
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 5, MAY 2004 653

Matching Shapes With Self-Intersections:
Application to Leaf Classification

Farzin Mokhtarian and Sadegh Abbasi

Abstract—We address the problem of two-dimensional (2-D)
shape representation and matching in presence of self-intersection
for large image databases. This may occur when part of an object
is hidden behind another part and results in a darker section in the
gray level image of the object. The boundary contour of the object
must include the boundary of this part which is entirely inside the
outline of the object.

The Curvature Scale Space (CSS) image of a shape is a mul-
tiscale organization of its inflection points as it is smoothed.
The CSS-based shape representation method has been selected
for MPEG-7 standardization. We study the effects of contour
self-intersection on the Curvature Scale Space image. When there
is no self-intersection, the CSS image contains several arch shape
contours, each related to a concavity or a convexity of the shape.
Self intersections create contours with minima as well as maxima
in the CSS image. An efficient shape representation method has
been introduced in this paper which describes a shape using the
maxima as well as the minima of its CSS contours. This is a natural
generalization of the conventional method which only includes the
maxima of the CSS image contours. The conventional matching
algorithm has also been modified to accommodate the new infor-
mation about the minima. The method has been successfully used
in a real world application to find, for an unknown leaf, similar
classes from a database of classified leaf images representing
different varieties of chrysanthemum. For many classes of leaves,
self-intersection is inevitable during the scanning of the image.

Therefore the original contributions of this paper is the general-
ization of the Curvature Scale Space representation to the class of
2-D contours with self-intersection, and its application to the clas-
sification of Chrysanthemum leaves.

Index Terms—Curvature scale space, leaf classification, multi-
scale organization, self-intersections, shape matching.

I. INTRODUCTION

SHAPE representation/description and matching is a central
and challenging problem in Image Processing and Com-

puter Vision which arises in many applications since shape is
an inherent property of most objects. A large number of shape
representation methods have been introduced in the literature
[4], [16], [21], [23], [25], [26]. These include techniques based
on the Fourier descriptors [5], [22], [30]. A number of shape
representations have been proposed to recognize shapes even
under affine transformation [3], [8], [10], [31]. Affine invariant
scale space [24] and affine curvature [6], [17] have also been ex-
plored. A number of shape representation techniques are based

Manuscript received February 22, 2001; revised November 5, 2003. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. Jean-Luc Dugelay.

The authors are with the Centre for Vision Speech and Signal Pro-
cessing, University of Surrey, Guildford, Surrey GU2 7XH, U.K. (e-mail:
F.Mokhtarian@surrey.ac.uk).

Digital Object Identifier 10.1109/TIP.2004.826126

on level-set methods [13]–[15] and volumetric diffusion [12].
These representations suffer from inefficiency and lack of ro-
bustness with respect to occlusion. Other techniques based on
curve evolution [27], [28] are more suitable for applications
other than shape representations.

The problem of self-intersection, however, has not been ad-
dressed properly. This may occur as a result of self-occlusion,
when a part of an object is hidden behind another part. The re-
sulting section of the image can be darker than its neighborhood.
If segmented properly, the boundary contour of the object in-
tersects itself and this must be considered in the related shape
representation method.

The Curvature Scale Space image [19] of a shape is a mul-
tiscale organization of its inflection points as it is smoothed.
For nonintersected shapes, the CSS image contains several arch
shape contours, each related to a concavity or a convexity of the
shape. The maxima of these contours have already been used
for shape representation in shape similarity retrieval [18]. For
self-intersected parts of a shape, the CSS contours are different.
They include a minimum as well as a maximum which convey
information about the size and location of the relevant inter-
sected segment. Therefore, the CSS representation may still be
used to represent a self-intersected contour. While a convexity
or a concavity of the shape is represented by the maximum of its
related arch shape contour in the CSS image, a self-intersected
segment is represented by the locations of the maximum as well
as minimum of the relevant contour of the CSS image.

The segmentation problem is always associated with the con-
tour-based approach to shape representation. In the case of self-
intersected shapes, segmentation is even more difficult [11] and
may require user interaction.

