimeter to area
ratio provides a measure of the ‘‘complexity’’ of a shape, but there
are many ways in which a leaf might be altered to produce the
same change in this value, without affecting the values of many
other common shape features.

A more general risk with shape features is that any attempt to
describe the shape of a leaf using only (say) 5–10 features may
oversimplify matters to the extent that meaningful analysis be-
comes impossible, even if it is sufficient to assign a small set of test
images to the correct categories. Furthermore, many such single-
value descriptors are highly correlated with each other (McLellan
& Endler, 1998), making the task of choosing sufficient independent
variables to distinguish categories of interest especially difficult.

2.1.5. Polygon fitting and fractal dimensions
The fractal dimension of an object is a real number used to rep-

resent how completely a shape fills the dimensional space to which
it belongs. This can provide a useful measure of the ‘‘complexity’’ of
a shape, which may then be used as an input feature for a classifier,
for example. There are many ways to define and calculate an ob-
ject’s fractal dimension, with the Minkowski-Bouligand method
being a popular choice due to its precision and the existence of a
multi-scale version.

A few attempts have been made to use fractal dimensions to
identify leaves. McLellan and Endler (1998) used the fractal dimen-
sion as a single value descriptor alongside other descriptors. Plotze
et al. (2005) used the positions of feature points in the curves pro-
duced by the multi-scale Minkowski-Bouligand fractal dimension,
whilst Backes and Bruno (2009) also used the multi-scale Minkow-
ski-Bouligand method, but compared Fourier descriptors calcu-
lated for the curves. Bruno, de Oliveira Plotze, Falvo, and de
Castro (2008) compare box-counting and multi-scale Minkowski
estimates of fractal dimension, and used linear discriminant anal-
ysis to identify a number of plant species. McLellan and Endler
(1998) showed that fractal dimension tends to be highly correlated
with the perimeter to area ratio (or ‘‘dissection index’’), suggesting
it is of limited additional benefit.

As with shape features, whilst some good results have been
achieved, with Plotze et al. (2005) reporting a 100% identification
rate on a small database of 10 species of Passiflora, their usefulness
in explaining variation is somewhat limited. Given the wide variety
of leaf shapes present (e.g. Fig. 3), characterizing shape by any sin-
gle measure of complexity may discard too much useful informa-
tion, suggesting that fractal dimension measures may only be
useful in combination with other features.

Du, Huang, Wang, and Gu (2006) created polygonal representa-
tions of leaves, and used these to perform comparisons, while Im,
Nishida, and Kunii (1999) represented leaf outlines as a series of
super-imposed triangles, which could then be normalized and reg-
istered against each other for comparison. The method was shown
to correctly identify 14 Japanese plant species, but relies on a num-
ber of heuristic assumptions, which may limit the method’s appli-
cability to a more general task.
2.2. Venation extraction and analysis

After their shape, the next most studied aspect of leaves is the
vein structure, also referred to as the venation. Veins provide
leaves with structure and a transport mechanism for water, miner-
als, sugars and other substances. The pattern of veins in a leaf can
be used to help identify a plant. Although the fine detail may vary,
the overall pattern of veins is conserved within many species.
Veins are often clearly visible with a high contrast compared to
the rest of the leaf blade. See Figs. 5 and 6.

A wide variety of methods have been applied to the extraction of
the vein networks, although arguably with limited success thus far.
Clarke et al. (2006) compared a couple of simple methods (a scale-
space analysis algorithm and a smoothing and edge detection algo-
rithm) to results achieved manually using Adobe Photoshop. They
report the quality of the results as judged by some expert botanists,
and although the manual results were preferred, the results showed
some hope for automatic methods, for at least some species.

