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Abstract

Some property and casualty insurers use automated detection systems to help to decide whether or not to investigate
claims suspected of fraud. Claim screening systems benefit from the coded experience of previously investigated claims.
The embedded detection models typically consist of scoring devices relating fraud indicators to some measure of sus-
picion of fraud. In practice these scoring models often focus on minimizing the error rate rather than on the cost of
(mis)classification. We show that focusing on cost is a profitable approach. We analyse the effects of taking into account
information on damages and audit costs early on in the screening process. We discuss several scenarios using real-life
data. The findings suggest that with claim amount information available at screening time detection rules can be accom-
modated to increase expected profits. Our results show the value of cost-sensitive claim fraud screening and provide
guidance on how to render this strategy operational.
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1. Introduction

Fraud has become a high priority for insurers.
For the European insurance industry the Comité
Européen des Assurances (1996) estimates that
the cost of fraud is over 2% of the total annual pre-
mium income for all lines of business combined. In
ed.
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most European countries claim fraud is estimated
to represent between 5 and 10% of the total yearly
amount of indemnities paid for non-life insurance.
In the United States, the Coalition Against Insur-
ance Fraud (2001) states that more than 6% of
each insurance premium goes to fraud. The Insur-
ance Information Institute (2004) estimated prop-
erty and casualty (P&C) claim fraud at $31
billion in 2002.

If not properly addressed, insurance fraud not
only puts the profitability of the insurer at risk,
but also negatively affects its value chain, the
insurance industry, and may be extremely detri-
mental to established social and economic struc-
tures. Moreover, all honest policyholders are
victims. Fraud is widely believed to increase the
cost of insurance. This cost component is borne
directly by all insured parties in the form of
increased premium rates. In the end, fraud repre-
sents a threat to the very principle of solidarity
that keeps the concept of insurance alive (Guillén,
2004; Viaene and Dedene, 2004).

Economic theory has studied P&C claim fraud
in depth. Picard (2000) provides a good overview
of this literature. It can be shown, for example,
that an insurance firm needs to commit to a claim
audit strategy to ensure solvency. It has also been
shown that as long as there is a good chance of not
being caught, an individual filing a claim has a
clear economic incentive to defraud.

The most effective way to fight fraud for an
insurer is, of course, to prevent abuse of the sys-
tem. Yet, fraudsters always seem to find new ways
of exploiting the inertia of complex systems, espe-
cially when a lot of money is involved. It is then
imperative to ensure that fraudulent activity is
identified at the earliest possible moment, and that
persons cheating the system are swiftly tracked
down. Since fraud is not a self-revealing phenom-
enon, insurers typically have to commit consider-
able resources to its detection. The process of in-
depth investigation of suspicious claims is known
as costly state verification, because the true nature
of a claim (fraudulent or not) can only be discov-
ered by means of an in-depth investigation (see e.g.
Bond and Crocker, 1997; Crocker and Tennyson,
1999; Boyer, 1999; Picard, 1996, 2000). It has been
shown that such claim auditing has both a detec-
tion and deterrence effect (Tennyson and Salsas-
Forn, 2002).

The problem in detecting fraudulent claims is
the identification of the characteristics that distin-
guish them from valid claims. Most insurers train
their front-line claims adjusters, often with the help
of state- or country-level fraud bureaus, to recog-
nise claims that have combinations of features that
experience has shown to be typically associated
with fraudulent claims. In many practical situa-
tions, though, the identification of suspicion dur-
ing claims handling continues to be rather
subjective in nature. Many insurers still leave it
essentially up to the individual adjuster to some-
how put together potential warning signs into an
aggregated assessment of suspicion of claim fraud.
Moreover, since customer service has to a large
degree become synonymous with processing effi-
ciency in the context of claims handling, adjusters
have no natural incentive to actively look for
warning signs. In today�s configuration there is
little time for running through extensive lists of
fraud indicators at claim time. In other words,
one of the core challenges for contemporary fraud
detection is to identify fraud in an automated,
high-volume, online transaction processing envi-
ronment without jeopardising the advantages of
automation in terms of efficiency, timeliness and
customer service.

Some P&C insurers use automated detection
systems to help decide on whether to investigate
claims suspected of fraud. Automated types of
fraud detection should make it possible to reduce
the lead-time for fraud control and allow for more
optimal allocation of scarce investigative
resources. The embedded detection models typi-
cally consist of scoring devices relating fraud indi-
cators to some measure of suspicion of fraud. This
is where insurers may build on considerable past
investments in more systematic electronic collec-
tion, organization and access to coherent insur-
ance data. This, among other things, enables the
use of algorithmic pattern recognition techniques
to create models that help with the identification
of insurance fraud.

In this paper we deal with algorithmic learning
to score claims for suspicion of fraud. Specifically,
we focus our attention on screening activity early
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on during the life cycle of a claim. What we see in
practice is that during the construction phase
these scoring models often focus on minimising
error rate rather than on cost of classification
(see, Derrig, 2002). In this paper we show that
focusing on cost rather than error of classification
is a profitable approach. This question was
already pointed to by Dionne et al. (2003), who
work with an average cost approach. In relation
to the costs of fraud detection we take into
account information on damages and audit costs
available in the early part of the claim screening
process. In an empirical experiment we discuss
several scenarios, the effects of which are explored
using real-life data. The data set that is used for
this exploration consists of automobile claims
closed in Spain that were investigated for fraud
by domain experts and for which we have detailed
cost information. Thus, the focus of this paper
will be on vehicle damage claims in the context
of automobile insurance. The findings suggest that
with claim amount information available early on
in the screening process detection rules can be
accommodated to increase expected profits. Our
results show the real value of cost-sensitive claim
fraud screening and provide guidance on how to
operationalise this strategy.

The rest of this paper is organized as follows.
Section 2 highlights the main steps in the imple-
mentation of a claim fraud detection strategy for
a typical P&C insurer. Section 3 tackles the
mechanics of a cost-sensitive classification, i.e.
the methodology used to build learning programs
for fraud detection that reduce the cost of classifi-
cation rather than the error rate. Section 4 sets the
stage for our complementary case study. It covers
the data characteristics for the set of Spanish dam-
age claims used in the empirical part and takes a
look at the economics of fraud detection for this
case. Section 5 projects the mechanism of cost-sen-
sitive classification onto the claim classification
setting at hand. This section contrasts six alterna-
tive cost incorporation scenarios based on different
assumptions concerning the available cost infor-
mation for classification early on in the process
of claim screening. In Section 6 we synthesise our
conclusions from the discussion in the previous
sections.
2. Fraud control for the P&C insurer

The generic operational claim fraud control
model for insurers (see Fig. 1) includes screening,
investigation and negotiation/litigation phases. It
is embedded in the insurer�s claims handling pro-
cess. Claims handling refers to the process that
starts with a claim occurrence and a report from
the policyholder and ends with the payment, or
denial of payment for damages covered. Fraud,
in principle, is the only reason for denying pay-
ment for covered damages. Fraud, primarily a
legal term, generally requires the presence of mate-
rial misrepresentation, intent to deceive and the
aim of gaining an illicit benefit (Viaene and Ded-
ene, 2004). The absence of one or more of these
key elements makes an undesirable activity at most
qualify as so-called abuse of insurance, where the
latter is typically defined as any practice that uses
insurance in a way that is contrary to its intended
purpose or the law. The concept of insurance fraud
is often broadly used in practice to encompass
more general forms of insurance abuse. Sometimes
the term abuse is used instead of fraud to avoid the
element of criminality associated with it.

