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A new MILP-based approach for Unit Commitment
in power production planning.

Ana Viana and João Pedro Pedroso

Abstract—This paper presents a novel, iterative optimisation
algorithm for thermal unit commitment in power generation
planning. The algorithm, based on a mixed-integer formulation
of the problem, considers piecewise linear approximations of the
quadratic fuel cost function that are dynamically updated in an
iterative way, converging to the optimum.

From extensive computational tests in a broad set of bench-
mark instances of this problem, the algorithm is found to be
flexible and capable of easily incorporating different problem
constraints. Moreover, it can solve large problems.

Most importantly, optimal solutions were obtained for several
well-known benchmark instances that are not known to have
been solved to optimality before.

Index Terms—Unit Commitment, Combinatorial Optimisation,
Mixed-integer Programming.

NOTATION

Constants

• T – length of the planning horizon.
• T = {1, . . . , T} – set of planning periods.
• U – set of units.
• Pmin

u , Pmax
u – minimum and maximum production levels

of unit u.
• T on

u , T off
u – minimum number of periods unit u must be

kept switched on/off.
• rup

u , rdown
u – maximum up/down rates of unit u.

• Dt – system load requirements in period t.
• Rt – spinning reserve requirements in period t.
• au, bu, cu – fuel cost parameters for unit u.
• ahot

u , acold
u – hot and cold start up costs for unit u.

• tcold
u – number of periods after which start up of unit u

is evaluated as cold.
• yprev

u – previous state of unit u (1 if on, 0 if off).
• tprev

u – number of periods unit u has been on or off prior
to the first period of the planning horizon.

Variables

• Decision variables:
– yut – 1 if unit u is on in period t, 0 otherwise.
– put – production level of unit u, in period t.

• Auxiliary variables1:
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1Due to model structure, some of the binary variables can be relaxed to
the set [0, 1], as discussed later.

– xon
ut , x

off
ut – 1 if unit u is started/switched off in period

t, 0 otherwise;
– shot

ut – 1 if unit u has a hot start in period t, 0
otherwise;

– scold
ut – 1 if unit u has a cold start in period t, 0

otherwise;
– pmax

ut – maximum production levels of unit u in
period t (due to ramp constraints).

• Production costs
– F (put) – fuel cost of unit u in period t.
– S(xoff

ut , yut) – start up cost of unit u in period t.
– Hut – shut down cost of unit u in period t.

I. INTRODUCTION

THE Unit Commitment problem (UCP) is the problem of
deciding which power generator units must be commit-

ted/decommitted over a planning horizon (that lasts from 1 day
to 2 weeks, generally split into periods of 1 hour each). The
production levels at which units must operate (pre-dispatch)
must also be determined for optimising a given objective
function, and the committed units must generally satisfy the
forecasted system load and reserve requirements, as well as a
large set of technological constraints.

This problem has major practical significance because the
effectiveness of the schedules obtained has strong economical
impact for any power generation company. Due to this reason
and to its high complexity, it has received considerable re-
search attention. Even after several decades of intensive study,
it is still a rich and challenging topic of research.

Proposed optimisation techniques for unit commitment en-
compass very different paradigms, ranging from exact ap-
proaches and Lagrangian relaxation to some rule of thumb, or
very elaborate heuristics and metaheuristics. In the past, the
combinatorial nature of the problem and its multi-period char-
acteristics prevented exact approaches from being successful in
practice: they resulted in very inefficient algorithms that were
only capable of solving small problem instances of virtually
no practical interest. Heuristic techniques, as those based in
priority lists, did not totally succeed neither, as they tend to
lead to low quality solutions. Concerning meta-heuristics, they
had very promising outcomes when they were first explored.
The quality of the results was better than the ones achieved by
well established techniques, and good solutions were obtained
very quickly. Some drawbacks can however be pointed out
when metaheuristics are used. One major drawback, if one
considers that the ultimate goal is to design techniques that
can be accepted and used by a company, is the dependence
of metaheuristics on parameter tuning. Tuning the parameters
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is time consuming and the complex tuning procedure requires
deep knowledge on the algorithm implemented. Furthermore,
accurate tuning is vital for good algorithm performance. A
second drawback has to do with the lack of information
metaheuristics provide in terms of solution quality (i.e., how
far it is from the optimal solution). Some proposals have been
made to soften the referred drawbacks; but this still remains
an open line of research.