We have used this representation in a real world applica-
tion to find, for an unknown leaf, similar classes from a data-
base of classified leaf images representing different varieties of
chrysanthemum. For many classes of leaves, self intersection is
inevitable during the scanning of the image. The task is to deter-
mine whether the unknown leaf belongs to one of the existing
varieties or it represents a new variety. The system finds the most
similar varieties to the input and allows the user to make the final
decision. We have tested our method on a prototype database of
120 leaf images from 12 different varieties. The results have in-
dicated a promising performance of the system.

The following is the organization of the remaining sections
of this paper. Section II explains the real world problem of leaf
classification which sparked this research in the first place.
Section III explains the problem of self-intersection through
an example. The segmentation of images to recover the object
boundary is explained in Section IV. The method of computing

1057-7149/04$20.00 © 2004 IEEE

654 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 5, MAY 2004

curvature scale space image, and the algorithm for finding
maxima and minima of CSS image are described in Section V.
The matching algorithm which is used to measure the similarity
between the two CSS images is explained in Section VI. A
small number of global parameters are used in conjunction
with CSS representation which are explained in Section VII.
The experimental results are presented in Section VIII, and
concluding remarks in Section IX.

II. PROBLEM OF LEAF CLASSIFICATION

In Britain, plant breeders who develop a new variety of
plant are granted exclusive right to sell that variety for a
period of time. One of the requirements imposed by current
Plant Breeders Rights legislation is the distinctness of the new
varieties. They should be different in at least one character
from all existing varieties. The distinctness test is carried out
by National Institute of Agricultural Botany (NIAB). There are
3000 registered varieties, each represented by ten leaf images,
and NIAB receives about 300 new applications to be tested each
year. The distinctness tests and leaf classification are currently
carried out by NIAB experts based on a number of heuristic
features. These features have not been well defined yet.

The main aim of our work has been to ease the process of
test and classification by finding the most similar varieties to the
input leaf image. We randomly selected a subset of the classified
NIAB leaf images to create our prototype database. It consists of
120 leaf images from 12 different varieties of chrysanthemum.
Every image contains one object on a simple background. The
8-bit grey-scale images have been scanned at 400 dpi.

A. Nature of Images

Five members of three classes of leaf images are shown in
Fig. 1. Considering these images, one can easily appreciate that
the problem of automatic classification of leaf images is a diffi-
cult task.

• Overlaps between some adjacent parts of leaves are some-
times unavoidable. They create major differences between
the boundary contours of similar leaves.

• The between-class similarity is considerable, while the
within-class similarity is not adequate. Therefore, the mis-
classification can happen frequently.

• The texture of leaves is rather similar, and texture features
e.g the parameters derived from the co-occurance matrix
are not useful to classify the leaf images. A complex and
more sophisticated texture analysis may help, but it will
be much more time consuming in comparison with the
present system.

• Even in our prototype database the number of classes is
notably large, while the number of samples in each class
is quite small.

It is almost impossible to classify these images automatically.
However, as the results of our experiments show, it is possible
to find the most similar classes to an input image and help the
user make the final decision.

III. PROBLEM OF SELF-INTERSECTION

Fig. 2 shows how an intersection occurs. The actual boundary
of the object of Fig. 2(a) has been partly hidden by some parts
of the object. In order to extract the boundary of the object, one
may ignore the hidden part and extract the outline of the object
as presented in Fig. 2(b), where apparently some information
is missing in a tradeoff which reduces the complexity of seg-
mentation. A simple thresholding and a contour tracing algo-
rithm extracts the boundary of the object. The actual boundary,
as presented in Fig. 2(c) includes three points of self-intersection
which need to be recovered interactively. During the process of
contour tracing, the user should help the program to follow the
contours inside the object rather than the boundary of it.

This contour must finally be represented by appropriate shape
descriptors. The CSS image of the contour provides a good
source of information which has been used to describe the shape.
In the following section we briefly explain how the CSS image
of a contour is constructed and how the useful information is
extracted from this image.

IV. IMAGE SEGMENTATION

The aim of this stage is to recover the boundary of objects,
taking into account the self-intersection parts. Using a gray level
histogram, we find the best threshold and then separate the ob-
ject from the background automatically. We then use a simple
contour tracing method to extract the boundary of object (see
Fig. 3).

