
Derivative Based Methods for

Deciding SKA and SKAT

Sabine Broda Śılvia Cavadas Nelma Moreira

CMUP & DCC, Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 4169-007 Porto, Portugal

Technical Report Series: DCC-2014-10

Version 1.0 May 2014

Departamento de Ciência de Computadores

&

Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 1021/1055,

4169-007 PORTO,
PORTUGAL

Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/

Derivative Based Methods for Deciding SKA and SKAT

Sabine Broda Śılvia Cavadas Nelma Moreira

CMUP & DCC, Faculdade de Ciências da Universidade do Porto

Rua do Campo Alegre, 4169-007 Porto, Portugal

September 1, 2014

Abstract

Synchronous Kleene algebra (SKA) is a decidable framework that combines Kleene algebra
(KA) with a synchrony model of concurrency. Elements of SKA can be seen as processes taking
place within a fixed discrete time frame and that, at each time step, may execute one or more
basic actions or then come to a halt. The extension synchronous Kleene algebra with tests
(SKAT) combines SKA with a boolean algebra. Both algebras were introduced by C. Prisicariu,
who proved the completeness of SKA axioms, and thus decidability, through a Kleene theorem
based on the classical Thompson ε-NFA construction. Using the notion of partial derivatives, we
present a new decision procedure for SKA terms equivalence. The results are extended for SKAT
considering automata with transitions labeled by boolean expressions instead of atoms. This
work extends previous one done for KA and KAT, where derivative based methods have been
used in feasible algorithms for testing terms equivalence.

Keywords: Synchronous Kleene Algebra, Concurrency, Equivalence, Derivative

1 Introduction

Synchronous Kleene algebra (SKA) combines Kleene algebra (KA) with the synchrony model of
concurrency of R. Milner’s SCCS calculus [16]. Synchronous here means that two concurrent processes
execute a single action simultaneously at each time instant of a unique global clock. Although this
synchrony model seems to be a very weak model of concurrency when compared with asynchronous
interleaving models, its equational framework is powerful and the SCCS calculus includes the CCS
calculus as a sub-calculus. It also models the Esterel programming language [4], a tool used by the
industry.

SKA was introduced by C. Prisicariu [20]. It consists of a KA to which a synchrony operator and
a notion of basic action are added. In its standard model, a process is seen as a set of synchronous
strings, each letter of a string being a set of basic actions executed in a single time step. Using
a Kleene’s style theorem, C. Prisicariu proved that the SKA axioms were complete and from that
derived the decidability of the equational theory. He also generalized Kleene algebra with tests
(KAT) [12], an equational system that extends Kleene algebra with Boolean algebra. KAT is specially
suited to capture and verify properties of simple imperative programs and, in particular, subsumes
propositional Hoare logic [13]. For the resulting algebra, called synchronous Kleene algebra with
tests (SKAT), the models considered were sets of guarded synchronous strings and completeness was
also proved using the so called automata on guarded synchronous strings. SKAT can be seen as an
alternative to Hoare logic for reasoning about parallel programs with shared variables in a synchronous
system.

Decision procedures for Kleene algebra terms equivalence has been a subject of intense research
in recent years. This is partially motivated by the fact that regular expressions can be seen as
a program logic that allows to express nondeterministic choice, sequence, and finite iteration of
programs. Many proposed procedures decide equivalence based on the computation of a bisimulation
(or a bisimulation up-to) between the two expressions [1, 18, 18, 6, 21]. Broda et al. studied the

2

average size of derivative based automata both for KA and KAT [7]. For KAT terms, a coalgebraic
decision procedure was presented by D. Kozen [15]. There, derivatives are considered with respect
to symbols vp where p is an action symbol but v corresponds to a valuation of the boolean tests.
This induces an exponential blow-up on the number of states or transitions of the automata and
an accentuated exponential complexity when testing the equivalence of two KAT expressions (as
noted in [19, 2]). A. Silva [22] introduced a class of automata over guarded strings that avoids that
blow-up. Broda et al. studied the average size of some automata of that class [7] and extended finite
automata equivalence decision procedures to that class [8]. In this paper we continue this line of work
and present new decision procedures for SKA and SKAT equivalence, based on the notion of partial
derivatives. In particular, for SKAT we introduce a class of automata over guarded synchronous
strings where transitions are labeled by boolean expressions instead of valuations.

2 Deciding Synchronous Kleene Algebra

First we review some concepts related with SKA. A Kleene algebra (KA) is an algebraic structure
(A,+, ·, ∗, 0, 1), where + and · are binary operations on A, ∗ is a unary operation on A, and 0 and
1 belong to A, such that (A,+, ·, 0, 1) is an idempotent semiring, i.e. satisfies axioms (1)-(9) below,
and ∗ satisfies axioms and ∗ satisfies axioms (10)-(13) below. The natural order ≤ in (A,+, ·, 0, 1) is
defined by α ≤ β if and only if α+ β = β.

(1) α+ (β + γ) = (α+ β) + γ

(2) α+ β = β + α

(3) α+ 0 = 0 + α = α

(4) α+ α = α

(5) α · (β · γ) = (α · β) · γ
(6) α · 1 = 1 · α = α

(7) α · (β + γ) = α · β + α · γ

(8) (α+ β) · γ = α · γ + β · γ
(9) 0 · α = α · 0 = 0
(10) 1 + α · α∗ ≤ α∗

(11) 1 + α∗ · α ≤ α∗

(12) α+ β · γ ≤ γ → β∗ · α ≤ γ

(13) α+ γ · β ≤ γ → α · β∗ ≤ γ

A synchronous Kleene algebra (SKA) over a finite set AB is a structure (A,+, ·,×, ∗, 0, 1,AB), where
AB ⊆ A, (A,+, ·, ∗, 0, 1) is a Kleene algebra, and × is a binary operator that satisfies axioms (S1)-(S8)
below. The set A×

B
is the smallest subset of A that contains AB and is closed for ×.