Currently, the dramatic increase in efficiency of mixed-
integer programming (MIP) solvers encourages thorough ex-
ploitation of their capabilities. Some research has already been
directed towards the definition of alternative, more efficient,
mixed-integer linear programming (MILP) formulations of
the problem (see [1], [2]). Extensive surveys of different
optimisation techniques and modelling issues are provided in
[3] and [4].

This paper proposes a MIP formulation for quadratic opti-
misation of the UCP, and also presents a method based on a
new linear formulation, which shows to be effective at solving
problems of relevant practical size. Instead of considering a
quadratic representation of the fuel cost, the linear model
considers a piecewise linear approximation of the function
and, in an iterative process, updates it by including additional
pieces. Function updating is based on the solutions obtained
in the previous iteration.

The solution approach developed in this research was tested
on several well-known test instances that are not known to
have been solved to optimality before. For each of them, the
new approach iteratively converged to the optimal solution,
even for the largest benchmark instances.

II. PROBLEM VARIANTS

Different modelling alternatives, reflecting different problem
issues such as fuel, multiarea and emission constraints have
been published (e.g. [5], [6], [7]). More recently, security
constraints [8] and market related aspects [9] have been
addressed.

The decentralised management of production has also
brought up new issues to the area [10] and in some markets the
problem is now reduced to single-unit optimisation. However,
for several decentralised markets the traditional problem is still
very much similar to that of the centralised markets [1], [2];
the main difference is the objective function that, rather than
minimising production costs, maximises total welfare. There-
fore, the techniques that apply for centralised management of
production will also be effective at solving many decentralised
market production problems.

This paper considers the centralised UCP model. The objec-
tive of the problem is to minimise total production costs over a
given planning horizon. The total production cost is expressed
as the sum of fuel costs (quadratic functions that depend on
the production level of each unit) and start-up costs. Start-
up costs are represented by constants that depend on the last
period the unit was operating. Besides uninterrupted operation
of the unit (i.e., no start-up cost2), two constants are defined:

2Notice that even in this situation there is a fixed component in the quadratic
cost function.

one constant for hot start-up costs, when the unit has been off
for a number of periods smaller or equal to a given value, and
the other for cold start-up costs.

The following constraints will be included in the formula-
tion: system power balance demand, system reserve require-
ments, unit initial conditions, unit minimum up and down
times, generation limits and ramp constraints. For a standard
quadratic mathematical formulation readers can refer to [11].

III. MILP FORMULATIONS FOR THE UCP

For many years, solution approaches for the UCP were
mainly based on Lagrangian relaxation and (meta)heuristics.
This was due to the non-existence of exact approaches capable
of coping with the computational complexity of the problem
within reasonable resources. However, dramatic improvement
of MIP solvers in recent years suggested that an effort should
be applied to study “good” mathematical formulations of the
problem, so that it can be handled by relevant solvers.

The first requirement is the linearisation of the many non-
linearities in the problem; namely, minimum up and down
constraints, minimum and maximum power production con-
straints (for problems that consider ramps), and the objective
function.

Several efforts have been made to improve and strengthen
the formulation of the UCP; pioneering work can be found
in [12]. This work considers three sets of binary variables that
model, namely, the state of each unit, start-ups and shut-downs.
The quadratic fuel cost function is represented by a piecewise-
linear cost function. Initial attempts to solve the problem with
standard branch-and-bound (B&B) proved to be inefficient. As
a result, an extended version of the algorithm that considers
problem-specific characteristics in the branching process was
proposed. Results are provided for problems up to 16 units
and 14 time periods.