If there were no overlaps, this method would extract the actual
boundary of the object. To extract the boundary of an object in
presence of an overlap, we employ an interactive method. The
gray level image is first segmented into three regions, namely
background, overlapped parts of the object, and other parts of
the object. The contour tracing method starts from an arbitrary
point of the boundary, indicated by the user. The system traces
the boundary between the background and the object until it
reaches an intersection point, indicated by the user. The system
then changes the tracing direction and goes inside the object to
trace the boundary between the darker and the lighter parts of the
object. This process continues until the whole boundary of the
object including the internal intersected part is extracted. The
user help is needed at all stages as the intersected parts do not
have a regular pattern. For example they may create one or two
loops, and they may or may not have border with the background
of the image.

V. CURVATURE SCALE SPACE REPRESENTATION

The curvature of a curve is defined as the derivative of the
tangent vector to the curve and can be expressed as

(1)

There are several approaches in calculating the curvature of a
digital curve [29]. We use the idea of curve evolution which ba-
sically studies shape properties while deforming in time. A cer-
tain kind of evolution can be achieved by Gaussian smoothing
to compute curvature at varying levels of detail. If is a

MOKHTARIAN AND ABASSI: MATCHING SHAPES WITH SELF-INTERSECTIONS 655

Fig. 1. Three classes of images. Due to intraclass similarity and interclass dissimilarity, misclassification is likely to happen.

Fig. 2. An example of self-intersection. (a) Gray level image. (b) The boundary
of object without considering self-intersection. (c) The actual boundary of the
object.

1-D Gaussian kernel of width , then and rep-
resent the components of evolved curve

According to the properties of convolution, the derivatives of
every component can be calculated easily

and we will have similar formulas for and .
Since the exact forms of and are known, the
curvature of an evolved digital curve can be computed easily

(2)

As increases, the shape of changes. This process of gener-
ating ordered sequences of curves is referred to as the evolution
of .

Following the preprocessing stage, every object is repre-
sented by the and coordinates of its boundary points. To
obtain a representation based on normalized arc length, we
re-sample the boundary and represent it by 200 equally distant
points. Considering the resampled curve as , we can determine
the locations of curvature zero crossings on , using the above
mentioned formula. We start the process with and
increase it by 0.1 at each level. As increases, shrinks and

656 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 5, MAY 2004

Fig. 3. Image segmentation: (a) original image, (b) multilevel thresholding, (c) interactive contour tracing, and (d) object boundary.

Fig. 4. Shrinkage and smoothing of the curve and decreasing of the number of curvature zero crossings during the evolution.

becomes smoother, and the number of curvature zero crossing
points on it decreases. Finally, when is sufficiently high,

will be a convex curve with no curvature zero crossings.
The process has been shown in Fig. 4. The original curve
is represented in top left and the evolution has been shown
through several values of .

If we determine the locations of curvature zero crossings of
every during the evolution, we can display the resulting
points in (,) plane, where is the normalized arc length and

is the width of the Gaussian kernel. The result of this process
can be represented as a binary image called CSS image of the
curve (see bottom right of Fig. 4). The intersection of every hori-
zontal line with the contours in this image indicates the locations
of curvature zero crossings on the corresponding evolved curve

. For example, by drawing a horizontal line at , it is
observed that there should be 8 zero crossing points on . This
fact is confirmed by the smooth curve with in the same
figure.

As shown in Fig. 4, the curvature zero crossings appear in
pairs. Each pair is related to a concavity (or sometimes a con-
vexity) on the boundary. As increases, the concavities are
gradually filled and the related pair of zero crossings approach
each other. The result on the CSS image will be two branches
of a contour. Each branch conveys information on the locations
of one of the zero crossings during the process. For a particular

the concavity is totally filled and its pair of curvature zero
crossings join each other. At this stage a contour of CSS image
reaches its maximum. The of the maximum is the
relevant and the is the location of joined zero
crossing pair.

If a local deformation occurs on the boundary, the shape of the
contours on CSS image may change, but the location of the rel-
evant maximum does not change dramatically. This is the main
reason for selecting these points as our shape descriptors. There-
fore the final CSS representation consists of the locations of the
maxima of contours in the CSS image.

MOKHTARIAN AND ABASSI: MATCHING SHAPES WITH SELF-INTERSECTIONS 657

Fig. 5. Evolution for a shape with self-intersection.