Cope, Remagnino, Barman, and Wilkin (2010a) used genetic
algorithms to evolve classifiers for identifying vein pixels. These
were robust and capable of recognizing primary and secondary
venation to a high degree of accuracy. Li, Chi, and Feng (2006)
successfully extracted the venation from leaf sub-images using
Independent Component Analysis (ICA) (Comon, 1994), though
when used on whole leaves, the results were no better than using
a simple Prewitt edge detection operator. Artificial ant swarms
were used by Mullen, Monekosso, Barman, Remagnino, and Wilkin
(2008) to trace venation and outlines in leaves via an edge
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detection method. Some of the best vein extraction results were
achieved by Fu and Chi (2006) using a combined thresholding
and neural network approach. Their experiments were, however,
performed using leaves which had been photographed using a
fluorescent light bank to enhance the venation, and such images
are not generally available. Kirchgessner, Scharr, and Schurr
(2002) used a vein tracing method with extracted veins repre-
sented using b-splines, whilst Plotze et al. (2005) used a Fourier
high-pass filter followed by a morphological Laplacian operator
to extract venation.

Whilst there have been several attempts at extracting venation,
there have been fewer attempts to analyze or compare it, with
most of these using synthetic or manually extracted vein images.
Park, Hwang, and Nam (2008) used the pattern of end points and
branch points to classify each vein structure as one of the main
venation types (see Fig. 6), and Nam, Hwang, and Kim (2008) per-
formed classification on graph representations of veins. Further
evaluation is required before the general value of venation analysis
can be determined.
2.3. Leaf margin analysis

The leaf margin, the outer edge of the lamina, often contains a
pattern of ‘‘teeth’’ – small serrated portions of leaf, distinct from
the typically larger and smoother lobes (see Fig. 7 for examples).
Despite being a useful feature of leaves for botanists to use when
describing leaves, the margin has seen very little use in automated
leaf analysis. Indeed, it has been claimed that ‘‘no computer algo-
rithm can reliably detect leaf teeth’’ (Royer, Wilf, Janesko, Kowal-
ski, & Dilcher, 2005) as yet. This may be due to the fact that
teeth are not present in all species of plant; that they are damaged
or missing before or after specimen collection; or due to the diffi-
culty in acquiring quantitative measurements automatically.
Nonetheless, teeth are an important feature of many plant species,
with botanists using qualitative descriptors of the tooth curvature
(Ellis et al., 2009). The size and number of teeth can also be useful
Fig. 7. Examples of vari
indicators of climate and of growth patterns (Royer & Wilf, 2006),
and are even used to make inferences about prehistoric climates
using fossilized leaves (Ellis et al., 2009).

Studies using the leaf margin normally combine it with other
features and measurements. Clark (2004), Clark (2007), Clark
(2009) and Rumpunen and Bartish (2002) both use manually taken
measurements such as tooth length and width (‘‘pitch’’), used
alongside various linear shape measurements. Clark (2004)
showed that a multi-layer perceptron outperformed a computer-
generated taxonomic key for identifying species from morpholog-
ical traits. Clark (2009) used a self-organizing map to identify spe-
cies boundaries from similar morphological traits. McLellan and
Endler (1998) used the sum of the angles between lines connecting
adjacent contour points along with other single value leaf features,
and Wang et al. (2003) compared histograms of the angles at
points spread around the contour.

For taxa that possess teeth, if sufficient undamaged leaves are
available, then the area of the toothed margin region and the size
and numbers of teeth may be useful characters to measure. One
possibility for future work is to combine vein analysis (Section 2.2)
with margin analysis, as teeth often have small veins running to
their tips. Margins that are broken or insect-damaged may look
superficially like teeth, but are less likely to have the same patterns
of veins. Clearly, for taxa that do not possess teeth, other methods
must be used — as noted in Section 1.1, different analytical tasks
may require different features.
2.4. Leaf texture analysis

Besides analysing outlines, a number of both traditional and no-
vel texture analysis techniques have been applied to leaves. Backes
et al. have applied multi-scale fractal dimensions (Backes & Bruno,
2009) and deterministic tourist walks (Backes, Gonçalves, Marti-
nez, & Bruno, 2010) to plant species identification by leaf texture,
although their experiments involved very limited datasets which
makes them hard to evaluate. Casanova, de Mesquita Sá Junior,
ety of leaf margins.
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and Bruno (2009) used an array of Gabor filters on a larger dataset,
calculating the energy for the response of each filter applied, and
achieved reasonable results, whilst Liu et al. have presented a
method based on wavelet transforms and support vector machines
(Liu, Zhang, & Deng, 2009). Cope, Remagnino, Barman, and Wilkin
(2010b) achieved an 85% identification rate on 32 species of Quer-
cus using the co-occurrences of different scale Gabor filters. Other
techniques used include Fourier descriptors and grey-scale co-
occurrence matrices.