2.1. Claim screening

Early claim screening systems help to decide
whether incoming claims are suspicious or not.
This is the basis for routing claims through differ-
ent claim handling workflows (Derrig, 2002).
Claims that pass the initial (automated) screening
phase are settled swiftly and routinely, involving
a minimum of transaction processing costs. Claims
that are flagged as suspicious pass a costly state
verification process, involving (human) resource
intensive investigation. This task is typically dele-
gated to so-called Special Investigation Units or
SIUs (Ghezzi, 1983).

Practical models to sort out claims for fraud
investigation emerged in the 1990s with database
organization and selection strategies (Major and
Riedinger, 1992), fuzzy clustering (Derrig and
Ostaszewsky, 1995), simple regression scoring
models (Weisberg and Derrig, 1998; Brockett
et al., 1998) and probit and logit models (Artı́s
et al., 1999; Belhadji et al., 2000). The latest
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Fig. 1. Operational fraud control model.
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synthesis of important material is found in the
September 2002 special issue of the Journal of
Risk and Insurance devoted to the theoretical
and practical aspects of claim fraud detection
and deterrence. At the same time, theoretical stud-
ies focused on promoting efficient anti-fraud
action through contract design and auditing strat-
egies (see e.g. Picard, 1996, 2000; Bond and
Crocker, 1997; Crocker and Tennyson, 1999;
Boyer, 1999; Watt, 2003).

Without an automated system the decision to
investigate a claim is taken primarily on the basis
of the available information on a single customer
and a single claim. The adjuster or person in
charge of handling the claim typically has no time
to perform extensive searches, particularly not in
paper files. On the basis of narrowly scoped infor-
mation he has to decide whether or not the claim is
suspicious and whether it is worthwhile to investi-
gate it for fraud. This assessor is usually an expe-
rienced person from the staff. His personal
experience (including biases) can help to sort out
claims. Note, however, that different adjusters
need not agree in this context (see e.g. Weisberg
and Derrig, 1998).

If recent and historical insurance information is
carefully logged, an insurer�s automated detection
system can take the decision to investigate claims
on the basis of the entire claim and customer his-
tory. Most insurance companies use lists of fraud
indicators or flags (most often per insurance busi-
ness line), representing a summary of the detection
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expertise. These lists form the basis for systematic
and consistent identification of fraudulent claims
(Derrig, 2002). More systematic data collection
stimulated data-driven initiatives have aimed at
analysing and modelling the formal relations
between fraud indicator combinations and trans-
action suspiciousness, resulting in the implementa-
tion of automated indicator-based fraud screening
models. The claims screen then typically takes the
form of a scoring device, which relates case-based
fraud indicators to levels of suspicion. As indica-
tive information on the level of fraud suspicion
only gradually becomes available during the life
of a claim, the diagnostic system ought to follow
claims throughout their lives (Viaene and Dedene,
2004).

There are three general sources for data that
provide relevant information about policyholders
and claims:

(1) Policy issuing. At underwriting time the
insurer gathers information on customer
and the insured vehicle, typically via stan-
dard form filling. During the complete life-
span of the contract the policyholder is
legally required to disclose all information
that could materially affect the risk to be
covered or its pricing. Examples of items
that are usually recorded are: date of birth,
address, social security number, type of vehi-
cle, date of first driving license, occasional
drivers, and uses of the vehicle. This data
is chiefly used to calculate the premium. It
goes without saying that this information is
also useful for developing customer profiles
that can, for example, afterwards be linked
to claims details. We note that those with a
primary responsibility for marketing are typ-
ically in favour of keeping the amount of
information to be gathered to a strict mini-
mum in order for it to have as little impact
as possible on transaction processing
efficiency.

(2) Claims handling. Data gathering during the
claims handling phase is related to the actual
circumstances of the accident. Information is
primarily collected for later assessment of the
exposure of the insurance company to pay-
ment of the claim by the claims handling
department�s adjusters. Examples of items
that are usually recorded are: time, place of
the accident, report of what occurred, wit-
nesses, and other vehicles involved (names,
plates, companies, etc.). Most insurers follow
the �single point of contact� front office strat-
egy for claims handling, in which a single
customer contact point (e.g. broker, agent,
call center) takes care of all the required
company–customer communication. Well-
structured communication is generally to be
recommended for consistency in gathering
data (e.g. the use of well-structured claim
report statements). Again, there will usually
be a trade-off to be made between processing
efficiency and �lengthy form filling�.

(3) Damage evaluation. Normally there are
industry databases for cars and models that
provide adjusters with a tool for straight-
forward estimation of the cost of parts
and repair. We can therefore assume that
the adjuster is able to size up an initial
claimed amount very soon after the accident
occurs.

It should be clear that the collection of data to
provide the required coherent, enriched view on
claims and their context (reflecting the present
and the past) is the shared responsibility of several
parties within the (extended) insurance enterprise,
e.g. sales channels, marketing offices, claims han-
dling departments, premium rating departments,
etc. Ideally, concern about potential fraud should
somehow come naturally to these parties. Thus,
one of the crucial tasks for any insurer that is seri-
ous about tackling fraud is to make all these par-
ties into stakeholders with respect to fraud
control. The best way to do so is to design incen-
tive mechanisms to be incorporated into your
fraud control program.

If at any time during routine processing of
a claim a certain level of suspicion of fraud is iden-
tified, the claim is scheduled for specialised investi-
gation. This auditing step gives rise to the so-called
audit cost. Currently there are few insurers that
systematically track the cost of auditing their
claims.



570 S. Viaene et al. / European Journal of Operational Research 176 (2007) 565–583
2.2. Claim investigation

It is a specialised fraud investigator�s job to try
to uncover the true nature of a suspicious claim.
The investigative work is mainly guided by the
experience, skill, creativity and situational empa-
thy of the human investigator, which generally
makes work proceed in a non-routine, ad hoc
manner and takes substantial time, effort and
money (Viaene and Dedene, 2004).

The investigator�s workbench is ideally geared
toward this exploratory exercise of analysis and
synthesis. It should provide an agile virtual win-
dow onto a wide range of internal and external
investigative resources (e.g. up-to-date lists of
important contacts, e-mail or bulletin board ser-
vices, database search and navigational capabili-
ties, specialised analytical software).

Tennyson and Salsas-Forn (2002) list the most
commonly used audit methods (e.g. site investiga-
tion, recorded statement, SIU referral, activity
check). Note that some insurers choose to contract
the investigation out to external specialised parties
(Derrig, 2002).