Fig. 6. Sometimes self-intersection does not create a minimum in the CSS image.

A. CSS Image of Self-Crossed Boundaries

An example of the evolution of such a shape is represented
in Fig. 5. The original shape includes self-intersections and is
seen in top left. For , there are some inflection points in-
side the intersected loops due to small concavities in these areas
which disappear in very early stages and before . At this
stage, there are no inflection points in these regions. However,
the intersected loop gradually vanishes and a concavity appears
in its place. This concavity, in turn, creates a contour in the CSS
image which obviously does not start from . The two
branches of this contour are created from the moment that the
intersected loop vanishes and the concavity is born. A minimum
is then created in the CSS image at the relevant . It is obvious
that the height of this minimum is proportional to the size of the
intersected loop.

The location of a CSS minimum in the CSS image conveys
information about the self-intersected loop of the shape. The
horizontal coordinate of a minimum reflects the position of the

loop on the shape, while the vertical coordinate shows the size
of the loop.

We discovered that while we might expect a minimum to ap-
pear in the CSS image for every self-intersected region, this is
not always the case in practice. In fact, if the size of the self-in-
tersected loop is small, the minimum is expected to appear in
early stages when the inflection points inside the loop have just
disappeared. As a result, the maximum of the contour created
by those small ripples joins the minimum of the contour created
after the vanishing of the loop. This can clearly be seen in Fig. 6.
The original segment of the shape is seen in top left. As in-
creases, all inflection points in the segment disappear except for
one pair. When the loop disappears, this pair disappears but a
new pair of inflection points is born. The result has been shown
in the corresponding contour of the CSS image in the lower part
of the figure. The thin part of the contour is related to the mo-
ment when this event happens.

It should be noted that even if a minimum is created in such
situations, due to its small height, its effect is not considerable.

658 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 5, MAY 2004

B. Extracting Maxima and Minima of Curvature Scale Space
Contours

We represent every image in the database with the locations
of its CSS contour extrema. For example, in Fig. 5 there are
six maxima and two minima. Therefore, the shape will be rep-
resented by 8 pairs of integer numbers. The locations of ex-
trema are not readily available and must be extracted from the
image. The CSS contours are usually connected everywhere
except sometimes in a neighborhood of their maxima as seen
in Fig. 7. We find the peaks of both branches of a contour in
the CSS image and consider the middle point of the line seg-
ment joining the pair as a maximum of the CSS image. Starting
from the top, each row of the CSS image is scanned for a black
pixel. When found, the search continues in the same row to
find another one in the neighborhood. After finding a maximum
of a contour, both branches of the contour are marked and at
the same time, search for a possible minimum of the contour
begins.

An explanation of our algorithm follows.

1) Start with scanning the second row. If a zero-crossing
(black) point is found examine its neighboring points. If
there is no zero-crossing neighbor at the row just above
and there is just one zero-crossing neighbor at the fol-
lowing row, go to step 3, otherwise go to step 2.

2) Scan the remaining points of the current row, and start
scanning the next row if it is not the last one to be scanned.
If a candidate is found go to step 3, and if this is the last
row to be scanned, stop.

3) Scan the same row to find the same zero-crossing as de-
scribed in step 1, in a reasonable distance. If the next can-
didate is not found, mark the first one and go to step 2. If
it is found, do the following:

• Consider the middle point of the line segment
joining the pair as a maximum.

• Mark (delete) all zero-crossings at both branches of
the corresponding contour whose maximum has just
been found.

• When marking a branch, look for a minimum. A
minimum is a point where there is no black point
just below it.

• If a minimum is found, go to step 2 immediately.
Otherwise mark the contour down to the last row to
be scanned and then go to step 2.

Note that usually the bottom few rows of CSS image represent
some information about the existing noise on the actual image
contour, so the last row to be scanned in step 2 has 1/6 the height
of the CSS image. Also note that if a candidate in step 2 is in
first few columns, the point paired with it may exist in the last
few columns of the same row and vice versa. In this case the
search for next candidate must include the relevant interval.