A thorough discussion on model linearisation, considering
a perfect electricity spot market and a single unit (self-
scheduling), is given in [13]. The quadratic cost function
is approximated by a piecewise linear cost function with L
segments. Three extra sets of variables are required when
compared to the model in [12]: 0/1 variables equal to 1 if
the unit is started-up at the beginning of hour t and it has
been off for k hours; integer variables to set the number of
hours the unit has been on or off at the end of hour t; and, 0/1
variables to equal to 1 if the power output of the unit at hour
t exceeds segment l of the piecewise linear approximation of
the quadratic cost function.

The authors of [14] focus their study on an accurate
modelling of start-up and shut-down power trajectories (that
depend on ramps). Similar to [13], [15] presents a model that
can adapt to centralised or competitive markets. The model is
validated with a 27 unit × 24 hour instance, but no information
on the efficiency of the algorithm is reported. Later, a model
introduced in [1] reduces the number of binary variables as
well as the number of constraints of previous formulations. Wu
presents in [16] a segment partition methodology to determine
segment partition points that shall provide a tighter piecewise
linear approximation of the quadratic cost function. In such
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case the quadratic cost function is still approximated by a
piecewise linear cost function with L segments, but each
segment may have a different length.

Still within the scope of MILP formulations for the UCP, a
study on the quality of previously proposed valid inequalities
is made in [17]. In particular, the authors focus on valid
inequalities used for minimum up and down time constraints
and show how some inequalities can be improved. Other
work in this area can be found in [18]. It concludes that by
adding “perspective cuts” (a family of valid inequalities) to the
problem, effectiveness and efficiency of the solvers improve.
The same authors (together with Lacalandra) proposed a MILP
formulation in [2] in which the “perspective cuts” concept is
used to approximate the nonlinear objective function.

IV. NEW MILP FORMULATION

Although quality of MILP solvers has improved dramati-
cally in recent years, mathematical models such as the one
given in [11] are not suitable for those solvers due to their
many nonlinearities; to fully utilise MILP solvers, these non-
linearities must be removed from the model, if possible. In
the following subsections we present and discuss a linearised
mathematical model for the UCP. The model was implemented
in AMPL (A Modelling Language for Mathematical Program-
ming) [19], and the CPLEX MIP solver was used for its
solution.

A. System constraints

Two types of system constraints are considered: system
power balance (Constraints (1)) and spinning reserve require-
ments (Constraints (2)). The impact of ramp constraints can
be considered when setting reserve constraints; this can be
achieved by using variable pmax

ut , rather than the constant
Pmax
u , in Equation (2).

∑
u∈U

put = Dt, ∀t ∈ T , (1)∑
u∈U

pmax
ut ≥ Dt +Rt, ∀t ∈ T , (2)

with:

pmax
ut ≤yutPmax

u , ∀u ∈ U , for t = 2 . . . T,

pmax
ut ≤pu,t−1 + yu,t−1r

up
u + Pmax

u (1− yu,t−1),

∀u ∈ U , for t = 2 . . . T.

B. Technical constraints

Technical constraints represent limitations of the generating
units and constrain the overall system performance (e.g., units
minimum up and down times, production limits, and ramps).