2.3. Negotiation/litigation

With a strong enough case for fraud (using
whatever working definition is chosen) the insurer
may then decide to dismiss or reduce compensa-
tion or even decide to press charges. However,
few fraud cases ever reach the courts. Litigation
and prior special investigation typically involve
lengthy and costly procedure. Insurers are also
fearful of getting involved in lawsuits and losing,
which may compromise their reputation. Insurers
generally prefer to settle cases of soft fraud inter-
nally, i.e. through negotiation, except perhaps in
the most flagrant cases. And even though it may
not be the preferred action for cases of hard fraud,
negotiation may be necessary in the absence of evi-
dence establishing guilt beyond a reasonable
doubt. As pointed out by Clarke (1989), the
insurer�s strategy is then geared toward confront-
ing the claimant with the gathered evidence and
gently developing pressure to make him reduce
or drop the claim. This also ought to deter the
claimant from defrauding on insurance again.
The final decision on what action to take will
typically not be made without explicit consultation
with senior or qualified personnel (e.g. for balanc-
ing prudential against commercial arguments).

Active fraud control is systematically on the
lookout for new fraud opportunities, new schemes
and emerging trends, and is equally agile in
deploying revised fraud controls. This proactivity
is sustained by a number of supporting processes
(e.g. filing, reporting and knowledge discovery in
databases) that continuously monitor the opera-
tional model and are aimed at its continuous
improvement. The use of new technologies (e.g.
data warehousing, data mining and high-speed
networking) helps enable this proactivity. More-
over, automated types of fraud detection should
make it possible to reduce the investigative process
lead-time and allow for more optimal allocation of
scarce investigative resources (Viaene and Dedene,
2004).
3. Cost-sensitive decision making

Statistical modelling and data-driven analysis
allow for the modernization of the fraud detection
process with sophisticated, (semi-)automated,
intelligent tools such as unsupervised and super-
vised pattern learning. Classification is one of the
foremost supervised learning tasks. Classification
techniques are aimed at algorithmically learning
to allocate data objects, described as predictor vec-
tors, to pre-defined object classes based on a train-
ing set of data objects with known class labels.
This is no different for fraud detection (see e.g.
Brockett et al., 2002; Belhadji et al., 2000; Artı́s
et al., 1999; Viaene et al., 2002).

One of the complications that arise when apply-
ing these learning programs in practice, however,
is to make them reduce the cost of classification
rather than the error rate. This is not unimportant.
In many real-life decision making situations the
assumption of equal (mis)classification costs, the
default operating mode for many learners, is most
likely not observed. Medical diagnosis is a proto-
typical example. Here, a false negative prediction,
i.e. failing to detect a disease, may well have fatal
consequences, whereas a false positive prediction,



Table 1
Cost matrix

Observed honest Observed fraud

Predicted honest C0,0(x) C0,1(x)
Predicted fraud C1,0(x) C1,1(x)
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i.e. diagnosing a disease for a patient that does not
actually have it, may be less serious.

A similar situation arises for insurance claim
fraud detection, where an early claim screening
facility is to help decide upon the routing of
incoming claims through alternative claims han-
dling workflows (Derrig, 2002). Claims that pass
the initial screening phase are settled swiftly and
routinely, involving a minimum of transaction
processing costs. Claims that are flagged as suspi-
cious have to pass a costly state verification pro-
cess, involving resource intensive investigation.
Claim screening should thus be designed to take
into account these cost asymmetries in order to
make cost-benefit-wise optimal routing decisions.

Many practical situations are not unlike the
ones above. They are typically characterized by a
setting in which one of the pre-defined classes is
a priori relatively rare, but also associated with a
relatively high cost if not detected. Automated
classification that is insensitive to this context is
unlikely to be successful. For that reason Provost
and Kohavi (1998) and Provost and Fawcett
(2001) argue against using the error rate (a.k.a.
zero–one loss) as a performance assessment crite-
rion, as it assumes equal misclassification costs
and relatively balanced class distributions. Given
a naturally very skewed class distribution and
costly faulty predictions for the rare class, a model
optimized on error rate alone may very well end up
being a useless model, i.e. one that always predicts
the most frequent class. Under these circum-
stances, cost-sensitive decision making is more
appropriate.

3.1. Cost-sensitive claim classification

Many classifiers are capable of producing
Bayesian posterior probability estimates that can
be used to put data objects into the appropriate
pre-defined classes. Since the empirical part of this
paper involves only binary classification we restrict
our discussion to this case.

Optimal Bayes decision making dictates that an
input vector x 2 Rk should be assigned to the class
t 2 {0, 1} associated with the minimum expected
cost (Duda et al., 2000). Optimal Bayes assigns
classes according to the following criterion:
arg min
t2f0;1g

X1

j¼0

pðjjxÞCt;jðxÞ; ð1Þ

where p(jjx) is the conditional probability of class j

given predictor vector x, and Ct,j(x) is the cost of
classifying a data object with predictor vector x

and actual class j as class t.
The available cost information is typically rep-

resented as a cost matrix C, where each row repre-
sents a single predicted class and each column an
actual class. This is illustrated in Table 1 for the
case of our two classes, coded here as 1 for fraud
and 0 for honest. The cost of a true positive is
denoted by C1,1(x), the cost of a true negative
is denoted as C0,0(x), the cost of a false positive
is denoted as C1,0(x), and the cost of a false nega-
tive is denoted as C0,1(x). Note that if Ct,j(x) is
positive it represents an actual cost, whereas if
Ct,j(x) is negative it represents a benefit.

We assume that the cost matrix complies with
the two reasonableness conditions formulated by
Elkan (2001). The first reasonableness condition
implies that neither row dominates any other
row, i.e. there are no two rows for which the ele-
ments of the one of them are all smaller than or
equal to the elements of the other one. The second
reasonableness condition implies that the cost of
labelling a data instance incorrectly is always
greater than the cost of labelling it correctly.

It can be verified that, under the above reason-
ableness conditions, the criterion for classification
in (1) translates into the rule that assigns class 1 to
a data object if

pðj ¼ 1jxÞ > C1;0ðxÞ � C0;0ðxÞ
C1;0ðxÞ � C0;0ðxÞ þ C0;1ðxÞ � C1;1ðxÞ

ð2Þ
and class 0 otherwise. In case of equality we
choose to classify the data object as class 0.

If the available cost information Ct,j is known,
i.e. there is a fixed cost associated with assigning



Table 2
Hypothesized cost structure

Observed honest Observed fraud

Predicted honest 0 Claim amount(x)
Predicted fraud Audit cost(x) Audit cost(x) � claim

amount(x)
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a data object to class t when in fact it belongs to
class j, the rule in (2) defines a fixed classification
threshold in the interval [0, 1]. Dionne et al.
(2003), for example, settled for a simplified costing
scenario using fixed average costs for constructing
their claim screen. In practice, though, claim costs
(including claim amount and audit costs) are
hardly uniform. Besides the stochastic nature of
the losses caused by an accident, it is generally
the case that certain characteristics of the policy-
holder and the automobile are associated with
higher/lower compensation (e.g. more expensive
cars usually have more expensive repair bills). In
cases of policyholders claiming for salary loss,
some may typically receive higher compensation
due to their age or their occupation (Derrig,
2001; Derrig and Kessler, 1994; Dionne et al.,
1993). Audit costs may also vary among claims.
The nature of the work associated with the inves-
tigation process (see Section 2.2) usually leads to
non-uniform audit costs.