Whilst the above studies were all performed on texture win-
dows acquired using traditional imaging techniques (i.e. cameras
and scanners), Ramos and Fernandez (2009) used images acquired
using a scanning electron microscope (SEM), and Backes, de Mesq-
uita Sá Junior, Kolb, and Bruno (2009) used magnified cross-sec-
tions of the leaf surface epidermis (the outermost layer of cells).
While these provide interesting results, such images are not avail-
able on a large scale.

Where texture is preserved in a specimen, such analysis may
prove useful, especially when combined with outline-based shape
analysis.

2.5. Other lamina-based methods

There have been a few other studies which have used the leaf
lamina (surface), or features present on it, in ways different from
those already discussed. Gu, Du, and Wang (2005) processed the
laminae using a series of wavelet transforms and Gaussian interpo-
lation to produce a leaf ‘‘skeleton’’, which is used to calculated a
number of run-length features: measure of short runs; measure
of long runs; distribution of grey-scales; distribution of lengths
and the percentage of runs.

Qualitative leaf hair descriptors were used by Clark (2009) as
one feature in a self-organizing map. These were manually identi-
fied and described, and pose a problem for automated systems due
to their three-dimensional nature which makes positive identifica-
tion from a two-dimensional image difficult. Surface glands are an-
other potentially useful lamina feature that have been largely
ignored thus far in computational methods as far as we are aware.

One intriguing option is to apply 3D imaging and modelling
methods to leaf shapes (or to flowers; see below). Ma, Zha, Liu,
Zhang, and Xiang (2008) describe one such method which uses vol-
umetric information from a 3D scanner to reconstruct leaves and
branches of plants, though it is not clear how this would would
work on a large scale system. Teng, Kuo, Chen, and segmentation
(2009) combine several 2D photos of the same scene to extract
3D structure, and use the 2D and 3D information together to seg-
ment the image, using normalized cuts, finding the leaf boundary.
They then use centroid contour distance (CCD, as discussed in Sec-
tion 2.1.2) to classify leaves into broad classes, such as palmate or
cordate (see Fig. 3). Similar work is described by Song, Wilson,
Edmondson, and Parsons (2007), where stereo image pairs were
analyzed using stereo matching and a self-organizing map. The
resulting surface models contained sufficient detail to allow mea-
surements of leaf and flower height, as well as shape.

The laminae of most leaves contain many stomata, which are
pores that open or close to control gaseous exchange including
water loss. It has been shown that the size and distribution of these
is closely related to the climate and to CO2 concentrations in par-
ticular. Royer (2001) reviews a wide range of data that shows that
the density of stomata on fossil leaves is inversely related to local
CO2 concentrations over long timescales. Hetherington and Wood-
ward (2003) discuss this and the effect of changing environmental
factors over shorter timescales, as well as discussing the morphol-
ogy of different types of stomata. Zarinkamar (2007) presents a
thorough botanical description and corresponding (manual) mea-
surements of a wide range of stomata shapes found across more
than 300 species, and argues that such measurements can be used
to aid taxonomic classification, as well as to monitor changes in the
local environment. Fernandez (2008) presents a method to mathe-
matically analyse digital microscope images of leaf stomata. They
use various measures of correlation and entropy to characterize
the patterns and textures found, and use PCA to help visualize
and group the results. We are not aware of attempts to perform
automatic species identification or related tasks based on image
processing of stomata. However, it seems to us that by combining
the separate pieces of work discussed here, it should be possible to
do so.

2.6. Flowers and other plant organs

Although the focus of this paper, leaves are not the only plant
organs on which image processing and morphometric techniques
have been applied. Traditional keys often make use of descriptions
of flowers and/or of fruits, but these are often only available for a
few days or weeks of the year.

