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Abstract

Plant has plenty use in foodstuff, medicine and industry. And it is also vitally important for environmental protection.
However, it is an important and difficult task to recognize plant species on earth. Designing a convenient and automatic
recognition system of plants is necessary and useful since it can facilitate fast classifying plants, and understanding and
managing them. In this paper, a leaf database from different plants is firstly constructed. Then, a new classification method,
referred to as move median centers (MMC) hypersphere classifier, for the leaf database based on digital morphological
feature is proposed. The proposed method is more robust than the one based on contour features since those significant
curvature points are hard to find. Finally, the efficiency and effectiveness of the proposed method in recognizing different
plants is demonstrated by experiments.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Plant, a biology existing everywhere, is a greatly significant thing for human’s living and development. All
over the world, there are currently about 310000–420000 known plant species, and many are still unknown
yet.

At present, plant taxonomy usually adopts traditional classification method. And so far many other clas-
sification methods, such as morphologic anatomy, cell biology, molecule biology, phytochemistry, have also
been used. These methods have great relation to do with biology and chemistry. Nevertheless, the acquisition
of needed data from plant living body or specimen directly and automatically by computer has not been imple-
mented [1].

With the deterioration of environments, more and more rare plant species are at the margin of extinction.
Many of rare plants have died out. Nowadays, there are about 22–47% plant species of all known plants that
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are endangered, of which, there are about 100000–150000 plants that probably will die out in short time. So,
it’s necessary and urgent for us to establish bio-diversity database by information technology as soon as pos-
sible [2–7].

Since recent decades, digital image processing, image analysis and machine vision have been sharply devel-
oped, and they have become into a very important part of artificial intelligence and the interface between
human and machine grounded theory and applied technology. These technologies have been applied widely
in industry and medicine, but rarely in realm related to agriculture.

Our research work in this paper is introducing digital image processing theory into the numerical taxonomy
in botany. Generally, the digital morphological features are most conventional and widely used. Thus, this
efficient feature extraction method is adopted in this paper. By computing the digital morphological features
of some kinds of plant species, plants can be classified automatically.

This paper is organized as follows: Section 2 introduces the image acquisition preprocessing method. In
Section 3, digital morphological feature extraction method is described and discussed. Section 4 presents
the fundamental principle of a new move median centers (MMC) hypersphere classifier. The experimental
results are presented in Section 5, and Section 6 concludes the whole paper and gives related conclusions.

2. Image acquisition and preprocessing

In this section, we introduce how to acquire plant leaf and present the preprocessing procedure on the plant
leaf. It’s very necessary for later work of digital morphological feature extraction of plant leaf.

2.1. Acquisition of plant leaf

Plants can be usually identified according to the shapes, colors, textures and structures of their leaf, bark,
flower, seedling and morph. However, it is very difficult for ones to analyze the shapes of flowers, seedling and
morph of plants for their complex 3D structures if based on only 2D images. So in our research work, we will
identify different plants by leaf features. Leaves are usually firstly clustered so that it is not easy for us to auto-
matically extract features of leaves from the complex background. The leaf image database used in the follow-
ing experiment is collected and built by ourselves in our lab. The procedure is that we pluck the leaf from
plant, put it on the scanner, and then take the digital color image of the leaf directly, or put it on a panel,
take digital color image of the leaf with a digital camera. In this way, we can get an image including only
one leaf, and the background of the leaf image will be blurred.

This database includes 20 species of different plants. Each species includes 20 sample images. Hence there
are totally 400 images with the database. The representative sample images for the 20 species in the database
are shown in Figs. 1 and 2.

2.2. Leaf image preprocessing

The colors of plant leaves are usually green (as shown in Fig. 3(a)). Moreover, the shades and the variety of
changes of water, nutrient, atmosphere and season can cause change of the color, so the color feature has low
reliability. Thus, we decided to recognize various plants by the grey-level image of plant leaf (as shown in
Fig. 1. Different plant species in leaf database.



Fig. 2. Different samples in the same class.

Fig. 3. The processed leaf images: (a) color image, (b) gray image (c) binary image and (d) leaf contour.
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Fig. 3(b)), while ignoring the color information. As a result, only Gray component for each pixel is computed
from the color image by
Gray ¼ 0:299 �Rþ 0:578 �Gþ 0:114 � B; ð1Þ

where R, G, B correspond to the color of the pixel [8,9], respectively.