For our experiments we use a logistic regression
model to estimate p(j = 1jx). Logistic regression
makes the assumption that the difference between
the natural logarithms of the class-conditional
data density functions is linear in the predictors:

ln
pðxjj ¼ 1Þ
pðxjj ¼ 0

� �
¼ bþ wT x; ð3Þ

where w 2 Rn represents the coefficient vector and
b 2 R the intercept. Note that besides the assump-
tion in (3), logistic regression does not make any
distributional assumptions for the predictors and
has been shown to work well in practice for data
that depart significantly from conventional nor-
mality assumptions (see e.g. Michie et al., 1994).
The class membership probability p(j = 1jx)
underlying classification in (2) can readily be ob-
tained from the model in (3):

pðj ¼ 1jxÞ ¼ expðb0 þ wT xÞ
1þ expðb0 þ wT xÞ ; ð4Þ

where b0 ¼ bþ lnðpðj¼1Þ
pðj¼0ÞÞ, with p(j = 1) and p(j = 0)

the class priors. We can use the class membership
probability specification in (4) to obtain maximum
likelihood estimates for w and b 0. We assume that
the class proportions in the training data are repre-
sentative of the true class priors. We, thus, assume
that we are working on a random training sample.
If this is not the case, we should account for train-
ing set class proportions that are not representa-
tive of the population under consideration and
correct the estimated class membership probability
underlying classification in (2) appropriately. This
bias in the training sample can easily be dealt with
by using a weighted logistic regression.

3.2. Cost structure hypothesis

For our experiments on cost-sensitive claims
screen design we hypothesize the following. When-
ever a new claim arrives, our claim screening facil-
ity makes a prediction, specifically, as to whether
the claim is honest or fraudulent, without any cost.
If the claim is predicted to be honest, then it is set-
tled as stipulated by the obligations of the insur-
ance contract. On the other hand, if it is
predicted to be fraudulent, then the claim is
audited, i.e. the prediction triggers a decision to
acquire more information at a price (i.e. the audit
cost). The claim investigation is generally costly,
but has no (direct) effect on the claim amount.
We make abstraction of any other strategic rea-
sons to audit claims, either by targeting or at ran-
dom. We furthermore assume that by auditing the
claim we can exactly determine the true nature of
the claim, i.e. whether it is honest or fraudulent.
Since the evidence of fraud is a reason for not pay-
ing for the claim, we obtain the cost structure as
specified in Table 2.

For the true negative, i.e. when an honest claim
is labelled as honest, the company pays the
amount that is claimed by the insured party. Since
it is normal practice for an insurance company to
compensate honest claims, it is not considered a
cost to the company. So the cost of a true negative
is 0. When a fraudulent claim is labelled as honest
the compensation should not be paid, but no
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investigation takes places and the claimed amount
is paid to the insured party. So, the cost of a false
negative equals the claim amount. When an honest
claim is labelled as fraudulent, the subsequent
investigation will eventually find out that the claim
is actually honest. Thus, the claim amount is paid
to the insured party and as such the cost of a false
positive amounts to the cost of the investigation.
For a true positive, i.e. when a fraudulent claim
is labelled as fraudulent, the subsequent investiga-
tion will eventually find out that the claim is actu-
ally fraudulent. Therefore, the damages claimed
will not be paid. So, the cost of a true positive is
the cost of the investigation minus the claim
amount.

The criterion for choosing between alternative
claim screen operationalisations is straightfor-
ward. Each operationalisation typically leads to a
different average claim cost for the company. The
one to be chosen is thus the one yielding the lowest
average claim cost, benchmarked against a repre-
sentative data sample.
Table 3
Dummy encoding of coverage

Coverage Cov1 Cov2

Third party liability only 1 0
Third party liability plus arson/

theft/glass breakage
0 1

All damages 0 0
4. Spanish automobile damage claims

4.1. Data set

We have a random sample of claims from a
large Spanish insurer for car damages from acci-
dents that occurred in Spain during the year
2000. All the claims included here were audited
and the insurer classified them in two categories,
i.e. honest or fraudulent, after the investigation
process. The data set contains 2403 claims, of
which: 2229 are legitimate and 174 fraudulent.
This means that about 7.24% of the claims in
our data set are fraudulent. There does not seem
to be unanimous agreement about the actual per-
centage of fraud within the market population of
claims, but the representation of the classes in
the data set is well within the 5–10% range most
often cited and reported in industry surveys. The
insurer labels a claim as fraudulent if the insured
party admits that he willfully misrepresented the
damages. In Spain, legal prosecution of insurance
fraud is extremely rare. When the insurer seriously
suspects fraud, negotiation with the policyholder
usually follows. During the confrontation the
insurer announces that either payment of the claim
will be denied or the contract will be cancelled. In
order to avoid termination of the contract fraud-
sters then usually admit to having defrauded the
insurance company.
4.2. Variable definition

The dependent variable (Fraud) has been coded
using ones for fraudulent claims and zeros for hon-
est claims. The independent variables relate to the
three sources for gathering data discussed in Sec-
tion 2, i.e. the policy issuing, claims handling and
evaluation of damages. The variables in the data
set are very similar to the ones used in Artı́s
et al. (2002), but now we are working with a differ-
ent database and have access to more complete
information, including costing information. The
definition for all independent variables included
in the models is detailed below. Note that we do
not consider fraud related to injuries or medical
treatment. The identification of this kind of fraud
may require a different source. A discussion of the
kind of information that can be taken into account
when looking for fraud in these cases is found in
Derrig and Weisberg (1998).

4.2.1. Policy issuing variables
Coverage: The insured party can choose from

among three basic types of coverage (excluding
personal injury coverage) when he decides to
underwrite an automobile insurance policy: (1)
third party liability only, (2) third party liability
plus arson and/or theft and/or glass breakage,
and (3) all damages. Coverage is encoded using
two dummy variables (Cov1 and Cov2) as shown
in Table 3.
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Vehicle use and type: Information about the
type and use of the insured vehicle is collected by
almost every insurer. It is common to differentiate
between categories of vehicles, such as automo-
biles, motorcycles (potentially subdivided per
power range), vans, trucks, busses, etc. A com-
monly used categorization of the product portfolio
combines use and type of vehicle as follows: (1)
automobile for private use, (2) motorcycles and
(3) other (including vehicles for industrial use, bus-
ses, etc.). This categorization is encoded using two
dummy variables (Veh1 and Veh2) as shown in
Table 4.

Insured person: An important set of variables is
related to the insured driver: the Age of the insured
driver at the time of the accident, the Gender of the
insured driver, the number of previous claims with
the company (Records), and the number of years
that the insured party has been with the company
(Policyage). Continuous variables are not discre-
tised before taking them up in the models.

4.2.2. Claims handling variables

Fault: a dichotomous variable (Fault) indicating
whether the other driver considers himself to be at
fault for the accident.