1) Minimum up and down times: When a unit u is switched
on (off), it must remain on (off) for at least T on

u ( T off
u )

consecutive periods. Constraints (3) and (4) model this aspect
for the initial state, while constraints (5) and (6) do the
same for the remaining planning horizon. In Equation (3) θon

u

represents max(0, T on
u −tprev

u ), and θoff
u in Equation (4) stands

for max(0, T off
u − tprev

u ).

yut = 1, ∀u ∈ U : yprev
u = 1, for t = 0, . . . , θon

u , (3)

yut = 0, ∀u ∈ U : yprev
u = 0, for t = 0, . . . , θoff

u . (4)

In Equations (5) and (6), τon
ut and τoff

ut stand for max(t−T on
u +

1, 1) and max(t− T off
u + 1, 1), respectively.

t∑
i=τon

ut

xon
ui ≤ yut, ∀u ∈ U ,∀t ∈ T , (5)

t∑
i=τoff

ut

xoff
ui ≤ 1− yut, ∀u ∈ U ,∀t ∈ T . (6)

2) Generation limits and ramps: Power production levels of
thermal power units are within a range defined by the technical
minimum and maximum production levels in Constraints (7).

Pmin
u yut ≤ put ≤ Pmax

u yut, ∀u ∈ U ,∀t ∈ T . (7)

If ramps are considered, i.e., if the difference of values in
production levels is limited to a maximum value in consecutive
periods, additional constraints are needed. Constraints (8) and
(9) model, respectively, maximum up and down rates for each
unit in consecutive periods of time.

put − pu,t−1 ≤ rup
u , ∀u ∈ U ,∀t ∈ T , (8)

pu,t−1 − put ≤ rdown
u , ∀u ∈ U ,∀t ∈ T . (9)

C. Additional constrains

A set of additional constraints that allow the computation
of auxiliary variables also allows relaxation of integrality for
variables xon

ut and xoff
ut , as discussed below.

1) Setting and computation of variables shot
ut and scold

ut :
Constraints (10) states that every time a unit is switched on,
a start-up cost will be incurred.

shot
ut + scold

ut = xon
ut , ∀u ∈ U ,∀t ∈ T . (10)

Constraints (11) determine the start cost of each unit, i.e.,
decide whether it is a cold or a hot start cost. It will be a cold
start cost if the unit remained off for tcold

u periods of time, or
more; and a hot start cost otherwise.

yut −
t−1∑

i=t−tcoldu −1

yui ≤ scold
ut , ∀u ∈ U ,∀t ∈ T . (11)

2) Setting and computation of variables xon
ut and xoff

ut :
Constraints (12) determine each unit’s switch-on variables, and
Constraints (13) determine the switch-off variables.

yut − yu,t−1 ≤ xon
ut , ∀u ∈ U ,∀t ∈ T , (12)

xoff
ut = xon

ut + yu,t−1 − yut, ∀u ∈ U ,∀t ∈ T . (13)

3) Relaxation of integrality constraints on variables xon
ut

and xoff
ut : Constraints (10) and (13) allow relaxation of vari-

ables xon
ut and xoff

ut . In fact, if shot
ut and scold

ut are defined as
binary variables, through constraint (10) xon

ut will always be 0
or 1. Furthermore, through constraints (13), since yut is binary,
xoff
ut will always be set to 0 or 1, for feasible yut.
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D. Objective function

The objective of this problem is to minimise the total
production cost over the planning horizon, expressed as the
sum of fuel, start-up and shut-down costs (Equation (14)).

minimize
∑
t∈T

∑
u∈U

(
F (put) + S(xoff

ut , yut) +Hut

)
. (14)

We consider the traditional quadratic function for F (put),
as follows:

F (put) =

{
cup

2
ut + buput + au if yut = 1,

0 otherwise. (15)

Shut-down costs will be set to zero and start-up costs are
modelled as in [20]:

S
(
xoff
ut , yut

)
= yut(1− yu,(t−1))Sx(xoff

ut ). (16)

Sx depends on the last period the unit was operating as
follows:

Sx =

{
ahot
u if xoff

ut ≤ tcold
u ,

acold
u otherwise. (17)

In this work, the following linearised function (equivalent
to the one in [20]) is used to represent start-up-costs:

S
(
xoff
ut , yut

)
= ahotu shotut + acoldu scoldut . (18)

V. ITERATIVE LINEAR ALGORITHM

The new solution approach considers a piecewise linear
approximation of the quadratic fuel cost function (see Equa-
tion (15)), where a linear MILP model is iteratively solved.
The MILP will provide increasing precision at each iteration,
until reaching a user-defined proximity to the quadratic func-
tion.