The rectangle of interest (ROI) of leaf image should include all the pixels their gray values are smaller than
a specific threshold, then the binary image of leaf as shown in Fig. 3(c) is got. In our study the threshold is
automatically got according to the histogram of the leaf gray image. Then the contour of leaf can be extracted
from the binary image by the operators of mathematical morphology (as shown in Fig. 3(d)) [8,9].

3. Digital morphology features extraction

In this section, we introduce how to extract digital morphology features. The features are extracted from
the contours of leaf. The digital morphology features (DMF) generally include geometrical features (GF)
and invariable moment features (MF). The geometrical features consist of aspect ratio, rectangularity, area
ratio of convexity, perimeter ratio of convexity, sphericity, circularity, eccentricity and form factor, etc.

3.1. Aspect ratio

The aspect ratio is a ratio between the maximum length Dmax and the minimum length Dmin of the mini-
mum bounding rectangle (MBR)
AR ¼ Dmax

Dmin

: ð2Þ
3.2. Rectangularity

The rectangularity, representing the ratio of ROI area and the MBR area, is calculated by
R ¼ AROI

Dmax � Dmin

: ð3Þ
3.3. Area ratio of convex hull

The area ratio of convex hull, representing the ratio of the ROI area AROI and the convex hull area AC, is
calculated by
CA ¼ AROI

AC

: ð4Þ
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3.4. Perimeter ratio of convex hull

The perimeter ratio of convex hull, representing the ratio of the ROI perimeter PROI and the convex hull
perimeter PC, is calculated by
CP ¼ P ROI

P C

: ð5Þ
3.5. Sphericity

The sphericity is defined as
S ¼ ri

rc

; ð6Þ
where ri represents the radius of incircle of the ROI, and rc the radius of the excircle of the ROI.

3.6. Circularity

The circularity is defined by all of the bounding points of the ROI
C ¼ lR

rR

; ð7Þ
where lR is the mean distance between the center of the ROI and all of the bounding points, and rR is the
quadratic mean deviation of the mean distance:
lR ¼
1

N

XN�1

i¼0

kðxi; yiÞ � ð�x; �yÞk; ð8Þ

rR ¼
1

N

XN�1

i¼0

ðkðxi; yiÞ � ð�x; �yÞk � lRÞ
2
: ð9Þ
3.7. Eccentricity

The eccentricity is defined as the ratio of the length of main inertia axis of the ROI EA to the length of
minor inertia axis of the ROI EB
E ¼ EA

EB

: ð10Þ
3.8. Form factor

The form factor is a popular shape description characteristic independent of linear transformations given
by
F ¼ 4pAROI

P 2
ROI

: ð11Þ
The convex hull, ellipse, MBR and incircle and excircle of the leaf ROI are shown in Fig. 4.

3.9. Invariant moments

Besides the above features, the moments are also widely used as the features for image processing and clas-
sification, which provide a more geometric and intuitive meaning than the morphological features. It was Hu
who first set out the mathematical foundation for two-dimensional moment invariants. Hu defined seven



Fig. 4. The leaf ROI (a) convex hull, (b) ellipse, (c) MBR and (d) Incircle and excircle.
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invariant moments computed from central moments through order three that are also invariant under object
translation, scaling and rotation. Accordingly, we consider using these Hu moment invariants as classification
features in this paper. Their values can be calculated from the contours using Chen’s improved moments [10]
as follows:

The Chen’s improved geometrical moments of order (p + q) are defined as
Mpq ¼
Z

C
xpyqds; ð12Þ
where p; q ¼ 0; 1; 2; . . . ;
R

C is the line integral along a closed contour C, and ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdxÞ2 þ ðdyÞ2

q
.

For the purpose of practical implementation, Mpq could be computed in their discrete form
Mpq ¼
X

x

X
y

xpyq: ð13Þ
Then the contour central moments can be calculated as follows:
lpq ¼
Z

C
ðx� �xÞpðy � �yÞqds; ð14Þ

�x ¼ M10

M00

; �y ¼ M01

M00

: ð15Þ
For the discrete case, the above lpq becomes
lpq ¼
X

x

X
y

ðx� �xÞpðy � �yÞq; ð16Þ
where c ¼ pþq
2
þ 1, p + q = 2,3,4, . . .

