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Abstract

In this brief note, a competition on a new product produced by two firms sharing a market is
analyzed both from a Cournot and Stackelberg point of view. In contrast with classical models,
setup costs are considered in the firms’ production costs, leading to ambiguities in their best
response strategies.

Our aim is to establish the different equilibria strategies that may arise from these two
competition versions. Moreover, our goal is to open the discussion of whether it might be worth
for a player to wait for the opponents to move, forcing a Stackelberg equilibrium to be played.

Keywords: Cournot Competition, Stackelberg Competition, Setup costs, Nash Equilibria.

1 Introduction

The Cournot competition (CG) [1] was one of the earliest games analyzed. It models an economic
market in which the participating firms produce a homogeneous product and each firm’s output level
influences the market price and thus, their profits. In this model, the firms play simultaneously.

Stackelberg competition (SG) [2] reflects markets in which there is a set of firms called the leaders
and another set of firms called the followers. First, the leaders simultaneously take their decisions and
then, the followers observe the selected leaders’ strategies and, simultaneously, choose their strategies.
In this paper, we focus in a SG where in each of the two stages a CG is played.

We restrict our analyzes to rational strategies computed using the concept of Nash equilibrium
[3] and Stackelberg equilibrium [2].

In order to approximate reality, a combinatorial component in the firms’ costs is introduced.
Setup costs are included representing the cost of turning on the production machine or an investment
in a new production technology. This is a novel model, since research on Cournot and Stackelberg
competitions focused on problems without combinatorial components, and the optimization models
have focused on single agent problems.

While in our model a Cournot equilibrium always exists (which can be proven, e.g., using the fact
that the Cournot competition is a potential game [4]), a Stackelberg equilibrium might not. Thus,
in order to overcome the possible absence of a Stackelberg equilibrium, the notion of ε-Stackelberg
equilibrium is introduced which might lead to interesting cases with the followers out of the market.

We discuss the relevance of comparing the solutions (equilibria) for these two economic markets. A
related discussion is presented in [5] where the authors search for games in which Nash and Stackelberg
equilibria coincide.
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Section 2 describes the CG and SG, the solution concept for games, and provides illustrative
examples to make the exposition clear. In Section 3, differences in the solutions for these games
dynamics are discussed. We end this note highlighting the conclusions and further research to be
done in this context in Section 4.

2 The Models

Define M = {1, 2, . . . ,m} as the set of players. In both games, player p must plan her production
by deciding if production is going to take place or not, yp = 1, yp = 0, respectively, and the quantity
to be produced qp ≥ 0, for p ∈ M. The tuple zp = (yp, qp) denotes player p decision. The game
parameters are fp, cp and P which represent the setup production cost, the unit production cost and
the unit market price function, respectively.

The interactions among the players occur through the unit market price P , this is, P depends
on the decisions (strategies) of all players. The typical function modeling the unit market price is a
linear function depending on the total product quantity in the market:

P (Q) = (a− bQ)+ (2.1)

where y+ = max(y, 0) and Q =
∑m

p=1 qp. The parameter a > 0 represents the market size and b > 0
the price elasticity.

At this point, we are ready to describe for each player p the set of feasible strategies Xp:

0 ≤ qp ≤Mpyp (2.2a)

yp ∈ {0, 1} (2.2b)

where Mp is the production capacity of player p. Constraint (2.2a) ensures that if there is production,
qp > 0, then yp = 1 and the capacity limitation is satisfied. Constraint (2.2b) forces yp to be binary.

The main difficulty of this model is in the players decision of production, this is, whether their
revenue will be higher than the production costs. See Figure 2.1.

qp

c(qp)

P (Q) qp

> fp

Figure 2.1: Profit Vs Production Cost.

The Cournot and Stackelberg competitions will be described in sections 2.1 and 2.2, respectively.

2.1 Cournot Game (CG)

In the Cournot game, the players move simultaneously. In this way, each player p problem can be
described as

maximize
zp∈Xp

Πp = P (Q)qp − fpyp − cpqp (2.3)

The objective function (2.3) is player p profit.
A solution to CG means to find players’ strategies such that Problem (2.3) is solved simultaneously

for p ∈M. In other words, we are interested in computing Cournot equilibria of this game. A Cournot
equilibrium is a profile of feasible strategies (ẑ1, . . . , ẑm) ∈

∏m
p=1Xp such that for p ∈ M, ∀zp ∈ Xp,

it holds
Πp (ẑ1, . . . , ẑp, . . . , ẑm) ≥ Πp (ẑ1, . . . , ẑp−1, zp, ẑp+1, . . . , ẑm) (2.4)

meaning that, none of the players has advantage to unilaterally deviate from the equilibrium.
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The CG is a potential game which implies the existence of a Cournot equilibrium (shown in [6]).
However, uniqueness cannot be guaranteed, as shown in the following example.