(S1) α× (β × γ) = (α× β)× γ

(S2) α× β = β × α

(S3) α× 0 = 0× α = 0
(S4) α× 1 = 1× α = α

(S5) a× a = a ∀a ∈ AB

(S6) α× (β + γ) = α× β + α× γ

(S7) (α+ β)× γ = α× γ + β × γ

(S8) (α× · α)× (β× · β) = (α× × β×) · (α× β) ∀α×, β× ∈ A
×
B

As usual, we will omit the operator · whenever it does not give rise to any ambiguity and use the
following precedence over the operators: + < · < × < ∗.

Synchronous Kleene algebra was first presented by C. Prisacariu [20]. We think of the elements
of SKA as processes taking place within a fixed discrete time frame and that, at each time step, may
execute one or more basic actions in AB or then come to a halt. Apart from the usual KA operators
+, · and ∗, corresponding to choice, sequential execution and iteration, we also have an operator
× that corresponds to a simultaneous execution where the actions executed in each time step are
synchronized. In this context, the elements of A×

B
, called the synchronous actions, are the possible

behaviours for one single time step. Algebraically, this synchronous behaviour is imposed by axiom
(S8), which is therefore called the synchrony axiom.

The standard model of an SKA over AB is the set of languages over the alphabet Σ = P(AB)\{∅},
which we will call synchronous languages. Note that, modulo the natural identifications, AB ⊆ Σ ⊆
Σ∗ ⊆ P(Σ∗). Each synchronous language represents a process described by its possible executions,

3

which are given by the words over Σ, each one a sequence of sets of basic actions executed in a single
time step. As usual, the operators +, · and ∗ denote the union, concatenation and Kleene star of
languages. It is well known that these operations turn the set of languages into a Kleene algebra.
The synchronous product of two words x = σ1 · · ·σm and y = τ1 · · · τn, with n ≥ m, is defined by

x× y = y × x = (σ1 ∪ τ1 · · ·σm ∪ τm)τm+1 · · · τn.

In particular, the synchronous product of two letters in Σ is their union. The synchronous product
of two languages L1 and L2 is defined by

L1 × L2 = {x× y |x ∈ L1, y ∈ L2}.

With this definition, the set of synchronous actions A
×
B

is precisely Σ, and × verifies axioms (S1)-
(S8). Having established that P(Σ∗) is an SKA over AB, we can focus on the smallest subalgebra
that contains AB, which corresponds to the set of languages finitely generated from AB, 0 and 1 and
operators +, ·,×, ∗, called the synchronous regular languages over AB. It is clear that the synchronous
regular languages over AB contain the regular languages over Σ. As it will turn out later, when we
construct an automaton accepting each synchronous regular language, they are exactly the same set:
the regular languages over Σ are also closed for ×. In [20], the classical Thompson construction
for regular languages is extended to build an automaton accepting the synchronous product of two
languages given by their automata.

We now introduce the SKA analogue of the regular expressions. We denote by TSKA the set
containing 0 plus all terms finitely generated from AB∪{1} and operators +, ·,×, ∗, that is, the terms
generated by the grammar

α → 1 | a | α+ α | α · α | α× α | α∗ (a ∈ AB).

Note that we do not include in TSKA compound expressions that have 0 as a subexpression. We
do so because it will simplify matters later on and, since 0 is the identity for + and an absorbing
element for · and × , it does not restrict the intended semantics. The elements of TSKA, called SKA

terms or SKA expressions, are a representation of the synchronous regular languages over AB in the
natural way. More precisely, given α ∈ TSKA, the language L(α) denoted by α is inductively defined
as follows,

L(a) = {{a}}
L(0) = ∅
L(1) = {ε}
L(α∗) = L(α)∗

L(α+ β) = L(α) ∪ L(β)
L(αβ) = L(α)L(β)
L(α× β) = L(α)× L(β).

Example 1. Let AB = {a, b}, hence Σ = {{a}, {b}, {a, b}}, and consider the SKA term α = (a(b +
a)∗)× (a+ bb)∗ over AB. Then

L(α) = {{a}, {a}{a}, {a}{b}, . . .} × {ε, {a}, {a}{a}, {b}{b}, . . .}

= {{a}, {a}{a}, {a}{b}, {a}{a, b}, {a, b}{b}, {a, b}{a, b}, . . .}.

Given α, β ∈ TSKA, we write α = β if α and β are syntactically equal and α ∼ β if they are
equivalent, i.e., denote the same language. We also define ε(α) = ε(L(α)), where, given a language
L, ε(L) = 1 if ε ∈ L and ε(L) = 0 otherwise. A recursive definition of ε : TSKA −→ {0, 1} is given by
the following,

ε(a) = ε(0) = 0
ε(1) = 1
ε(α∗) = 1

ε(α+ β) = ε(α) + ε(β)
ε(αβ) = ε(α)ε(β)
ε(α× β) = ε(α)ε(β).

We generalize ε for sets S ⊆ TSKA by ε(S) =
∑

α∈S ε(α).