A number of methods have been proposed to identify plants
from digital images of their flowers. Although colour is a more
common distinguishing feature here, many methods used to ana-
lyze leaf shape can also be used (see earlier sections). Nilsback
and Zisserman (2007) combined a generic shape model of petals
and flowers with a colour-based segmentation algorithm. The
end result was a good segmentation of the image, with species
identification left to future work.

Das, Manmatha, and Riseman (1999) demonstrated the use of
colour alone to identify a range of flowers in a database related
to patents covering novel flower hybrids. Their method allows
the database to be searched by colour name or by example image,
although no shape information is extracted or used. A colour-histo-
gram segmentation method was used by Hong, Chen, Li, Chi, and
Zhang (2004) and then used with the centroid contour distance
(CCD; see Section 2.1.2) and angle code histograms to form a clas-
sifier. They demonstrated that this method works better than using
colour information alone to identify a set of 14 species. This again
suggests that outline shape is an important character to consider,
especially in combination with other features.

Elliptical Fourier descriptors (Section 2.1.1) were used by
Yoshioka, Iwata, Ohsawa, and Ninomiya (2004) to study the shape
of the petals of Primula sieboldii, whilst Wilkin (1999) used linear
measurements of floral organs, seeds and fruits as well as leaves
and PCA methods to investigate whether a closely related group
of species in Africa were morphologically distinct or not. He dis-
covered that they in fact formed a single morphological entity
and hence all belonged to one species. Gage and Wilkin (2008)
used EFA on the outlines of tepals (elements of the outer part of
a flower, such as petals and sepals) of three closely related species
of Sternbergia to investigate whether they really formed distinct
morphological entities. Clark (2009) used linear measurements of
bracts, specialized leaf-like organs, in a study of Tilia using self-
organizing maps, and Huang, De-Shuang, Du, Quan, and Guo
(2006) analyzed bark texture using Gabor filters and radial basis
probabilistic neural networks.

At a smaller scale, the growth of individual grains of barley has
been modelled by 3D reconstruction from multiple 2D microscopic
images (Gubatz, Dercksen, Brüss, Weschke, & Wobus, 2007). This
allowed both ‘‘virtual dissecting’’ of the grains as an educational
tool, and also visualization of gene expressions via mRNA localiza-
tion. At a smaller scale still, Oakely and Falcon-Lang used a scan-
ning electron microscope (SEM) to analyze the vessels found in
fossilized wood tissue (Oakley & Falcon-Lang, 2009). They used
principal component analysis (PCA) to identify two distinct ‘‘mor-
photypes’’, which correspond to one known and one novel species
of plant growing in Europe around 95 million years ago.
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Moving underground, a number of studies have used image pro-
cessing techniques to analyze root structures in the ‘‘rhizosphere’’
(the region that roots grow in, including the soil, soil microbes, and
the roots themselves). For example, Huang, Jain, Stockman, and
Smucker (1992) used digital images of roots captured by placing
a small camera inside a transparent tube placed beneath growing
plants. They then used expert knowledge of root shapes and struc-
tures (such as roots being elongated and having symmetric edges),
to combine multiple sources of information and to fit polynomial
curves to the roots, and use a graph theoretic model to describe
them. More recently, Zeng, Birchfield, and Wells (2008) used image
intensity to distinguish root pixels from soil pixels. They then used
a point process to combine and connect segments to efficiently
identify complete root systems.

These studies show that while the clear majority of botanical
morphometrics research has focused on leaves, due to their ready
availability and use for discriminating between taxa, other plant
organs, when available, should not be ignored.
3. Systems for species identification, robotic agriculture and
botany

In this section, we move beyond discussing specific algorithms
in isolation and methods designed for the laboratory, and consider
a number of complete systems and prototypes, designed for prac-
tical use in the field. In order to have an impact in the real world, it
is important to demonstrate that algorithm such as those described
earlier can be applied in practice, and can scale up from a few ide-
alized examples to larger and more complex problems. We review
systems designed to identify species from plant images; several
agricultural applications; and scientific research tools regarding
species variation and distribution, and how this relates to the
climate.
3.1. General purpose species identification