Legal system: in Spain car damages are often
covered under the no-fault system. Under the no-
fault system the insurer pays for claimed damages
covered by the policy regardless of fault (up to the
specified policy limit). However, there are specific
situations where this system is not applicable and
insurance companies resort to the traditional at-
fault system, where an insurer makes payment
according to each person�s degree of fault in a par-
ticular accident. This, for example, would be the
case if there were more than two vehicles involved
in the accident, or if there were no direct collision
between vehicles. The dichotomous variable (NFS)
indicates whether the no-fault system applies.
Table 4
Dummy encoding of vehicle use and type

Vehicle use and type Veh1 Veh2

Automobile for private use 1 0
Motorcycle 0 1
Other 0 0
Weekend: a dichotomous variable (Weekend)
indicating whether the accident occurred on the
weekend.

Delay of claim report: Article 7 of the Spanish
Insurance Law and Regulation indicates that the
insured party must report an accident within the
first week after its occurrence. Still, insurers in
practice often compensate for covered damages
even when claims are reported more than a week
after the accident occurs. A dichotomous variable
(Delay) indicates whether the claim is reported
to the company within the legally established
period.

4.2.3. Claim costs

The cost structure hypothesis was discussed in
Section 3.2 and synthesised in Table 2. In line with
the previous discussion we introduce the variables
Claim amount and Audit cost. The variable Claim

amount represents the insurer�s valuation of the
damages to the vehicle, once the deductible has
been discounted (if it exists). It reflects the com-
pensation of the claimant, assuming the claim is
legitimate. The variable Audit cost reflects the cost
of investigation necessary to ascertain the true nat-
ure of the claim.

Table 5 provides a summary overview of the
variables included in the Spanish claims data set.

4.3. Sample summary statistics

Table 6 provides us with variable related sum-
mary statistics for the overall data sample of Span-
ish claims and for the two subsamples of
fraudulent and honest claims.

Some of the variables that were used in this
study are inherently correlated (for example, pol-
icy age and age of the policy holder). This is
acceptable in a logistic regression model designed
for prediction, since multicollinearity is known to
have an effect on the variance of parameter esti-
mates. We should, then, be cautious in our inter-
pretation of the significance of parameters that
measure the influence of variables that are corre-
lated (see Kleinbaum and Klein, 2002). Testing
for correlated omitted variables is not performed
here because the data used for prediction are the
same. If one variable were to be omitted from



Table 5
Spanish claims data variables

Name Type Explanation

Fraud Nominal Observed type of claim (fraudulent equals 1, legitimate 0)
Cov1 Nominal Third party liability equals 1, otherwise 0
Cov2 Nominal Third party liability plus arson/theft/glass breakage equals 1, otherwise 0
Veh1 Nominal Automobile for private use equals 1, otherwise 0
Veh2 Nominal Motorcycle equals 1, otherwise 0
Age Continuous Age of insured driver when the accident occurred
Gender Nominal Insured driver is male equals 1, female 0
Records Continuous Number of previous claims of the insured
Policyage Continuous Number of years the insured has been with the company
Fault Nominal The other driver accepts fault for the accident equals 1, otherwise 0
NFS Nominal Use of the no-fault system equals 1, otherwise 0
Weekend Nominal Accident occurring on a weekend equals 1, otherwise 0
Delay Nominal Claim not reported to the company within the legally established period equals 1, otherwise 0
Claim amount Continuous Insurer�s valuation of the vehicle damages (once the deductible has been discounted, if it exists)
Audit cost Continuous Cost of fraud investigation

Table 6
Variable related summary statistics

Variable Total sample (N = 2403) Observed fraudulent (N = 174) Observed honest (N = 2229)

Mean Standard deviation Mean Standard deviation Mean Standard deviation

Cov1 0.23 0.42 0.33 0.47 0.22 0.42
Cov2 0.60 0.49 0.54 0.50 0.60 0.49
Vehuse1 0.79 0.41 0.68 0.47 0.79 0.40
Vehuse2 0.13 0.34 0.26 0.44 0.12 0.32
Age 38.46 14.36 35.74 14.95 38.67 14.30
Gender 0.73 0.38 0.87 0.33 0.82 0.38
Records 1.16 1.49 1.15 1.45 1.16 1.49
Policyage 4.49 6.23 3.41 5.05 4.57 6.30
Fault 0.79 0.41 0.79 0.41 0.79 0.40
NFS 0.79 0.41 0.79 0.41 0.79 0.41
Weekend 0.22 0.41 0.26 0.44 0.22 0.41
Delay 0.29 0.45 0.36 0.48 0.29 0.45
Claim amount 818.14 1361.83 1207.35 1885.15 787.76 1307.94
Audit cost 72.26 66.59 231.71 139.97 59.80 33.46

Table 7
Average cost structure

Observed honest Observed fraud

Predicted honest 0 818.14
Predicted fraud 72.26 �745.88
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the model, the importance of correlated variables
would increase.

Focusing on the subsample of observed fraudu-
lent claims teaches us that each EURO invested in
fraud investigation can potentially yield a return
for the insurance company of €5.21 (=1207.35/
231.71).

The substantive relevance of fraud detection
can be illustrated using the average claim cost
information for the total sample as indicated in
Table 6. Using the averages to populate the
hypothesized cost structure for fraud detection
laid out in Table 2, we arrive at an average cost
structure as depicted in Table 7.

Suppose we have a portfolio of 500,000 auto-
mobile insurance policies. At a yearly claim rate
of 8% this would mean that on average one in
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every twelve policies generates a claim on a yearly
basis, i.e. the portfolio gives rise to an average of
41,667 claims a year. At a fraud rate of 7.24% this
set of claims will on average contain 3017 fraudu-
lent ones. With this figure in mind it would make
sense for us to allocate resources to fraud control
that would allow us to audit 3017 claims a year.

Table 8 compares the economics of fraud con-
trol associated with alternative fraud screening
models. The null model represents the decision
not to invest in fraud control. In this scenario
every honest policyholder would see their yearly
premium increase €4.9 to pay for fraud. In the
ideal case early fraud screening would be able to
refer precisely those 3017 claims that are fraudu-
lent to the fraud auditors, who would then be able
to build up a case for fraud and recommend non-
payment. In other words, of the 3017 claims sched-
uled for audit, 100% are actual fraud cases. Thus,
we termed this case the 100% model. In this case
we would be able to decrease yearly premium rates
up to €4.5. Note that, on average, we spent about
€0.44 per policy to cover the total audit costs. The
0% model is the other extreme, representing the
case where all claims referred for auditing turn
out to be honest, so only costs are incurred and
no savings are realised. The simulation in Table
8 shows that even when our screening model is
not perfect, and works at 70%, for instance, we
would still be able to make a solid case for fraud
detection. In this case 70% of the 3017 cases
Table 8
Economics of fraud detection