VI. CURVATURE SCALE SPACE MATCHING

When there is no self-intersection in the boundary of the ob-
ject, the CSS representation includes only the maxima of the
CSS image contours. The algorithm used for comparing two sets
of maxima, one from the input (also called image) and the other

Fig. 7. To find a CSS maximum, we start from the top and scan each row of
the CSS image, looking for a pair of black points with a small gap.

from one of the models, has been described in [1]. In this sec-
tion, we first explain this algorithm briefly. Then we extend it to
match the minima as well as the maxima.

The matching algorithm first finds any possible changes in
orientation of the underlying contour as well as changes in the
starting point for contour parametrization which may have oc-
curred in one of the two shapes. A circular shift is then applied
to one of the image maxima to compensate the effects of change
in orientation or starting point. The summation of the Euclidean
distances between the relevant pairs of maxima is then defined
to be the matching value between the two CSS images.

The following is a condensed version of the algorithm which
includes the basic concepts.

• Apply a circular shift to all image maxima so that the
of the largest maxima, one from the image

and the other from the model become identical.
• Starting from the second largest maximum of the image,

determine the nearest maximum of the model to each max-
imum of the image.

• Consider the cost of the match as the summation of the
Euclidean distances between the corresponding maxima.

• If the number of the image and the model maxima dif-
fers, add the coordinates of the unmatched maxima to
the matching cost. In other words, if a CSS image con-
tains a maximum but the other CSS image does not con-
tain the corresponding maximum, the coordinate of the
unmatched maximum is added to the matching cost.

A. Matching Minima

A straightforward approach in taking into account the minima
is to match the two sets of minima, one from the image and the
other from the model exactly the same as the way we do with two
sets of maxima. In this approach, the two sets of maxima are first
matched and the corresponding matching value is found. Then
the two sets of minima are matched and the resulting matching
value is added to the latter to produce the final matching value
between the two CSS image. In this approach, the shift param-
eter which is used to compensate the effect of change in orien-
tation, may be different for the two parts of matching. In an-
other approach, one may match the maxima and obtain the best
shift parameter which is then used for matching the minima. The
third approach is to match maxima and minima simultaneously.

MOKHTARIAN AND ABASSI: MATCHING SHAPES WITH SELF-INTERSECTIONS 659

In other words, when two maxima are matched, their possible
corresponding minima are also matched and the Euclidean dis-
tance of the minima is added to the Euclidean distance of the
maxima. We examined these approaches and found out that the
first approach leads to the best results which are presented in the
following section.

VII. GLOBAL PARAMETERS

In order to increase the efficiency of the system, a number
of global parameters are also computed and stored in a shape
record in conjunction with the CSS extrema. These parameters
are used for indexing and narrowing down the search space be-
fore applying the CSS matching. In this section we explain these
parameters briefly which include eccentricity, circularity and as-
pect ratio of the CSS image. These parameters are scale and ori-
entation invariant.

Eccentricity: Eccentricity has been widely used as a shape
feature [7], [20]. It is a region based parameter and illustrates
how the region points are scattered around the centre of the re-
gion, centroid.

The central moments of a region is defined as

where and are coordinates of the region points and (,) is
called the centre of gravity or centroid.

The principal moments of a region are eigenvalues of the
matrix

and the eccentricity of the region is

where and are the eigenvalues of the matrix. This
feature depends solely on the shape, not on size and orientation.

Aspect ratio of the CSS image: Every CSS contour corre-
sponds to a concavity or a convexity in the image boundary. If
the width of the CSS image, ie. the number of samples used to
represent the image contour is the same, the longer and deeper a
concavity, the taller the corresponding CSS contour. This means
that if the image contour consists of long and/or deep concavi-
ties, the height of its CSS image is large.

The aspect ratio of the CSS image represents the height of
the largest scale maximum of the CSS image which in turn re-
flects the size of the major concavity of the image boundary.
This parameter also depends only on the shape, not on size and
orientation.

Circularity: Circularity is the ratio of perimeter squared to
the area. It can be used to distinguish between rippled bound-
aries and smoothed ones, when the overall shapes are rather the
same.

VIII. EXPERIMENTS AND RESULTS

In order to test our method, we used a database of classified
leaf images representing different varieties of chrysanthemum.
For many classes of leaves, self-intersection is inevitable during
the scanning of the image.