These new central moments are further normalized using the following formula:
gpq ¼
lpq

lc
00

: ð17Þ
Consequently, a set of seven invariant moments can be derived from the normalized central moments
Hu1 ¼ g20 þ g02;

Hu2 ¼ ðg20 � g02Þ
2 þ 4g2

11;

Hu3 ¼ ðg30 � 3g12Þ
2 þ ðg03 � 3g21Þ

2
;

Hu4 ¼ ðg30 þ g12Þ
2 þ ðg03 þ g21Þ

2
;

Hu5 ¼ ðg30 � 3g12Þðg30 þ g12Þ½ðg30 þ g12Þ
2 � 3ðg03 þ g21Þ

2�
þ ð3g21 � g03Þðg21 þ g03Þ½3ðg30 þ g12Þ

2 � ðg03 þ g21Þ
2�;

Hu6 ¼ ðg20 � g02Þ½ðg30 þ g12Þ
2 � ðg03 þ g21Þ

2� þ 4g11ðg30 þ g12Þðg03 þ g21Þ;
Hu7 ¼ ð3g21 � g03Þðg30 þ g12Þ½ðg30 þ g12Þ

2 � 3ðg03 þ g21Þ
2�

þ ð3g12 � g30Þðg21 þ g03Þ½3ðg30 þ g12Þ
2 � ðg03 þ g21Þ

2�:

ð18Þ
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4. MMC hypersphere classifier

4.1. Algorithm of MMC

The fundamental idea of the MMC is that each class of patterns are regarded as a series of ‘‘hyperspheres’’,
which is treated as a set of ‘‘points’’ in conventional approaches [11,12]. The first step of MMC is to compute
the multidimensional median of the points of the considered class, set the initial center as the point that is
closest to that median, find the maximum radius that can encompass the points of the class. Through certain
iteration we remove the center of the hypersphere in a way that would enlarge the hypersphere and have it
encompass as many points as possible. This is performed by having the center ‘‘hop’’ from one data point
to a neighboring point. Once we find the largest possible hypersphere, the points inside this hypersphere
are removed, and the whole procedure is repeated for the remaining points of the class. We continue until
all points of that class are covered by some hyperspheres. At that point, we tackle the points of the next class
in a similar manner. The final step is to remove redundant hyperspheres, which are totally encompassed by a
larger hypersphere. The detailed steps of the algorithm are stated as follows:

Step 1: Set K = 1, C = 1, S = all points of class C.
Step 2: Find the median of the points of S.
Step 3: Select the closest point Py to that median as the initial center of a hypersphere K.
Step 4: Find the nearest point Pz of a different class from the center, and let D1 be the distance between Py

and Pz.
Step 5: Find the farthest point of the same class inside the hypersphere of radius D1 to the center. Let D2 be

the distance from the center to that farthest point.
Step 6: Set the radius of hypersphere K as (D1 + D2)/2.
Step 7: Search among the nearest E points of the same class C that are in the negative direction with respect

to the direction of Pz–Py. The purpose is to move the center to the new point to enlarge the hyper-
sphere. The point, which has the most negative direction, is selected to replace Py as the new center.

Step 8: If there is no point in the negative direction that we can move to, the hypersphere K has been com-
pleted, else repeat steps 5–7.

Step 9: Remove the points encompassed by that hypersphere K from S.
Step 10: Set K = K + 1. If S is not empty repeat steps 2–9, else set C = C + 1, and operate on the new class

by running steps 1–9.
4.2. MMC classification stage

After the training of the MMC is finished, any given data point can be classified by the MMC. We have
chosen to use the distance to the outside surface of the hypersphere as the selection criterion. If the point
is inside the hypersphere, the distance will be negative. Specifically, to get the class information for any input
sample, we perform the following steps:

• Compute the distance Di between the data point and the center of each hypersphere Hi.
• The index for nearest neighbor Hypersphere Iq is chosen as
Iq ¼ arg min
i2f1;2;3;...;Hg

Di

Ri
� 1

� �
� e; ð19Þ
where H is the total number of hyperspheres, Ri is the radius of hypersphere Hi.
4.3. Data preprocessing for application of the MMC to plant recognition

The digital features extracted from plant leaves usually have large range in numerical values, we should nor-
malize all the elements in the feature vector to a new one as follows:
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X ij ¼
X ij � hjMin

X jMax � hjMin

; ð20Þ
where Xij is the jth element of feature vector Xi, hjMax is the maximum value of jth element of all vectors from
different classes and hjMin is the minimum value of the jth element of all vectors from different classes.