No. of
policies

No. of
claims

No. of
frauds

No. of
frauds
detected

Null Model 500,000 41,667 3017 0
100% Model 500,000 41,667 3017

3017
90% Model 500,000 41,667 3017

2715
70% Model 500,000 41,667 3017 2112
50% Model 500,000 41,667 3017 1509
30% Model 500,000 41,667 3017 905
10% Model 500,000 41,667 3017 302
0% Model 500,000 41,667 3017 0

a Note that a negative cost is a benefit for the company.
referred to the auditors turn out to be actual
frauds, in that case the 905 would in fact have been
missed. On a yearly basis we would still save more
than three quarters of a million EUR.
5. Results and discussion

Six possible scenarios are studied. The scenarios
differ as to assumptions concerning the available
cost information early on in the claim screening
process. The presentation sequence of scenarios
follows a natural progression. We start with a first
benchmark Scenario 1 in which we assume that no
cost information is available to the insurance com-
pany at screening time. Scenario 2 models the
other extreme, in which all claim-specific cost
information is assumed to be known at the time
of classification, i.e. the less realistic scenario. Sce-
narios 3 and 4 correspond to cases in which aver-
age cost information is used to classify claims.
Finally, in Scenarios 5 and 6 we assume that indi-
vidual claim amounts are known to the insurance
company at the time of early claim screening, but
audit costs are estimated for each claim on the
basis of the other available information. Results
for the six scenarios are presented in Table 9 for
a comparative analysis. The table contains esti-
mated parameter values, model performance mea-
sures and summary cost information for each
scenario.
No. of
frauds
missed

Total
costa (€)

Average
cost per
policy (€)

Average
cost per
claim (€)

3017 2,468,328.4 4.9 59.2
–

0 �2,250,320.0 �4.5 �54.0
–

302 �1,756,163.4 �3.5 �42.1
905 �769,486.6 �1.5 �18.5

1508 217,190.3 0.4 5.2
2112 1,205,503.4 2.4 28.9
2715 2,192,180.2 4.4 52.6
3017 2,686,336.8 5.4 64.5



Table 9
Estimation results

Scenario 1a Scenario 1b Scenario 2 Scenario 3

Coefficients P value Coefficients P value Coefficients P value Coefficients P value

Constant �3.733 0.000a �3.497 0.000a 42.156 0.000a �3.733 0.000a

Cov1 0.271 0.512 0.299 0.472 �0.388 0.850 0.271 0.512
Cov2 0.547 0.061b 0.529 0.074b 0.210 0.908 0.547 0.061b

Vehuse 1 0.388 0.281 0.387 0.287 �1.540 0.362 0.388 0.281
Vehuse 2 1.526 0.001a 1.495 0.002a 2.401 0.306 1.526 0.001a

Age 0.002 0.754 0.004 0.604 0.021 0.565 0.002 0.754
Gender 0.396 0.095b 0.324 0.175 0.533 0.674 0.396 0.095b

Records 0.085 0.144 0.081 0.168 �0.099 0.747 0.085 0.144
Policyage �0.030 0.097b �0.028 0.120 �0.030 0.722 �0.030 0.097b

Fault �0.548 0.392 �0.527 0.374 �2.584 0.623 �0.548 0.392
NFS 0.174 0.782 0.187 0.747 2.248 0.667 0.174 0.782
Weekend 0.208 0.255 0.121 0.516 �0.864 0.410 0.208 0.255
Delay 0.218 0.194 0.372 0.031a 1.860 0.086b 0.218 0.194
Claim amount* 0.523 0.000a �7.206 0.000a

Audit cost* 23.713 0.000a

Dependent variable: Fraud Dependent variable: Fraud Dependent variable: Fraud Dependent variable: Fraud

Ss = 2403; LL = �604.23;
LL0 = �624.36

Ss = 2403; LL = �583.80;
LL0 = �624.36

Ss = 2403; LL = �28.20;
LL0 = �624.36

Ss = 2403; LL = �604.23;
LL0 = �624.36

LR test = 40.28
(P value = 0.000)

LR test = 81.13
(P value = 0.000)

LR test = 1192.38
(P value = 0.000)

LR test = 40.28
(P value = 0.000)

Predictive accuracy

True Negative 66.44% 67.52% 99.42% 18.35%
False Negative 45.98% 37.90% 0.57% 10.34%
False Positive 33.56% 32.48% 0.58% 81.65%
True Positive 54.02% 62.10% 99.43% 89.66%

Summary cost information (€)

True Negative 0.00 0.00 0.00 0.00
False Negative 107,574.19 34,653.03 1,856.71 12,812.54
False Positive 44,771.44 55,058.70 3,131.83 109,204.75
True Positive �81,296.42 �146,405.07 �168,019.94 �160,550.77
Total cost 71,049.21 �56,693.34 �163,031.40 �38,533.48
Average cost per claim 29.57 �23.59 �67.85 �16.04

(continued on next page)
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Table 9 (continued)

Scenario 4 Scenario 5 Scenario 6

Coefficients P value Coefficients P value Coefficients P value Coefficients P value

Constant �3.497 0.000a �2.818 0.000a �2.888 0.000a �1.509 0.000a

Cov 1 0.299 0.472 0.156 0.000a 0.144 0.000a 0.124 0.121
Cov 2 0.529 0.074b 0.138 0.000a 0.115 0.000a 0.087 0.144
Vehuse 1 0.387 0.287 0.020 0.565 0.000 0.990 �0.063 0.332
Vehuse 2 1.495 0.002a 0.014 0.787 �0.115 0.003a �0.084 0.315
Age 0.004 0.604 0.001 0.441 0.000 0.606 0.002 0.063b

Gender 0.324 0.175 0.055 0.027a 0.032 0.094b �0.000 0.994
Records 0.081 0.168 �0.001 0.912 �0.007 0.158 0.027 0.016a

Policyage �0.028 0.120 �0.002 0.234 �0.000 0.955 �0.002 0.472
Fault �0.527 0.374 0.016 0.808 0.061 0.229 �0.215 0.072b

NFS 0.187 0.747 0.013 0.843 0.005 0.916 0.143 0.203
Weekend 0.121 0.516 0.022 0.335 0.009 0.608 �0.009 0.780
Delay 0.372 0.031a 0.034 0.102 0.005 0.776 �0.025 0.392
Claim amount* 0.523 0.000a 0.321 0.000a 0.263 0.000a 0.480 0.000a

Audit cost*

Dependent variable: Fraud Dependent variable:
Audit cost*

Dependent variable:
Audit cost* (NF)

Dependent variable:
Audit cost* (F)

Ss = 2403; LL = �583.80;
LL0 = �624.36

Ss = 2403; R2 = 31.87% Ss = 2229; R2 = 36.62% Ss = 174; R2 = 84.58%

LR test = 81.13
(P value = 0.000)

F(13,2389) = 85.96
(P value = 0.000)

F(13,2215) = 98.46
(P value = 0.000)

F(13,160) = 67.51
(P value = 0.000)

Predictive accuracy

True Negative 62.31% 57.16% 59.47%
False Negative 33.33% 28.74% 29.31%
False Positive 37.69% 42.84% 40.53%
True Positive 66.67% 71.26% 70.69%

Summary cost information (€)

True Negative 0.00 0.00 0.00
False Negative 21,999.75 18,845.18 19,466.63
False Positive 62,990.15 69,203.59 67,419.03
True Positive �156,822.11 �158,708.17 �158,281.93
Total cost �71,832.20 �70,659.41 �71,396.27
Average cost per claim �29.89 �29.40 �29.71

Claim amount* = loge(claim amount/1000); audit cost* = loge(audit cost/1000); Ss = sample size; LL = log-likelihood; LL0 = restricted log-likelihood.
a Indicates significance at the 5% level.
b Indicates significance at the 10% level.
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5.1. Scenario 1: cost-insensitive classification

This scenario assumes that no cost information
is available to the insurance company at the time
of claim classification. The company is left with
no other option than to use an error-based classi-
fier. A logistic regression model is used to predict
the probability of claim fraud using the predictors
listed in Table 5 as inputs to the model except for
the claim amount and the audit cost.