4

2.1 Automata and Systems of Equations

We first recall the definition of a nondeterministic finite automaton (NFA). An NFA is a tuple A =
〈S,Σ, S0, δ, F 〉, where S is a finite set of states, Σ is a finite alphabet, S0 ⊆ S a set of initial
states, δ : S × Σ −→ P(S) the transition function, and F ⊆ S a set of final states. The extension

δ̂ : P(S) × Σ∗ −→ P(S) of δ to sets of states and words is defined by δ̂(X, ε) = X and δ̂(X,σx) =

δ̂(∪s∈Xδ(s, σ), x). A word x ∈ Σ∗ is accepted by A if and only if δ̂(S0, x)∩F 6= ∅. The language of A
is the set of words accepted by A and denoted by L(A). The right language of a state s, denoted by
Ls, is the language accepted by A if we take S0 = {s}. The class of languages accepted by an NFA is
precisely the set of regular languages. It is well known that there is a natural correspondence between
each NFA over Σ = {σ1, . . . , σk} with n states and right languages L1, . . . ,Ln and each system of
linear equations

Li = σ1a1i + · · ·+ σkaki + ε(Li), i ∈ [1, n]

where each aij is a (possibly empty) sum of elements in {L1, . . . ,Ln}.
In the context of SKA, we consider the alphabet Σ = P(AB) \ {∅} and call the NFA a nondeter-

ministic automaton on synchronous strings. Each of these automata accepts a synchronous language.
We will see that for each synchronous regular language over AB (represented by an SKA expression)
there is an automaton that accepts it, so that the set of synchronous regular languages over AB is
precisely the set of regular languages over Σ. We now generalize the notion of support of a regular
expression to SKA terms.

Definition 2. Consider Σ = P(AB) \ {∅} = {σ1, . . . , σk} and α0 ∈ TSKA. A support of α0 is a set
{α1, . . . , αn} that satisfies a system of equations

αi ∼ σ1α1i + · · ·+ σkαki + ε(αi), i ∈ [0, n] (1)

for some αi1, . . . , αik, each one a (possibly empty) sum of elements in {α1, . . . , αn}. In this case
{α0, α1, . . . , αn} is called a prebase of α0.

Example 3. Consider again the expression α from Example 1 and let β = (b+a)∗ and γ = (a+bb)∗,
i.e. α = (aβ)×γ. The set {β×γ, β×(bγ), β, bγ, γ} is a support for α0 = α, as shown by the following
system of equations.

(aβ)× γ = α0 ∼ {a}(α1 + α3) +{a, b}α2

β × γ = α1 ∼ {a}(α1 + α3 + α5) +{b}(α2 + α3 + α4) +{a, b}(α1 + α2) +1
β × (bγ) = α2 ∼ +{b}(α1 + α5) +{a, b}α1

β = α3 ∼ {a}α3 +{b}α3 +1
bγ = α4 ∼ +{b}α5

γ = α5 ∼ {a}α5 +{b}α4 +1

It is clear from what was said above that the existence of a support of α implies the existence of
an NFA that accepts the language denoted by α. If {α1, . . . , αn} is a support of α = α0, the system
of equations (1) can be written in matrix form Aα ∼ C ·Mα +Eα, where Mα is the k× (n+1) matrix
with entries αij , and Aα, C and Eα denote respectively the following three matrices,

Aα =
[

α0 · · · αn

]

, C =
[

σ1 · · · σk

]

, and Eα =
[

ε(α0) · · · ε(αn)
]

.

In the above, C · Mα denotes the matrix obtained from C and Mα applying the standard rules of
matrix multiplication, but replacing the multiplication operator with concatenation. We now define
a function π : TSKA −→ P(TSKA) that recursively computes a support for an expression α ∈ TSKA.
The proof of the correctness of this definition provides us simultaneously with the definition of a
corresponding equation system as in (1).

We now define a certain form of concatenation and synchronous product between two sets of SKA
expressions. The idea is that we make the formal product between each element of one set and each
of the other, but with two exceptions: products by 0 are not considered, and elements multiplied by

5

1 remain the same. More precisely, given α, β 6= 0 in TSKA, define α ⊙ β = α · β if α, β 6= 1 and
α ⊙ 1 = 1 ⊙ α = α. Similarly, define α ⊗ β = α × β if α, β 6= 1 and α ⊗ 1 = 1 ⊗ α = α. Given sets
S, T ⊆ TSKA, let S⊙T = {α⊙β | α ∈ S\{0}, β ∈ T\{0}} and S⊗T = {α⊗β | α ∈ S\{0}, β ∈ T\{0}}.
Convention that α⊙S = {α}⊙S, and similarly for S⊙α, α⊗S and S⊗α. These definitions somehow
embody the axiomatic role of 0 and 1, and serve the following definition.

Definition 4. Given α ∈ TSKA, the set π(α) is inductively defined by,

π(0) = π(1) = ∅
π(a) = {1} (a ∈ AB)

π(α∗) = π(α)⊙ α∗

π(α+ β) = π(α) ∪ π(β)
π(αβ) = π(α)⊙ β ∪ π(β)

π(α× β) = π(α)⊗ π(β) ∪ π(α) ∪ π(β).

It is clear from the definition that π(α) is finite.

Proposition 5. If α ∈ TSKA, then the set π(α) is a support of α.

Proof. We proceed by induction on the structure of α. Excluding the case where α is α0 × β0, the
proof can be found in [17, 10]. We now describe how to obtain a system of equations corresponding
to an expression α0×β0 from systems for α0 and β0. Suppose that π(α0) = {α1, . . . , αn} is a support
of α0 and π(β0) = {β1, . . . , βm} is a support of β0. For α0 and β0 consider C, Aα0

, Mα0
, Eα0

and
Aβ0

, Mβ0
, Eβ0

as above. We wish to show that

π(α0 × β0) = {α1 ⊗ β1, . . . , α1 ⊗ βm, . . . , αn ⊗ β1, . . . , αn ⊗ βm} ∪ π(α0) ∪ π(β0)

is a support of α0 × β0. Define the (n+ 1)(m+ 1)-column matrices

Aα0×β0
=

[

α0 ⊗ β0 α1 ⊗ β1 · · · αn ⊗ βm α1 · · · αn β1 · · · βm

]