We tested our method on a prototype database of 120 leaf im-
ages from 12 different varieties, both with and without consid-
ering the self-intersection. The task was to find out whether an
unknown leaf belongs to one of the existing varieties or it repre-
sents a new variety. The system found the most similar varieties
to the input and allows the user to make the final decision. The
results indicated a promising performance of the new approach
and its superiority over the conventional method.

To reject the dissimilar images based on the global parame-
ters, we first calculate , and as follows:

where and represent the eccentricity and circularity of the
boundary and represents the aspect ratio of the CSS image,
while and stand for image and model respectively.

According to their definition, , and are between zero
and one. We need to choose a threshold for each of these param-
eters so that if one of them is above the relevant threshold, the
corresponding model is rejected. For our system we chose these
threshold values

Note that the performance of the system is not sensitive to small
changes of these values [2].

The CSS matching is then applied to the surviving models to
find the most similar objects to the input query and also make a
decision about the class of the the input leaf.

An analysis of system computational complexity follows.
Each of the values , and is computed for each shape
in the database. CSS matching is then applied to each surviving
model in the database. Therefore if the size of the database is

, the computational complexity of the system is .

A. Results

We tested the proposed method on a database of 120 leaf im-
ages from 12 different chrysanthemum varieties, some including
self-intersections. Each image consisted of just one object on a
uniform background. The system software was developed using
the C language under Unix operating system. The response rate
of the system was much less than one second for each user query.

To evaluate the method, we considered every image in the
database as an input and in each case, asked the system to iden-
tify the variety of the input, based on the first similar images.
Obviously, the first output of the system is identical to the input,
but the system does not consider it in classification. In fact, for
each sample we first pull it out of the database and classify it
based on the remaining classified samples. The best varieties
are then selected based on the number of their samples in the
best similar samples. The output of the system is the name of

660 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 5, MAY 2004

TABLE I
RESULTS OF EVALUATION FOR DIFFERENT VALUES OF k, INITIAL METHOD

TABLE II
RESULTS OF EVALUATION FOR DIFFERENT VALUES OF k, IMPROVED METHOD

the first 3 classes. Note that this procedure corresponds to mea-
suring the precision of the system using terminology from the
field of information retrieval [9].

We first used a simple automatic segmentation to recover
the outline of the objects without considering the self-intersec-
tion (see Fig. 2). The resulting representations included only the
maxima of the CSS images. We also used some global param-
eters to reject dissimilar candidates prior to the CSS matching
[2]. The results for different values of , the number of observed
outputs for each query, has been presented in Table I. As men-
tioned before, in response to a query, the system returns the top
3 classes which are most similar to the input. The first row of
Table I shows the success rate of the system to identify the cor-
rect class as its first choice is 75.8% if the judgement is based on
the first 5 outputs of the system. This figure is 77.5% for
and so on. The second row shows the success rate of the system
to identify the correct class as its first or second choices, and so
on for the third row.

As this table shows, for this particular database, one may ob-
tain good results. However, as shown in Table II, even better
results may be achieved by including the self-intersections in
the process. It is interesting that the performance of the system
is not sensitive to the value of , specially when we consider the
last row of this table. Overall, the superiority of the improved
method over the conventional one is seen in these two tables.
Note that the matching cost might increase for a given pair of
CSS images when minima are added to the matching process.
This would indicate that those CSS images are more different
than indicated by matching maxima only.

IX. CONCLUSIONS

The problem of self-intersection was discussed in this paper.
A shape representation method which can properly represent
such shapes was introduced and explored. The Curvature Scale
Space (CSS) image of a planar curve normally consists of sev-
eral arch shape contours each related to concavity or a convexity
of the curve. We observed that the shape of CSS contours change

when the curve includes self-intersection. The arch shape of the
contours is converted to a vertical ellipse. While the arch shape
contours are represented by their maxima, the new contours of
the CSS image include a minimum as well as the maximum.

In conventional form of CSS representation, a curve is rep-
resented by the locations of its CSS maxima. A new represen-
tation was introduced here which uses the minima as well of
maxima of the CSS image. A method to extract extrema of the
CSS image, as well as a matching algorithm to compare two
sets of extrema and assign a matching value as the measure
of similarity between the two curve were also introduced. The
method was tested on a prototype database of 120 leaf images
from 12 different varieties of chrysanthemum with promising
results. The performance of the method was also compared to
the performance of the conventional method.