For Scenario 1 all parameter signs are in accor-
dance with what is expected and with what was
obtained in previous studies (see Artı́s et al.,
2002). The likelihood ratio test is 40.28 with 12
degrees of freedom, which indicates that a signifi-
cant improvement occurs in the model when one
includes the explanatory variables, if one compares
it with the restricted model with only the constant
term. The policy coverage, the type of vehicle, gen-
der of the insured party and the number of years
the insured party has been with the company
appear to be statistically significant with reference
to the probability of fraud.

An incoming claim is labelled as fraud, and will
undergo further examination, if the predicted
probability of fraud for the claim exceeds a classi-
fication threshold of 0.50; otherwise it is classified
as honest and does not undergo further examina-
tion. For evaluation purposes, each claim in the
data set is classified in this manner and the cost
of classification of each claim is added to yield
the total cost of classification for this scenario.
This cost-insensitive scenario then corresponds to
a total positive cost of €+210,079.63. Closer exam-
ination reveals, however, that this model actually
classifies all claims as honest claims and, thus,
seems useless for fraud detection purposes. We
may try to improve the probability estimation
model by including claim amount among the pre-
dictors. Claim amount information could easily
and accurately be obtained by adhering to a policy
of sending an adjuster to the auto repair shop to
assess the damages early in a claim�s lifecycle each
time. In this case, however, this did not have any
effect on the total cost.

Heuristically fixing the classification threshold
at 0.0724, the percentage of fraud cases in the ran-
dom sample, an intuitive choice, yields better
results. Using the probability estimation model
without inclusion of the claim amount among the
predictors then yields a correctly classified percent-
age of 65.5%, i.e. 54.0% and 66.4% for the subsam-
ples of fraud and honest cases, respectively. This
scenario, labelled Scenario 1a in Table 9, corre-
sponds to a total positive cost of €+71,049.20.
Including the claim amount among the predictors
of the probability estimation model further
improves the results to yield a total negative cost
of €�56,693.34, i.e. a profit for the company.
The latter scenario is labelled Scenario 1b in Table
9.

5.2. Scenario 2: full costing

This scenario assumes that the insurance com-
pany has access to all individual cost information,
i.e. claim amount and audit cost, at claim screen-
ing time.

A logistic regression model is used to predict the
probability of claim fraud using all the predictors
listed in Table 4 as inputs to the model, i.e. with
inclusion of the claim amount and audit cost.
The threshold value for classification is then
calculated according to the theory set out in Sec-
tion 3, i.e. by taking into account the available
information on the individual audit cost and claim
amount for each claim. The model�s performance
is at a correctly classified percentage of 99.42%,
with 99.43% and 99.42% for the subsamples of
fraud and honest cases, respectively. This scenario
then corresponds to a total negative cost of
€�163,031.40. Note that this scenario is not of
great practical value, since the exact cost of inves-
tigation for a particular claim is usually only
known at the final stages of the investigation itself,
and, as a rule, is directly related to the presence of
fraud itself. This scenario does, however, consti-
tute a benchmark or target for the following
cost-sensitive claim screening scenarios.

5.3. Scenario 3: average costing

This scenario assumes that the insurance com-
pany has access to average claim amount and aver-
age audit cost information at claim screening time.
For the Spanish automobile data at hand the
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average audit cost amounts to €72.26 and the aver-
age claim amount is €818.14.

To estimate the probability of fraud for a claim
a logistic regression model is used that includes all
the predictors listed in Table 4 except for the claim
amount and audit cost. Since the available cost
information is independent of the nature of the
claim to be screened, the classification threshold
above which a claim is labelled as fraud is fixed
for this scenario (see Section 3), at 0.04 in this case.
Table 9 reveals a poor percentage of correctly clas-
sified cases, 23.51%, i.e. 89.66% and 18.35% for the
subsamples of fraud and honest cases, respectively.
We note that with a threshold fixed at a notably
lower level than the one used in Scenarios 1a and
1b, i.e. 0.0724, the number of cases mislabelled
as fraud is notably higher. The total cost for this
scenario then equals €�38,533.48.

5.4. Scenario 4: individual claim amount

and average audit cost

This scenario assumes that the insurance com-
pany has individual claim amount information
and average audit cost information for each
incoming claim at screening time.

A logistic regression model is used to predict the
probability of claim fraud using all the predictors
listed in Table 4 as inputs to the model except
for the audit cost. The threshold value for classifi-
cation is then calculated by taking into account the
available information on the individual claim
amount and average audit cost. This scenario
yields a percentage for correct classification of
62.63%, i.e. 66.67% and 62.31% for the subsamples
of fraud and honest cases, respectively. This sce-
nario then corresponds to a total negative cost of
€�71,832.20. Comparing this result to the one
obtained for Scenario 1b, we observe that taking
into account individual claim amount information
for the determination of the classification thresh-
old results in a significant positive effect.

5.5. Scenario 5: individual claim amount

and single-model predicted audit cost

This scenario differs from the previous one in
that now, instead of simply assuming the audit
cost to coincide with the average, the audit cost
is predicted using a linear regression model based
on the predictors listed in Table 4, excluding the
audit cost. The estimation results for this linear
regression model are also listed in Table 9. The fit-
ted audit cost model, however, shows a low good-
ness-of-fit with an R2 of 31.87%. Predicting audit
costs with the variables at hand does not seem
an easy task. Looking at the significance of the
estimated coefficient parameters, we note a signif-
icant effect only for the type of coverage, the gen-
der of the insured party, the claim amount and the
intercept. Including predictors relating to the
investigation routines employed (see e.g. Tennyson
and Salsas-Forn, 2002) would probably be helpful,
but this information is not usually available early
in the life of a claim.

The probability of claim fraud is predicted as in
Scenario 4. The threshold value for classification
takes into account the available information on
the individual claim amount and the predicted
audit cost. With this threshold we obtain a cor-
rectly classified percentage of 58.18%, i.e. 71.26%
and 57.16% for the subsamples of fraud and hon-
est cases, respectively. This scenario then corre-
sponds to a total negative cost of €�70,659.41.
This represents a slight worsening compared to
the setup in Scenario 4. Improved audit cost pre-
diction would probably improve the cost figure.