As the cost function is convex, if we find a linear function
tangent to it, and constrain the cost to be greater than the
value of the linear function, we have a lower approximation
of the cost. The process proposed is to dynamically find linear
functions, tangent to the true cost at points where it is being
underestimated, and add them to a set. We then impose that
the cost of any production level p must be greater than the
maximum of those linear functions, evaluated at p.

For clarity, let us remove the indices u, t identifying the
generator and time period, respectively. For any generator and
any period, we start by approximating its cost by means of
two linear functions: one going through (Pmin, F (Pmin)),
and another going through (Pmax, F (Pmax)), as shown in
Figure 1.

After solving the problem using this approximation, we
obtain a production level for a unit of, say, p. The operating
cost at this point will be underestimated as the value of the
highest of the straight lines at p; in Figure 1 this is given
by the value F̃ . In order to exclude this point from the
feasible region, we add another linear function to our set:
the line tangent to the quadratic function, evaluated at p, and
represented in blue in Figure 2. When we solve the problem
with this additional constraint added, the solution may change;
the optimal production level for this same unit may now be

C
os

t

Power
p

F̃

Pmin

F (Pmin)

Pmax

F (Pmax)

Fig. 1. Initial approximation of the cost function by two straight lines,
going through the minimum and maximum operating power of the unit. If the
current production level for this unit is p, its cost (in this iteration) will be
approximated by F

C
os

t

Power
pp

F (p)

p′

F̃ ′

Pmin

F (Pmin)

Pmax

F (Pmax)

Fig. 2. Approximation of the cost function by the maximum of three straight
lines, after obtaining production at level p on the previous iteration.

another possible value p′, as shown in Figure 2. As we add
more and more tangents and select the highest, we converge
to an exact representation of the true cost function.

A. Algorithm description

For each unit, we start with the corresponding quadratic
fuel cost function F (p) approximated by two linear func-
tions, the first being tangent to F (p) at the minimum
power (Pmin, F (Pmin)), and the second being tangent at
(Pmax, F (Pmax)) (as shown in Figure 1).

Thereafter, more straight lines are iteratively added into a
set, until having one iteration with all production levels being
correctly evaluated, up to an acceptable error.

Let P be a set of numbers identifying the power at which
new tangents to the true cost are added; initially P =
{Pmin, Pmax}. At a given iteration, let the production level
obtained in the MILP solution be p, and the corresponding cost
approximation (i.e., the maximum of the linear cost functions
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evaluated at p) be F̃ . We add the point p to the set P whenever
|F (p) − F̃ |/F (p) > ε, were ε is a user-defined tolerance.
Otherwise, we accept the current approximation as accurate
enough.

In the MILP solved at each iteration, we add the following
constraints (making sure that they are only imposed if the
corresponding unit is switched on at the period considered):

Fut ≥ αun + βun(put − p̄n), for n = 1, . . . , |P|,

now using the actual variables put for production level and
Fut for production cost, of a given unit at a given period.
For a given unit, and for each production level p̄n where the
approximation does not satisfy the tolerance, the constants of
the above straight lines are obtained by:

αun = cup̄
2
n + bup̄n + au,

βun = 2cup̄n + bu.

The algorithm stops when in a given iteration the set P
is unchanged, i.e., no straight lines are added, meaning that
the production costs are all already being correctly evaluated
up to the specified tolerance ε. In our experiment, we have
set ε = 10−6; this allows an excellent approximation of the
quadratic function in all the instances tested (actually, we could
observe no difference between the quadratic function and the
linear approximation, concerning the solutions obtained).