The data usually contain noises, which result in overlapping samples in pattern space [13,14], and there may
produce some outliers in the training data set. So we need to remove these outliers from the training data set so
that a better decision boundary can be easily formed. We here apply Wilson Editing method to remove those
points that do not agree with the majority of their k nearest neighbors [15–17].

5. Experimental results

The experiments were designed to classify each test image into a single class. Since all the leaf images are
taken by ourselves, their true classes are known. In our experiment, we recognize the plant by the MMC clas-
sifier. We also do the performance comparison of the MMC classifier with the nearest neighbor (1-NN)
method and k-NN method [18–20].

Firstly, we select ten of the samples as training samples, and the remaining is used as testing samples. Fig. 5
shows the histogram of hypersphere radiuses of training samples, and the correct rate of classification of every
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Fig. 5. The histogram of hypersphere radiuses.
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Table 1
The performance comparison for three classifiers

MMC 1-NN 4-NN

Training time (mm) 15 / /
Classification time (mm) 14 18 96
Storage vector 104 200 200
Correct rate (%) 91 93 92
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class is shown in Fig. 6. As a result, the training times consumed of the MMC, the classification times, the
storage vector numbers and the mean correct recognition rate for the three classifiers can be obtained, respec-
tively, as shown in Table 1.

To do more performance comparison, we select i (i = 1,2,3 . . . , 19) samples as training data, then the rest
(20 � i) is as test data. The results are respectively shown in Figs. 6–11.

From Table 1 Figs. 7 and 9, it can be seen that the storage vector number for the former is smaller than the
ones for the latter two and the correct recognition rate for the MMC is slightly lower than the others. Fig. 8
shows that the classification time consumed for the MMC is shorter than the ones for 1-NN and the 4-NN
classifiers. Though the training time of the MMC is close to the one of the 1-NN classifier, the training of
the MMC is only once finished for given training samples. Fig. 10 shows that the digital morphological
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0 250 500 750 1000 1250 1500 1750 2000

Samples

0

1

2

3

4

5

6

7

8

9

10

C
os

t T
im

e

1NN
kNN (k=4)
HS (Train)
HS (Test)

Fig. 8. The consumed time comparison.



0 40 80 120 160 200 240 280 320 360 400
0

10

20

30

40

50

60

70

80

90

100

Samples

C
la

ss
if

ic
at

io
n 

R
at

e 
(%

)

1-NN
k-NN
MMCH

Fig. 9. The classification rate comparison.

0 40 80 120 160 200 240 280 320 360 400
0

10

20

30

40

50

60

70

80

90

100

Samples

C
la

ss
if

ic
at

io
n 

R
at

e 
(%

)

MF
GF
MF +GF

Fig. 10. The comparison of features.

J.-X. Du et al. / Applied Mathematics and Computation 185 (2007) 883–893 891
features we extracted is efficient for plant recognition. When the training samples of every class are to exceed
three samples, the correct recognition rate is greater than 75%. In addition, it can be seen that the number of
moveable points E has effect on the recognition rate (as shown in Fig. 11), but this effect is slighter than the
0 5 10 15 20 25 30 35 40 45 50
85

86

87

88

89

90

91

92

93

94

95

Number of Moveable HS 

C
la

ss
if

ic
at

io
n 

R
at

e 
(%

)

Fig. 11. The affection of E.
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effect of the k on the k-NN classifier (as shown in Fig. 12). Therefore, it can be deduced that when existing a
large amount of samples, the MMC hypersphere classifier is a more preferred candidate than the 1-NN and
the k-NN classifiers.

6. Conclusions

In this paper, a digital morphological feature based automatic recognition method for plant images was
proposed and performed. The fifteen features are used to classify 20 species of plant leaves. In addition, a
new moving median centers hypersphere classifier is adopted to perform the classification. The experimental
results demonstrated that the proposed method is effective and efficient. In particular, by comparing with the
1-NN and k-NN classifiers, it can be found that the MMC classifier can not only save the storage space but
also reduce the classification time under the case of no sacrificing the classification accuracy.
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