Eα0×β0
=

[

ε(α0 ⊗ β0) ε(α1 ⊗ β1) · · · ε(αn ⊗ βm) ε(α1) · · · ε(αn) ε(β1) · · · ε(βn)
]

and let Mα0×β0
be the k × (n + 1)(m + 1) matrix whose last n + m columns are the n columns

of Mα0
followed by the m columns of Mβ0

, and whose remaining entries γl,(i,j), for l ∈ [1, k] and
(i, j) ∈ {(0, 0)} ∪ [1, n]× [1,m], are defined by:

γl,(i,j) =
∑

({αl1i ⊗ βl2j | σl1 × σl2 = σl} ∪ {ε(αi)} ⊗ {βlj} ∪ {ε(βj)} ⊗ {αli})

Note that, since by induction hypothesis each αli is a sum of elements in π(α) and each βlj is a sum
of elements in π(β), each element of Mα0×β0

is in fact a sum of elements in π(α0 ×β0). We will show
that Aα0×β0

∼ C ·Mα0×β0
+ Eα0×β0

. For the last n+m entries of Aα0×β0
, this is obvious. Consider

now αi × βj for some (i, j) ∈ {(0, 0)} ∪ [1, n]× [1,m]. We have αi ∼ σ1α1i + · · ·+ σkαki + ε(αi) and
βj ∼ σ1β1j + · · ·+ σkβkj + ε(βj), thus, using properties of ×, namely the synchrony axiom,

αi × βj ∼ (σ1α1i + · · ·+ σkαki + ε(αi))× (σ1β1j + · · ·+ σkβkj + ε(βj))

∼
∑

1≤l1,l2≤k

(σl1 × σl2).(αl1i × βl2j) + ε(αi)×
∑

1≤l≤k

σlβjl +

ε(βj)×
∑

1≤l≤k

σlαli + ε(αi)× ε(βj)

∼ σ1





∑

σl1
×σl2

=σ1

αl1i × βl2j + ε(αi)× βj1 + ε(βj)× α1i



 + · · · +

σk





∑

σl1
×σl2

=σk

αl1i × βl2j + ε(αi)× βkj + ε(βj)× αki



+ ε(αi)× ε(βj)

∼ σ1γ1,(i,j) + · · ·+ σkγk,(i,j) + ε(αi ⊗ βj).

6

This shows that the language associated with each SKA expression is regular, and gives a way to
construct a system of equations corresponding to an NFA that accepts it. This is done by recursively
computing π(α) and the matrices Aα and Eα, obtaining the whole NFA in the final step.

Example 6. For α = (aβ) × γ as before, we have π(aβ) = {β}, π(γ) = {γ, bγ}, and π(α) =
π(aβ)× π(γ)∪ π(aβ)∪ π(γ) = {β, γ, bγ, β × γ, β × (bγ)}. Thus, π(α) is exactly the support set given
in Example 3. Furthermore, the automaton obtained from the system of equations in that example is
the following.

α0 α1 α4

α3 α2 α5{a}, {b}

{a}, {a, b}

{a}

{a}

{a}

{a, b}

{b}

{a}

{b}

{a}, {b}

{b}, {a, b}

{b}, {a, b} {b}
{b}

We note that the automata computed by this method can have non-useful states, i.e. states that
are not reached from the initial states. Thus, frequently it is more useful being able to compute an
accepting NFA on-the-fly, i.e., by computing the transitions from already computed states as they are
necessary. In the next section we will show how to build an accepting NFA for each SKA expression
using the theory of partial derivatives.

2.2 Partial Derivatives

As usual, the left-quotient of a synchronous language L w.r.t. a concurrent action σ is the set σ−1L =
{ x | σx ∈ L }. The left quotient of L w.r.t. a word x ∈ Σ∗ is inductively defined by ε−1L = L and
(xσ)−1L = σ−1(x−1L). The left quotient w.r.t. a letter σ ∈ Σ has the following properties:

σ−1∅ = σ−1{ε} = ∅

σ−1{{a}} =

{

{ε} if σ = {a}

∅ otherwise

σ−1(L∗) = (σ−1L)L∗

σ−1(L1 + L2) = σ−1L1 ∪ σ−1L2

σ−1(L1L2) = (σ−1L1)L2 ∪ ε(L1)σ
−1L2

σ−1(L1 × L2) =
(
⋃

σ1×σ2=σ σ
−1
1 L1 × σ−1

2 L2

)

∪ ε(L1)σ
−1L2 ∪ ε(L2)σ

−1L1.

With exception of the property concerning ×, which follows from the definition of synchronous
product of two languages, the above properties are well known [9]. Antimirov [3] introduced the
notion of partial derivatives which we now generalize to the set TSKA.

Definition 7. The set of partial derivatives (s.p.d.) of a term α ∈ TSKA w.r.t. the letter σ ∈ Σ,
denoted by ∂σ(α), is inductively defined by

∂σ(0) = ∂σ(1) = ∅

∂σ(a) =

{

{1} if σ = {a}

∅ otherwise

∂σ(α
∗) = ∂σ(α)⊙ α∗

∂σ(α+ β) = ∂σ(α) ∪ ∂σ(β)
∂σ(αβ) = ∂σ(α)⊙ β ∪ ε(α)⊙ ∂σ(β)

∂σ(α× β) =
(
⋃

σ1×σ2=σ ∂σ1
(α)⊗ ∂σ2

(β)
)

∪ ε(α)⊗ ∂σ(β) ∪ ε(β)⊗ ∂σ(α).

The s.p.d. of α ∈ TSKA w.r.t. a word x ∈ Σ∗ is inductively defined by ∂ε(α) = {α} and ∂xσ(α) =
∂σ(∂x(α)), where, given a set S ⊆ TSKA, ∂σ(S) =

⋃

α∈S ∂σ(α).