REFERENCES

[1] S. Abbasi and F. Mokhtarian, “Affine-similar shape retrieval: application
to multiview 3-D object recognition,” IEEE Trans. Image Processing,
vol. 10, pp. 131–139, Jan. 2001.

[2] S. Abbasi, F. Mokhtarian, and J. Kittler, “Reliable classification
of chrysanthemum leaves through curvature scale space,” in Proc.
Scale-Space’97 Conf., Utrecht, The Netherlands, July 1997, pp.
284–295.

[3] K. Arbter, W. E. Snyder, H. Burkhardt, and G. Hirzinger, “Applications
of affine-invariant Fourier descriptors to recognition of 3-d objects,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 12, pp. 640–646, July
1990.

[4] A. Del Bimho, P. Pala, and S. Santini, “Image retrieval by elastic
matching of shapes and image patterns,” in Proc. 1996 Int. Conf.
Multimedia Computing and Systems, Hiroshima, Japan, June 1996, pp.
215–218.

[5] T. D. Bui, G. Y. Chen, and L. Feng, “An orthonormal-shell-fourier de-
scriptor for rapid matching of patterns in image database,” Int. J. Pattern
Recognit. Artif. Intell., vol. 15, no. 8, pp. 1213–1229, 2001.

[6] D. Cyganski, T. A. Cott, J. A. Orr, and R. J. Dodson, “Development,
implementation, testing, and application of an affine transform invariant
curvature function,” in Proc. 1st Int. Conf. Computer Vision, London,
U.K., June 1987, pp. 496–500.

[7] P. Eggleston, “Constraint-based feature indexing and retrieval for image
databases,” Proc. SPIE, vol. 1819, pp. 27–39, 1992.

[8] J. Flusser and T. Suk, “Pattern recognition by affine moment invariants,”
Pattern Recognit., vol. 26, no. 1, pp. 167–174, Jan. 1993.

MOKHTARIAN AND ABASSI: MATCHING SHAPES WITH SELF-INTERSECTIONS 661

[9] B. Furht, S. W. Smoliar, and H. Zhang, Video and Image Processing in
MultiMedia Systems. Norwell, MA: Kluwer, 1996.

[10] Z. Huang and F. S. Cohen, “Affine-invariant B-spline moment for curve
matching,” in Proc. IEEE Computer Society Conf. Computer Vision and
Pattern Recognition, 1994, pp. 490–495.

[11] N. Katzir, M. Lindenbaum, and M. Porat, “Curve segmentation under
partial occlusion,” IEEE Trans. Pattern Anal. Machine Intell., vol. 16,
pp. 513–519, May 1994.

[12] J. J. Koenderink, Solid Shape. Cambridge, MA: MIT Press, 1990.
[13] R. Malladi and J. A. Sethian, “Level set and fast marching methods in

image processing and computer vision,” in Proc. IEEE Int. Conf. Com-
puter Vision, vol. 1, 1996, pp. 489–492.

[14] , “Unified approach to noise removal, image enhancement, and
shape recovery,” IEEE Trans. Image Processing, vol. 5, pp. 1554–1568,
Nov. 1996.

[15] , “Real-time algorithm for medical shape recovery,” in Proc. IEEE
Int. Conf. Computer Vision, 1998, pp. 304–310.

[16] R. Mehrotra and J. E. Gary, “Feature-based retrieval of similar shapes,”
in Proc. 9th Int. Conf. Data Engineering, Vienna, Austria, Apr. 1993,
pp. 108–115.

[17] F. Mokhtarian and S. Abbasi, “Affine curvature scale space with affine
length parametrization,” Pattern Anal. Applicat., vol. I5, no. 2, pp.
143–158, 2001.

[18] , “Shape similarity retrieval under affine transforms,” Pattern
Recognit. (Special Issue on Shape Representation and Similarity for
Image Databases), vol. 35, no. 1, pp. 31–41, 2002.

[19] F. Mokhtarian and A. K. Mackworth, “A theory of multi-scale, curva-
ture-based shape representation for planar curves,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 14, pp. 789–805, Aug. 1992.

[20] W. Niblack, R. Barber, W. Equitz, M. D. Flickner, E. H. Glasman, D.
Petkovic, P. Yanker, C. Faloutsos, and G. Taubin, “The QBIC project:
Querying images by content using color texture and shape,” Proc. SPIE,
vol. 1908, pp. 173–187, 1993.