Example 2.1 Consider an instance with two players, m = 2, such that the market price parameters
are a = 20 and b = 1. The production parameters are M1 = +∞, M2 = +∞, f1 = 0, c1 = 10,
f2 = 25 and c2 = 5.

If player p produces at equilibrium, her optimal strategy is determined by deriving Πp in terms of
qp and equalizing to zero (note that Πp is strictly concave when P (Q) > 0 and yp = 1). Therefore,
player p optimal strategy when production takes place is

(a− bqk − cp)+

2b
(2.5)

with p 6= k. Player p only produces if the associated profit is greater than the setup cost. Hence, the
best response is

q∗p(qk) =

{
a−bqk−cp

2b , if a− bqk − cp ≥ 2
√
bfp

0, if a− bqk − cp ≤ 2
√
bfp.

(2.6)

Figure 2.2 illustrates these best responses and puts in evidence the existence of two equilibria:
(y1, q1, y2, q2) = (1, 53 , 1,

20
3 ) and (y1, q1, y2, q2) = (1, 5, 0, 0).

q1

q2

q∗1(q2) = 10−q2
2

q∗2(q1) = 15−q1
2

Figure 2.2: Players best responses.

2.2 Stackelberg Game (SG)

In the Stackelberg game (SG), there are players that move first, called the leaders, and the remaining
called followers that observe their strategies and move next. Let us assume that players in L =
{1, . . . , l} take the rule of leaders and players in F = {l + 1, . . . ,m} the rule of followers. The game
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can be described by the following bilevel optimization problems for each leader p ∈ L:

maximize
zp∈Xp

Πp = P

 l∑
k=1

qk +
m∑

k=l+1

qk

 qp − fpyp − cpqp (2.7a)

where, for each k ∈ F ,

qk solves the follower’s problem:

maximize
zk∈Xk

Πk = P (

l∑
k=1

qk +

m∑
k=l+1

qk)qk − fkyk

+

l∑
p=1

hpkypyk − ckqk (2.7b)

where hpk is the reduction in player k setup cost due to observation of the investment (technology)
of the leaders. An optimal solution of (2.7) is a Stackelberg equilibrium. A profile of strategies
(z1, . . . , zm) ∈

∏m
p=1Xp is bilevel feasible to player p problem (2.7) if (zl+1, . . . , zm) is a Cournot

equilibrium given (z1, . . . , zl). In contrast to CG, SG might be undefined and thus, fail to have an
equilibrium. There are two reasons for this to occur: due to no assumption about how cooperative
with the leaders are the followers and due to the discontinuity of the followers’ optimal solutions.
When player k ∈ F has multiple optimal strategies for a fixed leaders’ strategy which results in distinct
profits for them, problem (2.7) is not well defined. In this context, it is typical for two-players games to
decide about an optimistic or pessimistic formulation. Under the optimistic formulation, the follower
chooses among her optimal solutions the one that benefits the most the leader. On the other hand,
the pessimistic formulation assumes that among follower’s optimal solutions the one that penalizes
the most the leader is the chosen one. However, even after adopting one of these formulations, given
the discontinuity in the follower optimal solution due to the introduction of setup costs, only an ε-
Stackelberg equilibrium might be guaranteed to exist as defined in [7]. An ε-Stackelberg equilibrium is
a profile of strategies (z1, . . . , zm) ∈

∏m
p=1Xp such that it is bilevel feasible for all p ∈ L and no leader

p ∈ L can increase more than ε her profit by deviating to another bilevel feasible strategy. In the next
example, this situation is illustrated by an instance with a well defined Stackelberg equilibrium under
the optimistic formulation and with only a ε-Stackelberg equilibrium if the pessimistic formulation is
assumed.

Example 2.2 Consider the game parameters of Example 2.1 and let player 1 be the leader and player
2 the follower. Assume that there is no reduction in the follower’s cost, h12 = 0.

Optimistic formulation Player 2 optimal strategy is as computed in (2.6) with the difference that
when q1 = 5, player 2 chooses q2 = 0 in order to cooperate with the leader. This makes it easy to
conclude that (y1, q1, y2, q2) = (1, 5, 0, 0) is a Stackelberg equilibrium.

Pessimistic formulation Player 2 optimal strategy is as computed in (2.6) with the difference
that when q1 = 5, player 2 chooses q2 = 5 in order to penalize the leader’s profit. Note that player
1 bilevel feasible region is a noncompact set which might lead to the non-existence of a solution to
the optimization problem (2.7) (see [8] for discussion in the conditions for solution existence in the
context of bilevel optimization).

Player 1 maximum profit is attained when q2 = 0 and q1 = 5, however such profile of strategies
does not represent an equilibrium since it is not bilevel feasible. Thus, it is clear that player 1 rational
strategy is to produce q1 = 5 +

√
ε with ε > 0, in order to force player 2 to be out of the market. In

fact, (y1, q1, y2, q2) = (1, 5 +
√
ε, 0, 0) is an ε-Stackelberg equilibrium.