Plant identification is currently particularly important because
of concerns about climate change and the resultant changes in geo-
graphic distribution and abundance of species. Development of
new crops often depends on the incorporation of genes from wild
relatives of existing crops, so it is important to keep track of the
distribution of all plant taxa. Automated identification of plant spe-
cies, for example using leaf images, is a worthwhile goal because of
the current combination of rapidly dwindling biodiversity, and the
dearth of suitably qualified taxonomists, particularly in the parts of
the world which currently have the greatest numbers of species,
and those with the largest number of ‘‘endemics’’ (species re-
stricted to that geographic area).

The species to which an organism belongs is often regarded as
its most significant taxonomic rank. Accurately identifying an
organism to species level allows access to the existing knowledge
bases that are linked to that specific name, such as what other spe-
cies the taxon in question may breed or hybridize with, what its
uses are, and so on.

A number of systems have been developed that aim to recog-
nize plant species from the shapes of their leaves. One such plant
identification system is described by Du et al. (2006). They argue
that any global shape-based method is likely to perform poorly
on images of damaged or overlapping leaves because parts of the
leaf perimeter are missing or obscured. Instead, they suggest that
local shape-based methods are more robust for this type of task.
Their system matches leaves from images by fitting polygons to
the contour and using a modified Fourier descriptor with dynamic
programming to perform the matching. It aims to be robust with
regard to damaged or overlapping leaves, as well as blurred or
noisy images. They claim a 92% accuracy for their method on one
sample of over 2000 ‘‘clean’’ images, representing 25 different spe-
cies, compared with 75%-92% for other methods, and that their
method is more robust for images of incomplete or blurred leaves.

The increasing power and availability of cheap hand-held com-
puters, including personal digital assistants (PDAs) and smart
phones, has led to a number of prototype applications. The goal
of allowing users, both professional botanists and interested ama-
teurs, to go out into the field and identify plant species using an
automated system is a highly desirable goal, although the task is
challenging, not least because of the very large number of plant
species that may be encountered.

One major and ongoing project aims to produce an ‘‘electronic
field guide’’ to plants in the USA (Agarwal et al., 2006). The user
can take a photograph of a single leaf on a plain background, and
the system will display images of twenty plant species that have
the closest match. Shape similarity is measured using the Inner-
Distance Shape Context algorithm, which extends the shape con-
text work of Belongie, Malik, and Puzicha (2002). A related proto-
type from the same project includes an ‘‘augmented reality’’
feature (Belhumeur et al., 2008), and provides a visual display of
a herbarium specimen for side-by-side comparison to the plant
in question (White, Feiner, & Kopylec, 2006). Both systems are cur-
rently limited to certain geographical regions of the USA, although
there are plans to extend its functionality to cover the rest of the
country, and eventually further afield.

The CLOVER system (Nam, Hwang, & Kim, 2005) allows users to
provide a sketch or a photograph of a leaf using a hand-held com-
puter, which then accesses a remote server. The server retrieves
possible matches based on leaf shape, using several shape match-
ing methods including an enhanced version of the minimum
perimeter polygons algorithm, and returns the matches to the de-
vice to display to the user. The information on the server included
data extracted from over 1000 images from a Korean flora, itself
created by an expert botanist. The prototype described has been
demonstrated to work effectively at recognizing plants from
leaves, with the inevitable trade-off between recall and precision.

A similar system uses fuzzy logic and the centroid-contour dis-
tance to identify plant species from Taiwan (Cheng, Jhou, & Liou,
2007). However, this requires the user to select various character-
istics of the plant from a series of menu options, rather than using
morphometric analysis directly.

Each of these general purpose prototypes has been demon-
strated to work successfully on at least a small number of species,
and under more or less stringent conditions. Currently, we know of
no such system that is available for everyday use, although interest
remains high (Lipske, 2008).