We denote by ∂(α) the set of all partial derivatives of α, ∂(α) =
⋃

x∈Σ∗ ∂x(α), and by ∂+(α) the
set of partial derivatives excluding the trivial derivative by ε, ∂+(α) =

⋃

x∈Σ+ ∂x(α). Given a set
S ⊆ TSKA, we define L(S) =

⋃

α∈S L(α).

7

Proposition 8. For every SKA term α and word x, L(∂x(α)) = x−1L(α).

Proof. Due to the correspondence between each case of the definition of the set of partial derivatives
and the properties of the left quotient, one can check by induction on the structure of α that,
for every σ ∈ Σ, L(∂σ(α)) = σ−1L(α). We now prove the result by induction on the length of
the word x: we have L(∂ε(α)) = L({α}) = ε−1L(α) and, supposing the claim to be true for x,
L(∂xσ(α)) = L(∂σ(∂x(α))) = σ−1L(∂x(α)) = σ−1(x−1L(α)) = (xσ)−1L(α).

The following proposition shows that ∂(α) is finite.

Proposition 9. Given α ∈ TSKA, ∂
+(α) ⊆ π(α).

Proof. The proof proceeds by induction on the structure of α. It is clear that ∂+(0) = π(0), ∂+(1) =
π(1) and, for a ∈ AB, ∂

+(a) = π(a). Now, suppose the claim is true for α and β. There are four
induction cases to consider, in which we will make use of the fact that, for any SKA expression γ and
letter σ ∈ Σ, the set ∂+(γ) is closed for taking derivatives w.r.t. σ, i.e., ∂σ(∂

+(γ)) ⊆ ∂+(γ).

i. One can check by induction on the length of x that, for x ∈ Σ+, ∂x(α + β) = ∂x(α) ∪ ∂x(β).
Then ∂+(α+ β) = ∂+(α) ∪ ∂+(β) ⊆ π(α) ∪ π(β) = π(α+ β).

ii. We will prove by induction on the length of x that ∂x(αβ) ⊆ ∂+(α)⊙ β ∪ ∂+(β) for every word
x ∈ Σ+. The claim is true for σ ∈ Σ since ∂σ(αβ) = ∂σ(α)⊙β∪ε(α)⊙∂σ(β). Assuming it is true
for x, ∂xσ(αβ) = ∂σ(∂x(αβ)) ⊆ ∂σ(∂

+(α)⊙ β ∪ ∂+(β)) ⊆ ∂σ(∂
+(α))⊙ β ∪ ∂σ(β) ∪ ∂σ(∂

+(β)) ⊆
∂+(α)⊙ β ∪ ∂+(β). Hence ∂+(αβ) ⊆ ∂+(α)⊙ β ∪ ∂+(β) ⊆ π(α)⊙ β ∪ π(β) = π(αβ).

iii. We prove by induction on the length of x that, for every word x ∈ Σ+, ∂x(α×β) ⊆ ∂+(α)⊗∂+(β)∪
∂+(α) ∪ ∂+(β). The claim is true for σ ∈ Σ because ∂σ(α × β) =

⋃

σ1×σ2=σ ∂σ1
(α) ⊗ ∂σ2

(β) ∪
ε(α)⊗∂σ(β)∪ ε(β)⊗∂σ(α); supposing it is true for x, ∂xσ(α×β) = ∂σ(∂x(α×β)) ⊆ ∂σ(∂

+(α)⊗
∂+(β) ∪ ∂+(α) ∪ ∂+(β)) ⊆ (

⋃

σ1×σ2=σ ∂σ1
(∂+(α)) ⊗ ∂σ2

(∂+(β))) ∪ ∂σ(∂
+(α)) ∪ ∂σ(∂

+(β)) ⊆
∂+(α)⊗ ∂+(β) ∪ ∂+(α) ∪ ∂+(β). Hence ∂+(α× β) ⊆ ∂+(α)⊗ ∂+(β) ∪ ∂+(α) ∪ ∂+(β) ⊆ π(α)⊗
π(β) ∪ π(α) ∪ π(β) = π(α× β).

iv. We show by induction on the length of x that ∂x(α
∗) ⊆ ∂+(α) ⊙ α∗ for x ∈ Σ+. It is true for

σ ∈ Σ because ∂σ(α
∗) = ∂σ(α) ⊙ α∗; supposing the claim true for x, ∂σx(α

∗) = ∂σ(∂x(α
∗)) ⊆

∂σ(∂
+(α) ⊙ α∗) ⊆ ∂σ(∂

+(α)) ⊙ α∗ ∪ ∂σ(α
∗) ⊆ ∂+(α) ⊙ α∗ ∪ ∂σ(α) ⊙ α∗ ⊆ ∂+(α) ⊙ α∗. Hence

∂+(α∗) ⊆ ∂+(α)⊙ α∗ ⊆ π(α)⊙ α∗ = π(α∗).

Remark 10. When we do not consider ×, in the context of KA, it is in fact true that ∂+(α) = π(α).
However, with the present extended definitions that equality is not true. For instance, π(aa × ab) =
{a×b, b, a, 1}, but ∂+(aa×ab) = {a×b, 1}. This happens because π(α×β) includes all the non trivial
derivatives of α and β, and these are not necessarily derivatives of α× β, since when deriving α× β

by a letter we “advance” in both α and β at the same time (unlike what happens with concatenation,
there is no way to derive only one of the factors while keeping the other one fixed).

As it is well known, the set of partial derivatives of a regular expression gives rise to an equivalent
NFA, called the Antimirov automaton or partial derivative automaton. This remains valid in our
extension of the partial derivatives to SKA terms. Given α ∈ TSKA, we define the partial derivative
automaton associated to α by

A(α) = 〈∂(α),Σ, {α}, δα, Fα〉,

where Fα = { γ ∈ ∂(α) | ε(γ) = 1 } and δα(γ, σ) = ∂σ(γ).