5.6. Scenario 6: individual claim amount and

multiple-model predicted audit cost

This scenario tries to improve on the audit cost
prediction by using two separate linear regression
models, i.e. one for the subsample of fraud cases
and another one for the subsample of honest cases.
The rationale underlying this decision is that audit
costs tend to show different behaviour depending
on whether a claim is actually fraudulent or not.
At screening time the expected audit cost eac(x)
for an incoming claim with predictor vector x is
then calculated as follows:

eacðxÞ ¼ p̂ðxÞ � acfðxÞ þ ð1� p̂ðxÞÞ � achðxÞ; ð5Þ

with p̂ðxÞ the estimated probability of fraud using
the setup of Scenario 4, and acf(x) and ach(x)
the audit cost predictions according to the linear
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regression models for the subsamples of fraud and
honest cases, respectively. The audit cost model fit-
ted to the fraud cases shows a high goodness-of-fit
with an R2 of 84.58%. The R2 for the model fitted
to the honest cases is significantly worse with an R2

of 36.62%.
Once the expected audit cost for an incoming

claim is calculated, it is used together with the indi-
vidual claim amount information and the proba-
bility of claim fraud (predicted as in Scenario 4)
for the calculation of the cost-sensitive classifica-
tion threshold. This scenario yields a percentage
for correct classification of 58.59%, i.e. 70.69%
and 59.47% for the subsamples of fraud and hon-
est cases, respectively. This scenario then corre-
sponds to a total negative cost of €�71,396.27.
Thus, despite the audit cost models� improved
goodness-of- fit vis-à-vis the situation in Scenario
5, the overall performance of classification in terms
of the total cost is not improved.

Table 9 contains a summary of the cost perfor-
mance information for all the explored scenarios.
It is clear that cost-sensitive classification, when
compared to cost-insensitive classification, repre-
sents a significant improvement in terms of the
profitability of claim screening. For example,
results for the �purest� of cost-insensitive classifica-
tions (cf. Scenario 1) even reveal a non-profitable
fraud screening system. In defence of the latter,
though, one must keep in mind the positive deter-
rence effect that has not been accounted for in this
study. Our results certainly underline the principal
conclusion of this study: that cost-sensitive deci-
sion making represents a clear improvement over
error-based decision making.

Still, the performance gap between the bench-
mark result for Scenario 2 and the best realistic
alternative, i.e. Scenario 4, still amounts to
€91,199.20, leaving significant room for further
improvement. From the analysis of Scenario 5
we may hypothesize that extending the predictor
set and/or using alternative (non-linear) modelling
techniques are necessary to further improve the
performance of audit cost prediction.

We end this discussion by pointing to the
importance of the probability estimation exercise.
Insight into its role can be gained by looking at
the Brier inaccuracy (Hand, 1997) for the three
logistic regression models that figured in the above
scenarios: (1) model 1 uses the predictors listed in
Table 4, except for the claim amount and the audit
cost as inputs to the model; (2) model 2 extends the
predictor set of model 1 with the claim amount;
and (3) model 3 adds the audit cost to the predic-
tor set of model 2.

The Brier inaccuracy (B) is derived from the
Brier score (Bs), which is defined as follows for
data D ¼ fðxi; tiÞgN

i¼1 with predictor vectors
x 2 Rn and class labels t 2 R:

Bs ¼
1

N

XN

i¼1

X1

j¼0

ððp̂ðt ¼ jjxiÞ � pðt ¼ jjxiÞÞ2. ð6Þ

This score coincides with the mean squared error
of the probability estimates. However, since we
do not have access to the true class membership
probabilities and only the class labels are known,
p(t = jjxi) is replaced in (6) by d(j,ti), which equals
1 if both arguments match, 0 otherwise. This oper-
ation yields the Brier inaccuracy B (range [0, 2]; 0 is
optimal), which equals 0.132, 0.129, 0.004 for
models 1, 2 and 3, respectively; or, alternatively,
1.659, 1.600, 0.028 and 0.012, 0.014, 0.002 for,
respectively, the fraud and honest subsamples.

The gap between benchmark model 3 and the
other models clearly leaves room for further
improvement; improvement that, again, may come
from extending the predictor set and/or using
alternative (non-linear) modeling techniques.
Moreover, the contrast in performance for the
fraud and honest subsamples suggests that experi-
mentation with models trained on data sets that do
not reflect the natural data proportion between
fraud and honest cases, i.e. data sets in which
fraud cases are oversampled or receive a higher
weight, may be beneficial.
6. Conclusions

Many P&C insurance companies are looking
for new strategies to tackle claim fraud. Some
companies have already implemented automated
fraud screening systems based on analysis of char-
acteristics of such interconnected business objects
as claims, insured parties, policies and vehicles.
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These systems, often based on traditional quanti-
tative techniques such as logistic regression and
linear or quadratic discriminant analysis, will ulti-
mately be evaluated in terms of profitability. Few,
however, have explicitly included cost consider-
ations in their modelling. In this paper, we looked
at the design of claim fraud screening for a typical
property and casualty insurance company using
cost-sensitive classification. This paper aimed at
showing the real value of cost-sensitive claim fraud
screening and at providing guidance on how to
operationalise this strategy.

We started this paper with a description of the
problem domain. This was followed by a theoreti-
cal exposition on cost-sensitive claim classification.
We used a data set of real-life closed Spanish auto-
mobile insurance claims that had previously been
investigated for suspicion of fraud by domain
experts and for which cost information was
obtained to test the theory empirically. We set
out to analyse the effects of taking into account
information on damages and audit costs at screen-
ing time. In the empirical part of the paper we con-
trasted six cost incorporation scenarios based on
different assumptions concerning the available cost
information at claim screening time.

The results obtained from our experiments lead
us to the following important conclusions: (1) The
expected cost of implementing a cost-insensitive
claim fraud screen can be positive, i.e. unprofitable
for the company, taking abstraction of the deter-
rence effect of fraud screening. (2) With claim
amount information available early on in the
screening process detection rules can be accommo-
dated to increase expected profits. (3) The highest
profits are obtained for an insurer with perfect
access to complete claim dependent cost informa-
tion, i.e. claim amount and audit cost, early on
in the claim screening process. This scenario is
not realistic though, since the exact cost of investi-
gation for a particular claim can only be known at
the final stages of the investigation itself. (4) Aver-
age costing, i.e. using only information on average
claim amount and average audit costs, proved to
be the worst case among all benchmarked cost-
sensitive screening scenarios. Still, even this sce-
nario proved to be profitable. (5) Our results show
that, currently, an insurer who has access to indi-
vidual claim amount information and average
audit cost information for each incoming claim
at screening time may gain most from his fraud
screening. The expected benefits obtained under
this scenario were very similar to those obtained
for two somewhat more sophisticated scenarios
that rested on a multiple regression estimation of
the claim audit costs. (6) From the latter two sce-
narios, we hypothesize that extending the predic-
tor set and/or using alternative (non-linear)
modelling techniques are necessary to further
improve the performance of audit cost prediction
for cost-sensitive decision making. (7) The same
can be said for the class membership probability
estimation underlying cost-sensitive decision
making.
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