3.2. Agriculture

Rather than trying to identify a plant as belonging to one partic-
ular species, it is sometimes sufficient to recognize a plant as
‘‘good’’ or ‘‘bad’’, without needing to be concerned about the exact
taxon to which it belongs. One goal of automated or ‘‘precision’’
agriculture (Burgos-Artizzu, Ribeiro, Tellaeche, Pajares, & Fernán-
dez-Quintanilla, 2010) is to allow targeted administration of weed
killer, fertilizer or water as appropriate from an autonomous ro-
botic tractor, not least to minimize the negative impact on the
environment of large scale agriculture. To do this, the system must
obviously identify plants as belonging to one category or the other,
such as ‘‘weed’’ vs. ‘‘crop’’.

As is often the case with machine vision systems, variable light-
ing conditions can make image processing very hard. One proposed
solution is to control the lighting by building a light-proof ‘‘tent’’
that can be carried on wheels behind a tractor, and which contains
lamps inside it along with a camera. One such system successfully
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distinguishes between crop plants (cabbages and carrots) and
weed plants (anything else) growing in field conditions (Hemming
& Rath, 2001). Whether carrying round such a bulky tent is feasible
or not on a larger scale, it is certainly not ideal.

A similar system uses rails to guide a vehicle carrying the cam-
era along carefully laid out plots (Gebhardt, Schellberg, Lock, &
K++hbauch, 2006). Rather than carrying its own lights, the system
is only used under standardized illumination conditions (e.g. bright
but overcast). This system extracts shape features such as leaf cir-
cularity and area and uses a maximum likelihood estimator to
identify leaves that are weeds (specifically dock leaves, Rumex
obtusifolius) in grassland, with around 85%-90% accuracy. A differ-
ent system to identify dock leaves is described by S̆eatović (2008),
which uses a scanning laser mounted on a wheeled vehicle to gen-
erate 3D point clouds. These are then segmented to separate out
leaves from their background, and a few simple rules, based on leaf
size, are used to distinguish the dock leaves from other leaves in
the meadow.

A related attempt to distinguish weeds, crops and soil in field
conditions uses morphological image processing (Soille, 2000).
This attempts to identify the centre of each leaf by using colour
threshold segmentation and locating the leaf veins. The system lo-
cates the veins using a combination of morphological opening and
hierarchical clustering. The final classification makes use of a priori
knowledge about features of the target plant species, such as
known leaf sizes and venation patterns. A similar system combines
morphological processing with an artificial neural network classi-
fier has also been suggested (Pan & He, 2008). This used a radial ba-
sis function network to distinguish grass and other weeds from
crops. A combination of colour segmentation and morphological
programming has also been used towards the development of a ro-
botic cucumber harvester (Qi, Yang, Bao, Xun, & Zhang, 2009).

A variety of methods to distinguish various crops from weeds
and soil are discussed by Burgos-Artizzu et al. (2010), including
colour segmentation and morphological processing, and the use
of genetic algorithms to optimise these methods. The paper also
provides a useful overview of research into ‘‘precision agriculture’’,
which aims to use modern technology to optimize crop production,
allowing for local variation in soil, landscape, nutrients and so on.

3.3. Intraspecific variation, geographical distribution, and climate

It has long been known that the climate in which a plant grows
has an effect on the shape of its leaves (Royer et al., 2005). Recent
work has extended this by using digital image analysis to enhance
the botanical and climatic measurements, which can then be ana-
lysed using existing knowledge discovery techniques. Huff, Wilf,
and Azumah (2003) collected leaves from temperate and tropical
woodlands. They analyzed the leaves and measured the shape fac-
tor, and found a correlation with the mean annual temperature.
The work was then extended to a wider variety of environments
(17 in total) in North America (Royer et al., 2005). Here, a variety
of simple digital image analysis methods were used to semi-auto-
matically measure features such as leaf blade area, tooth area,
number of teeth, and major and minor axis lengths. These features
were then compared to climatic measurements from the different
field locations. Finally, correlations between leaf shape and climate
were measured. They confirmed previous findings that plants
growing in colder environments tend to have more teeth and larger
tooth areas than similar plants growing in warmer environments.
One of the goals of this body of work is to support analysis of leaf
fossils, with the aim of estimating paleoclimatic conditions. By
establishing how leaves from living plants have shapes that corre-
late with their environments, it is hoped that fossil leaf shapes can
indicate how the Earth’s climate has changed in the past, at both a
global and a local scale.
In botany, identifying taxon boundaries is often as important as
identifying to which taxa a particular specimen belongs. An early
study by Dickinson, Parker, and Strauss (1987) used manual digiti-
zation (via a tablet) to identify landmarks on cross-sections of
leaves, and principal component analysis to analyze the data. They
identified both geographic variation between collection sites and
also identified intermediate forms of specimens, suggesting vari-
ous hybridizations had occurred. As mentioned earlier, work by
Wilkin (1999), Gage and Wilkin (2008) used morphometric analy-
sis to identify species boundaries.
4. Conclusions