Proposition 11. For every state γ ∈ ∂(α), the right language Lγ of γ in A(α) is equal to L(γ), the
language denoted by γ. In particular, the language accepted by A(α) is precisely L(α).

8

Proof. Let x ∈ Σ∗. We will prove by induction on the length of x that x is accepted starting from
state γ iff x ∈ L(γ). If x = ε, x is accepted starting from γ iff γ is an accepting state, i.e. ε(γ) = 1 ⇔
ε ∈ L(γ). Suppose now that x = σy and the claim is true for y. Then, x ∈ L(γ) ⇔ y ∈ σ−1L(γ) ⇔
y ∈ L(∂σ(γ)) ⇔ y ∈ L(γ′) for some γ′ ∈ ∂σ(γ) ⇔ y is accepted starting from state γ′ for some γ′ ∈
∂σ(γ) ⇔ x = σy is accepted starting from state γ,

Example 12. For α = α0 from the previous examples, ∂{a}(α0) = {α1, α3}, ∂{b}(α0) = ∅, ∂{a,b}(α0) =
{α2}, ∂{a}(α1) = {α1, α3, α5}, etc. Furthermore, the automaton obtained from these partial deriva-
tives is precisely the one given in Example 6.

2.3 Equivalence of SKA Expressions

We are interested in an algorithm that decides whether or not two SKA terms represent the same
regular language. Since we already know how to construct an NFA that accepts a given SKA term,
the problem is tantamount to deciding the language equivalence of two automata, for which there are
already numerous solutions. One possible approach is to search for the existence of a bisimulation in
the determinized NFAs (DFAs), as presented by Hopcroft and Karp [11]. This algorithm was extended
to NFAs by Almeida et al. [1]. A presentation of this algorithm and an improved variant, together
with proofs of correctness, can be found in Bonchi and Pous [5]. Below we just present the naive
version of the algorithm adapted to the partial derivative automata of two SKA terms. We recall
that, given an NFA A = 〈S,Σ, S0, δ, F 〉, the subset construction yields an equivalent DFA given by
A′ = 〈S′,Σ, S0, δ

′, F ′〉 where S′ = P(S), δ′(X,σ) =
⋃

s∈X δ(s, σ) and F ′ = {X ∈ S′ |X ∩ F 6= 0}.

Algorithm 1: Naive algorithm for deciding SKA expression equivalence.

1 def NAIVE(α, β) :
2 R i s empty ; todo = { ({α}, {β}) }
3 while todo i s not empty , do :
4 ex t r a c t (X,Y) from todo
5 i f (X,Y) ∈ R then sk ip
6 i f ε(X) 6= ε(Y) then return False

7 for a l l σ ∈ Σ , i n s e r t (
⋃

γ∈X ∂σ(γ),
⋃

γ∈Y ∂σ(γ)) in todo

8 i n s e r t (X,Y) in R

9 return True

3 Deciding Synchronous Kleene Algebra with Tests

Synchronous Kleene algebra with tests (SKAT) was also introduced by C. Prisicariu as a natural
extension of the Kleene algebra with tests to the synchronous setting. The SKA axiomatization was
extended to SKAT, whose standard models are sets of guarded synchronous strings. For proving
completeness the author defined automata over guarded synchronous strings that were based on the
ones considered by Kozen for guarded strings [14]. In the synchronous case, automata were built in
two layers: one that processed a synchronous string and another to represent the valuations of the
boolean tests (called atoms, as defined below). Our main contribution in this section is to define a
much simpler notion of automata and to show that the derivative based methods developed in the
previous sections for SKA can be extended to SKAT. The automata considered here are standard
finite automata where transitions are labeled both with action symbols and boolean tests (instead of
atoms). Similar automata for KAT terms were presented by Silva [22] and Broda et al. [7, 8]. In the
next section, we revise the notions of SKAT and guarded synchronous strings.

3.1 SKAT and Guarded Synchronous Strings

Formally, a SKAT is a structure (A,B,+, ·,×, ∗,¬, 0, 1,AB,T), where T ⊆ B ⊆ A and AB and T are
disjoint finite sets, (A,+, ·,×, ∗, 0, 1,AB ∪T) is an SKA, (B,+, ·,×,¬, 0, 1) is a Boolean algebra where
· and × both correspond to conjunction, and (B,+, ·,×, 0, 1) is a subalgebra of (A,+, ·,×, 0, 1). The

9

axiomatization of SKAT coincides with the one of SKA with an extra axiom that corresponds to the
axiom (S8) for the boolean tests B.

Similar to what was done for SKA, we consider the set BSKAT of boolean expressions and the set
TSKAT of SKAT expressions over AB ∪ T. BSKAT is the set of terms finitely generated from T ∪ {0, 1}
and operators +, ·,×,¬, while TSKAT denotes the set of terms finitely generated from AB ∪ BSKAT

and operators +, ·,×, ∗. Elements of BSKAT and TSKAT will be denoted by b, b1, . . . and α, β, α1, . . .,
respectively, and are generated by the following grammar

b → 0 | 1 | t | b+ b | b · b | b× b | ¬b (t ∈ T),

α → a | b | α+ α | α · α | α× α | α∗ (a ∈ AB).