VI. COMPUTATIONAL RESULTS

The algorithm was tested in two sets of instances: one
without ramp constraints but that has for long been a reference
for comparison of UC algorithms [20] (instances P1 through
P6); and the other with ramp constraints (instances R1 through
R6). CPU times were obtained with CPLEX 12.1 on a com-
puter with Quad-Core Intel Xeon processor at 2.66 GHz and
running Mac OS X 10.6.6; only one core was assigned to this
experiment.

Tables I and II present the results obtained using the
algorithm proposed in this paper for different sets of UCP
instances. Instances P1 to P6, in Table I, are the standard
Kazarlis [20] benchmarks, which do not include ramp con-
straints. Ramp constraints are considered in instances R1 to
R6 (Table II), resulting from instances P1 to P6, by setting
ramp up-and-down maximum values identical to the minimum
production level of each unit. All instances consider a 24-hour
planning horizon, with one period per hour, and the number of
units ranged from 10 to 100. Empty entries in the tables mean
that the solver could not find the solution within 24 hours of
CPU time.

Table III presents the results obtained using the algorithm
proposed in this paper for instances P1 to P6 when start-up
costs are evaluated by Equation (19). This equation was first
proposed in [21] and was later used by several authors.

Sx =

{
ahot
u if T off

u < xoff
ut ≤ T off

u + tcold
u ,

acold
u otherwise. (19)

Table IV presents results reported in the literature for instances
P1 to P6, using different heuristic methods. Although the
objective function value reported in this paper (565828) for

TABLE I
RESULTS FOR INSTANCES P1 TO P6 (STANDARD KAZARLIS SET).

Iterative linear alg. Quadratic model
Instance Size Objective CPU Objective CPU

P1 10 565 828 0.30 565 828 1.95
P2 20 1 126 000 6.16 1 126 000 241.
P3 40 2 248 280 58.5 2 248 280 22716.
P4 60 3 368 950 541.
P5 80 4 492 170 19562.
P6 100 5 612 690 11111.

TABLE II
RESULTS FOR INSCTANCES R1 TO R6 (INCLUDING RAMP CONSTRAINTS).

Iterative linear alg. Quadratic model
Instance Size Objective CPU Objective CPU

R1 10 570 396 3.01 570 396 5.06
R2 20 1 135 450 222. 1 135 450 1741.
R3 40 2 267 540 7305.
R4 60 3 398 610 3329.
R5 80 4 531 720 60374.
R6 100 5 662 900 104152.

the 10 unit instance using the iterative linear algorithm is
higher than the one reported in some papers (565825), the
actual solution is the same. Small differences in values can
be attributed to possible rounding of values by other authors.
Similarly, Table V presents results reported in the literature
for instances P1 to P6, when start-up costs are modelled by
Equation (19). Naturally, the results reported in Tables IV
and V cannot be compared. At most, the results in Table V
can be seen as lower bounds for instances P1 to P6.

In Tables I and II, columns Quadratic model provide the
optimal result for the base problem and columns Iterative
linear algorithm provide the results obtained by the method
we propose, confirming that the algorithm converges to the
optimal solution. Columns CPU refer to the time spent (in sec-
onds) to solve the problem by each of the methods. Attempts
to solve the problem with the quadratic formulation without
ramps were not successful for instances with more than 40
units; for the problem with ramps, no success was obtained
with the quadratic formulation for instances with more than
20 units.

To the best of our knowledge, no optimal solutions have
ever been reported for instances P1 to P6, with quadratic cost
function, even for the smallest one. We have shown that for
problems up to 40 units, optimal solutions can be obtained
by current, state-of-the-art MIP solvers. Moreover, with the
iterative approach based on the linear approximative model,
we were able to reach the optimal solution with dramatic
reductions in CPU times, when compared to direct solution
approach with the quadratic solver of CPLEX, having deter-
mined the optimal solutions (with a tolerance ε = 10−6 on
production costs) for all the instances. These can be compared
to the best published values for the quadratic models (see
Tables IV and V).