In this paper we have discussed a number of species identifica-
tion systems that rely on both domain knowledge and on a wide
range of morphometric methods. It should be clear that no single
method provides a panacea for all problems, but rather that appro-
priate methods must be chosen for each task at hand. Plants are ex-
tremely diverse in shape, size and colour. A method that works
very well on one group may rely on features that are absent in an-
other taxon. For example, landmarks may be readily definable and
identifiable for some taxa, such as those with distinctive lobes, but
not for others.

Given the large scale nature of botanical morphometrics and
image processing, automation is essential. Any system that re-
quires significant manual effort, for example in tracing leaf out-
lines, is unlikely to be practical when scaled up to thousands of
specimens. Despite this, in some cases the user may remain in-
volved in the process with no great cost: if an electronic field-guide
provides say ten predictions of species, rather than one, the user
may be able to readily choose the most likely answer (Agarwal
et al., 2006). Related to this is the issue of processing speed. The
user of a hand-held field-guide may require responses interactively
and so (near) instantaneously, whereas if a tool is to be used on a
large set of images in a botanical laboratory, it may be acceptable
to wait overnight for a comprehensive result – assuming no human
interaction is needed.

A complement to plant identification is plant modelling. Vari-
ous algorithms have been developed that reproduce the typical
branching structure of plants, especially during growth, such as
L-systems (Lindenmayer systems) (Prusinkiewicz & Lindenmayer,
1990). These can be extended to incorporate the effect of different
growing conditions, environmental impact and the genetic origins
of plant forms (Prusinkiewicz, 2004). Such models typically have
relatively few parameters, and by varying these, a wide variety of
virtual plants can be generated. If such generation can be matched
to data derived from biological plants, then it may be possible to
model the process by which real, observed plants have been pro-
duced, which in turn could be of great interest to plant science,
not least for species identification. As far as we are aware, such
work has not been undertaken, possibly due to the computational
complexity of the matching process.

We finally return briefly to some of the challenges presented in
Section 1.1. When presented with a very large number of classes,
and classes that are often distinguished by using distinct sets of
features, we suggest two broad solutions. First, one could restrict
the task to consider only a small number of classes – e.g. develop-
ing a system to identify only two or three species rather than hun-
dreds or thousands. A number of papers discussed earlier reflect
this, deliberately or inadvertently. Second, one could develop a
hierarchical system, possibly following taxonomic models of
evolutionary inheritance, and consider at each stage only a small
number of classes and a restricted set of features. Such a model
could be developed in a gradual, modular fashion, and could be
achieved collaboratively. Of course, the former solution may well
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be a component of the latter. We also note that interdisciplinary
work can be fraught with communication problems unless great
care is taken to ensure that terminology is used consistently. We
hope that this paper goes someway to reducing this risk.

The use of computational, morphometric and image processing
methods to analyse leaf images is particularly timely. E. O. Wilson
has argued for the creation of an ‘‘encyclopedia of life’’ (Wilson,
2003) – a web page for every species of life on Earth — and with
it, the embrace of new technologies, such as digital images of plant
specimens provided by the world’s herbaria. We believe that auto-
mated image processing and morphometrics can help to fulfil this
goal both by helping to define species more effectively and provid-
ing rapid, web-based species identifications.
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