The set At of atoms over T = {t0, . . . , tl−1}, with l ≥ 1, is the set of all boolean assignments to
all elements of T, i.e. At = {x0 · · ·xl−1 | xi ∈ {ti, ti}, ti ∈ T}. We denote elements of At by v, v1,
etc. Note that each atom v ∈ At has associated a binary word of l bits (w0 · · ·wl−1) where wi = 0 if
ti ∈ v, and wi = 1 if ti ∈ v. The standard model of SKAT consists of the sets of guarded synchronous
strings. The set of guarded synchronous strings over AB ∪T is GSS = (At ·Σ)∗ ·At, where, as before,
Σ = P(AB) \ {∅}. For x = v0σ1 · · ·σmvm and y = v′0σ

′
1 · · ·σ

′
nv

′
n ∈ GSS, where m,n ≥ 0, vi, v

′
j ∈ At

and σi, σ
′
j ∈ Σ, we define the fusion product

x ⋄ y = v0σ1 · · ·σmvmσ′
1 · · ·σ

′
nv

′
n,

if vm = v′0, leaving it undefined otherwise. Similarly, for m ≤ n the product x× y = y × x is defined
only if v0 = v′0, . . . , vm = v′m by

x× y = v0(σ1 ∪ σ′
1) · · · (σm ∪ σ′

m)vmσ′
m+1 · · ·σ

′
nv

′
n.

For sets X,Y ⊆ GSS, X ⋄ Y = { x ⋄ y | x ∈ X, y ∈ Y, x ⋄ y exists } and X × Y = { x× y | x ∈ X, y ∈
Y, x× y exists }. Finally, let X0 = At and Xn+1 = X ⋄Xn, for n ≥ 0, and define X∗ =

⋃

n≥0 X
n.

Given a SKAT expression α, we define GSS(α) ⊆ GSS inductively as follows,

GSS(a) = { v1{a}v2 | v1, v2 ∈ At }
GSS(b) = { v | v ∈ At ∧ v ≤ b }
GSS(α+ β) = GSS(α) ∪ GSS(β)

GSS(α · β) = GSS(α) ⋄ GSS(β)
GSS(α× β) = GSS(α)× GSS(β)
GSS(α∗) = GSS(α)∗,

where v ≤ b if v → b is a propositional tautology. For T ⊆ TSKAT, let GSS(T) =
⋃

α∈TGSS(α). Given
two TSKAT expressions α and β, we say that they are equivalent, and write α ∼ β, if GSS(α) = GSS(β).

3.2 Automata for Guarded Synchronous Strings

We now introduce a new class of automata for guarded synchronous strings. Besides their simplicity
when compared with the two-level automata of Prisicariu, their transitions are labeled with tests
instead of atoms, avoiding in this way the inevitable exponential blow-up on the size of the automata
induced by the number of valuations of tests.

A (nondeterministic) automaton with tests (NTA) over the alphabets Σ and T is a tuple A =
〈S, s0, o, δ〉, where S is a finite set of states, s0 ∈ S is the initial state, o : S → BSKAT is the output
function, and δ ⊆ P(S × (BSKAT × Σ)× S) is the transition relation.

A synchronous guarded string v0σ1 . . . σnvn, with n ≥ 0, is accepted by the automaton A if
and only if there is a sequence of states s0, s1, . . . , sn−1 ∈ S, where s0 is the initial state, and, for
i = 0, . . . , n − 1, one has vi ≤ bi for some (si, (bi, σi+1), si+1) ∈ δ, and vn ≤ o(sn). The set of all
guarded strings accepted by A is denoted by GSS(A). Formally, given an NTA A = 〈S, s0, o, δ〉, one
can naturally associate to the transition relation δ a function δ′ : S × (At · Σ) −→ P(S), defined by

δ′(s, vσ) = { s′ | (s, (b, σ), s′) ∈ δ, v ≤ b }. Moreover, one can define a function δ̂ : S ×GSS −→ {0, 1}
over pairs of states and guarded strings as follows

δ̂(s, v) =

{

1 if v ≤ o(s),
0 otherwise,

δ̂(s, vσx) =
∑

s′∈δ′(s,vσ)

δ̂(s′, x)
.

10

Given a state s, GSS(s) = { x ∈ GSS | δ̂(s, x) = 1 } is the set of synchronous guarded strings
accepted by s, and GSS(A) = GSS(s0). We say that a SKAT expression α ∈ TSKAT is equivalent to an
automaton A, and write α = A, if GSS(A) = GSS(α).

3.3 Partial Derivatives for SKAT

In the following, we extend the notion of partial derivative, previously defined in [8] for KAT, to SKAT

expressions.

Definition 13. For α ∈ TSKAT and σ ∈ Σ, the set ∂σ(α) of partial derivatives of α w.r.t. σ is a
subset of BSKAT × TSKAT inductively defined as follows,

∂σ(a) =

{

{(1, 1)} if σ = {a}
∅ otherwise

∂σ(b) = ∅
∂σ(α

∗) = ∂σ(α)⊙ α∗

∂σ(α+ β) = ∂σ(α) ∪ ∂σ(β)
∂σ(αβ) = ∂σ(α)⊙ β ∪ out(α)⊙ ∂σ(β)

∂σ(α× β) =
(
⋃

σ1×σ2=σ ∂σ1
(α)⊗ ∂σ2

(β)
)

∪ out(α)⊗ ∂σ(β) ∪ out(β)⊗ ∂σ(α),

where out : TSKAT −→ BSKAT is defined by

out(a) = 0
out(b) = b

out(α∗) = 1

out(α+ β) = out(α) + out(β)
out(α · β) = out(α) · out(β)
out(α× β) = out(α)× out(β),

and for S, T ⊆ BSKAT × TSKAT, α 6= 0 in TSKAT, and b 6= 0 in BSKAT, S ⊙ α = { (b′, α′ ⊙ α) |
(b′, α′) ∈ S, α′ 6= 0 }, b ⊙ S = { (b ⊙ b′, α′) | (b′, α′) ∈ S, b′ 6= 0 }, S ⊙ 0 = 0 ⊙ S = ∅ and
S ⊗ T = { (b ⊗ b′, α ⊗ α′) | (b, α) ∈ S, (b′, α′) ∈ T, b, b′, α, α′ 6= 0 }. Given α ∈ TSKAT and σ ∈ Σ we
define the set of expressions derived from α w.r.t. a letter σ by

∆σ(α) = { α′ | (b, α′) ∈ ∂σ(α) for some b }.