Similar conclusions may be made for the ramp problem. The
quadratic solver of CPLEX was capable of reaching optimal
solutions for problem instances of up to 20 units. Optimal
values for the whole set of problems were, again, reached by
the iterative linear algorithm, albeit using larger CPU times.
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TABLE III
RESULTS FOR PROBLEMS P1 TO P6 (MODIFIED COST FUNCTION).

Iterative linear alg. Quadratic model
Instance Size Objective CPU Objective CPU

P1 10 563 938 0.55 563 938 1.69
P2 20 1 123 300 12.8 1 123 300 142.
P3 40 2 242 580 978.
P4 60 3 359 950 309.
P5 80
P6 100 5 597 770 4600.

TABLE IV
PREVIOUS RESULTS FOR PROBLEMS P1 TO P6: BEST SOLUTION FOUND.

Instance Size LR [20] GA [20] LR–MA [22]
P1 10 565 825 565 825 565 827
P2 20 1 130 660 1 126 243 1 127 254
P3 40 2 258 503 2 251 911 2 249 589
P4 60 3 394 066 3 376 625 3 370 595
P5 80 4 526 022 4 504 933 4 494 214
P6 100 5 657 277 5 627 437 5 616 314

Instance Size ICGA [23] GRASP [11] CON [24]
P1 10 566 404 565 825 565 825
P2 20 1 127 244 1 126 805 1 126 070
P3 40 2 254 123 2 255 416 2 248 490
P4 60 3 378 108 3 383 184 3 370 530
P5 80 4 498 943 4 524 207 4 494 140
P6 100 5 630 838 5 668 870 5 615 410

TABLE V
PREVIOUS RESULTS FOR PROBLEMS P1 TO P6: BEST SOLUTION FOUND,

USING THE MODIFIED COST FUNCTION.

Instance Size MILP-UC [1] QBPSO [25] QEA-UC [26]
P1 10 539 977 563 938
P2 20 1 123 297 1 123 607
P3 40 2 242 957 2 245 557
P4 60 3 361 980 3 366 676
P5 80 4 482 085 4 488 470
P6 100 5 605 189 5 602 486 5 609 550

Instance Size IQEA-UC* [27] SFLA [28] ICA [29]
P1 10 563 938 564 769 563 938
P2 20 1 123 297 1 123 261 1 124 274
P3 40 2 242 980 2 246 005 2 247 078
P4 60 3 362 010 3 368 257 3 371 722
P5 80 4 482 826 4 503 928 4 497 919
P6 100 5 602 387 5 624 526 5 617 913

VII. CONCLUSIONS AND FURTHER DEVELOPMENTS

The main contribution of this paper is a novel, efficient
methodology for approximating the quadratic cost of elec-
tricity generating units, with an iterative method that uses of
a linear model, converging to the exact solution. The paper
also establishes optimal solutions for small instances of the
quadratic model (with and without ramp constraints) showing
that current, state-of-the-art solvers can tackle problems that
were not solvable before.

Computational analysis shows that the method is capable
of reaching the optimum of the quadratic model, when this
is known, using much less computational time than required
by its quadratic programming solution. For large problem
instances, where the quadratic model could not be solved
directly in a reasonable time, the iterative linear algorithm has
found the optimal solution.

Similar conclusions can be made when ramp constraints
are considered. The iterative linear algorithm is also capable

of reaching the optimum to all the instances of the quadratic
model. This is particularly important for instances with more
than 20 units, for which straightforward use of the quadratic
programming solver was not successful.

As future work, we plan to extend the algorithm in order
to allow its use for the solution of extended models, e.g.
including other electricity generation technologies in addition
to thermal units. The approach proposed for approximating
the quadratic cost can be applied to any convex function; in
terms of practical applications, this is a feature that deserves
being explored, as it may allow a better (instead of quadratic)
model of the true cost function.
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