[21] W. Niblack and J. Yin, “Pseudo-distance measure for 2d shapes based
on turning angle,” in Proc. IEEE Int. Conf. Image Processing, vol. 3,
Washington, DC, USA, Oct. 1995, pp. 352–355.

[22] Z. Ping, Y. Sheng, S. Deschenes, and H. Arsenault, “Fourier-Mellin de-
scriptor and interpolated feature space trajectories for 3-D object recog-
nition,” Opt. Eng., vol. 39, no. 5, pp. 1260–1266, 2000.

[23] E. Saber and A. M. Tekalp, “Image query-by-example using region-
based shape matching,” Proc. SPIE, vol. 2666, pp. 200–211, 1996.

[24] G. Sapiro and A. Tannenbaum, “Affine invariant scale space,” Int. J.
Comput. Vis., vol. 11, no. 1, pp. 25–44, 1993.

[25] S. Sclaroff, “Deformable prototypes for encoding shape categories in
image databases,” Pattern Recognit., vol. 30, no. 4, pp. 627–641, Apr.
1997.

[26] S. Sclaroff and A. P. Pentland, “Modal matching for corresponding and
recognition,” IEEE Trans. Pattern Anal. Machine Intell., vol. 17, pp.
545–561, June 1995.

[27] K. Siddiqi, B. B. Kimia, and C. W. Shu, “Geometric shock-capturing eno
schemes for subpixel interpolation, computation and curve evolution,”
Graph. Models Image Process., vol. 59, no. 5, pp. 278–301, Sept. 1997.

[28] K. Siddiqi, B. B. Kimia, A. Tannenbaum, and S. W. Zucker, “Shapes,
shocks and wiggles,” Image Vis. Comput., vol. 17, no. 5, pp. 365–373,
1999.

[29] D. Tsai and M. Chen, “Curve fitting approach for tangent angle and
curvature measurement,” Pattern Recognit., vol. 27, no. 5, pp. 699–711,
1994.

[30] A. Wimmer, G. S. Ruppert, O. Sidla, H. Konrad, and F. Gretzmacher,
“Fft-descriptors for shape recognition of military vehicles,” Proc. SPIE,
vol. 4029, pp. 81–87, 2000.

[31] A. Zhao and J. Chen, “Affine curve moment invariants for shape recog-
nition,” Pattern Recognit., vol. 30, no. 6, pp. 895–901, 1997.

Farzin Mokhtarian received the BES degree in
math sciences from The Johns Hopkins University,
Baltimore, MD, in 1982, and the M.Sc. and Ph.D.
degrees in computer science from the University of
British Columbia, Vancouver, BC, Canada, in 1984
and 1990, respectively.

From 1984 to 1985, he was with the Schlum-
berger-Doll Research Lab, Ridgefield, CT. From
1991 to 1993, he was a Research Scientist at NTT
Basic Research Labs, Tokyo, Japan. In 1994, he
joined the Center for Vision, Speech, and Signal

Processing in the Department of Electronic and Electrical Engineering at the
University of Surrey, Guildford, U.K., as a Lecturer. In 2000, he was promoted
to a Senior Lecturer. His research interests include 2-D and 3-D multiscale
shape representation and recognition through differential invariants, image
database retrieval using shape features, and other vision tasks requiring shape
analysis. His Curvature Scale Space shape descriptor has been selected for
MPEG-7 standardization. He is the first author of the book Curvature Scale
Space Representation: Theory, Applications, and MPEG-7 Standardization
(Norwell, MA: Kluwer, 2003).

Sadegh Abbasi received the B.Sc. and M.Sc. degrees in telecommunications
systems from the University of Tehran, Tehran, Iran. He received the Ph.D.
degree in 1999 from the Centre for Vision, Speech and Signal Processing
(CVSSP), University of Surrey, Guildford, U.K., working on multimedia
similarity retrieval based on shape content.

He was with Iran Telecommunication Research Centre for 2 years. He then
worked for 3 years at CVSSP as a Research Fellow carrying out research on
shape similarity retrieval. He is now with Phillips R&D Lab, Southampton, U.K.