3 Models’ discussion

In practice, there are cases where identifying if the economic market is modeled according with a
Cournot or Stackelberg competition is obvious due to the significant difference in the market power
associated with the firms. However, this is not always the case. Furthermore, one can even ask if in
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a Cournot Competition in which the rules do not impose that decisions are taken simultaneously, is
it worth for a player to wait for the opponent(s) to play first?

In order to clarify the question in hand, we compare the players profits under the Cournot and
Stackelberg equilibria for the parameters of example 2.2.

Example 3.1 Consider the game parameters of Example 2.1 and h12 = h21 = 0.
Observe the players profits for the following profiles of strategies:

Cournot equilibrium:

(y1, q1, y2, q2) = (1,
5

3
, 1,

20

3
), Π1 =

25

9
' 2.78, Π2 =

175

9
' 19.44

Cournot equilibrium:

(y1, q1, y2, q2) = (1, 5, 0, 0), Π1 = 25, Π2 =0

Stackelberg equilibrium: optimistic formulation:

(y1, q1, y2, q2) = (1, 5, 0, 0), Π1 = 25, Π2 =0

ε-Stackelberg equilibrium: pessimistic formulation:

(y1, q1, y2, q2) = (1, 5 +
√
ε, 0, 0), Π1 = 25− ε, Π2 =0.

For this instance, player 2 does not have advantage in waiting for player 1 to impose her strategy,
since that would mean to be out of the market.

What if player 2 was the leader? Since player 1 will react according to (2.6), player 2 optimal
strategy is q2 = 10 forcing player 1 to be out of the market (q∗1(10) = 0). In this Stackelberg equilibrium
the players profits are Π1 = 0 and Π2 = 25. Therefore, as player 2, player 1 has no advantage in
waiting to observe player 2 production plan.

In conclusion, for this instance, both players have incentive to play first, which seems to naturally
imply that a Cournot model is the more suitable to represent the game.

After the analyzes of the previous example, it seems evident that none of the players would benefit
by playing last if the reduction on their production costs is zero. Note that the market price model
P (Q) adopted, makes the profit functions concave, which implies that a player optimal quantity to
be introduced in the market will decrease as the rival quantity increases (and the profits behave
analogously according with these changes in the quantities). Thus, the player moving first has a
clear advantage since she can impose a certain quantity of the product in the market. This implies a
reduction of the market to be shared by the followers. However, if a player can get some advantage
by observing the opponents’ technology, it happen that she will have incentive to move last, as shown
in the next example.

Example 3.2 Consider an instance with three players, m = 3, such that the market price parameters
are a = 53 and b = 1

2 . The production parameters are M1 = M2 = M3 = +∞, f1 = f3 = 0, f2 = 60,
c1 = 26, c2 = 21 and c3 = 10.

There is a Cournot equilibrium such that player 1 and 3 share the market, and player 2 has
no incentive to participate in the market. This equilibrium is (q1, q2, q3) = ( 22

3 , 0,
118
3 ) with profits

Π1 ' 26.89, Π2 = 0 and Π3 ' 773.56. Consider now a Stackelberg competition where the leader is
player 1, the followers are player 2 and 3 and the reduction on setup costs are h12 = 30 and h13 = 200.
A Stackelberg equilibrium is (q1, q2, q3) = (6, 12, 34) with profits Π1 ' 6, Π2 = 42 and Π3 ' 778.
Thus, player 2 and 3 have incentive to let player 1 move first.

4 Conclusion

In this brief note, a combinatorial component was added to two classical economic models by
considering setup production costs. If these fixed costs are meaningful in comparison with production
costs, the study of equilibria becomes complex. The optimization problem of each player has non
continuous decision variables, which complicates the computation of equilibria and it can even lead
to their non existence in the Stackelberg Competition. Therefore, for the latter case, we introduced
the notion of ε-Stackelberg equilibrium.
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Along the paper, we exposed the second issue mentioned above (the existence of equilibria), but
our purpose was also to highlight the different outcomes for a same instance under a Cournot and
Stackelberg competition. As the examples have shown, if followers’ reduction on costs by observation
of the leaders’ technology is zero, the outcomes of a follower in a Stackelberg equilibrium lead to
smaller profits than in a Cournot equilibrium. However, in the presence of multiple Cournot-equilibria
(as in the example presented), since it may not be clear which one will be selected by the players, a
Stackelberg model can be more suitable if one of the players is risk averse. Additionally, a Stackelberg
model can be more suitable if the reduction in production costs for some set of players is sufficient
to give them advantage over Cournot equilibria.

Fundamentally, our note compares the players’ solutions when they move simultaneously, versus
when they move sequentially. Thus, it concerns any game in which there are no rules about the order
in which players must take a strategic decision.

In conclusion, the ideas discussed in this note show the relevance of developing tools for the
computation of equilibria in order to understand which kind of game dynamics is more suitable for
each instance. It should be recalled that the combinatorial component of this models is crucial to
obtain realistic situations.
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