The functions ∂σ, out, and ∆σ are naturally extended to sets of SKAT expressions. Then, we define
the set of expressions derived from α w.r.t. a word x ∈ Σ∗ inductively by ∆ε(α) = {α} and ∆xσ(α) =
∆σ(∆x(α)).

We denote by ∆(α) the set of all expressions derived from α, i.e. ∆(α) =
⋃

x∈Σ∗ ∆x(α). Given
α ∈ TSKAT, we define the partial derivative automaton associated to α by A(α) = 〈∆(α), α, out, δα〉,
where

δα = { (γ, (b, σ), γ′) | γ ∈ ∆(α), (b, γ′) ∈ ∂σ(γ) }.

In order to justify the correctness of the partial derivative automaton, i.e., to show that GSS(A(α)) =
GSS(α), we first argue that for every SKAT expression α the set ∆(α) is finite. For this one can use
a similar argument as the one used for SKA in Section 2. First define a function πSKAT with an
(almost) identical definition as π, but with entry πSKAT(b) = ∅ instead of π(0) = π(1) = ∅. Finally,
using an almost identical proof as for Proposition 9, show by induction on the structure of α ∈ TSKAT
that ∆+(α) ⊆ πSKA(α), where again ∆+(α) is the set of expressions derived from α excluding the
trivial derivation w.r.t. the empty word ε. Then, the finiteness of ∆(α) follows from the finiteness of
πSKAT(α). Finally, the correctness of the partial derivative automaton is guaranteed by the following
result.

Proposition 14. For every SKAT expression γ and x ∈ (At× Σ)∗ · At the following hold:

i. if x = v, then x ∈ GSS(γ) if and only if v ≤ out(γ);

ii. if x = vσx′, then x ∈ GSS(γ) if and only if there is some (b, γ′) ∈ ∂σ(γ), such that v ≤ b and
x′ ∈ GSS(γ′).

11

Proof. For i. the proof is by induction on the structure of γ. For ii. we present the cases for γ = αβ,
γ = α × β. Let γ = αβ and x = vσx′. One has x ∈ GSS(αβ) iff x ∈ GSS(α) ⋄ GSS(β). This means
that either,

v ∈ GSS(α) and x ∈ GSS(β)
⇔ v ≤ out(α), v ≤ b and x′ ∈ GSS(γ′) for some (b, γ′) ∈ ∂σ(β)
⇔ v ≤ out(α)b and x′ ∈ GSS(γ′) for some (out(α)b, γ′) ∈ ∂σ(αβ),

or x′ = x1 ⋄ x2, with vσx1 ∈ GSS(α) and x2 ∈ GSS(β). Now,

vσx1 ∈ GSS(α) and x2 ∈ GSS(β)
⇔ for some (b, γ′) ∈ ∂σ(α), v ≤ b, x1 ∈ GSS(γ′) and x2 ∈ GSS(β)
⇔ for some (b, γ′β) ∈ ∂σ(αβ), v ≤ b

and x′ = x1 ⋄ x2 ∈ GSS(γ′) ⋄ GSS(β) = GSS(γ′β).

Consider γ = α × β and x = vσx′. One has x ∈ GSS(α × β) iff x ∈ GSS(α) × GSS(β). This means
that either, x = (vσ1x1)× (vσ2x2) for some vσ1x1 ∈ GSS(α), vσ2x2 ∈ GSS(β) such that σ = σ1 ∪ σ2

and x′ = x1 × x2, or v ∈ GSS(α) and x ∈ GSS(β), v ∈ GSS(β) and x ∈ GSS(α). The proof for the
two last cases are analogous to the first case for the concatenation. Furthermore, one has

vσ1x1 ∈ GSS(α) and vσ2x2 ∈ GSS(β)
⇔ for some (b1, γ

′
1) ∈ ∂σ1

(α) and (b2, γ
′
2) ∈ ∂σ2

(β)
v ≤ b1, x1 ∈ GSS(γ′

1), v ≤ b2 and x2 ∈ GSS(γ′
2)

⇔ for some (b1 × b2, γ
′
1 × γ′

2) ∈ ∂σ(α× β), v ≤ b1 × b2
and x′ = x1 × x2 ∈ GSS(γ′

1)× GSS(γ′
2) = GSS(γ′

1 × γ′
2).

3.4 Equivalence of SKAT Expressions

In this subsection we present an algorithm for testing equivalence of SKAT expressions, similar to the
one presented for SKA in Subsection 2.3. The algorithm implicitly uses the definition of the partial
derivative automaton associated to an SKAT expression, as well as a determinization algorithm for
NTA’s presented in [8]. In order to deal with boolean expressions in the transitions of an NTA, some
notions relating boolean expressions and sets of valuations have first to be introduced. Consider the
set of atoms At = {α0, . . . , α2l−1}, where l = |T|, with the natural order induced by their binary
representation. We define the function

V : BSKAT −→ 2{0,...,2
l−1}

b 7−→ Vb = { i | αi ≤ b, 0 ≤ i ≤ 2l − 1 }.

This representation of boolean expressions is such that Vb = Vb′ if and only if b and b′ are logically
equivalent expressions. We consider Vb as a canonical representation of b and write αi ≤ Vb if and

only if i ∈ Vb. We then define VX,σ,s′ =
⋃

{ Vb | (b, s
′) ∈ ∂σ(X) } for s′ ∈ ∆σ(X) and, for each

Y ⊆ ∆σ(X), VX,σ,Y =
⋂

(

{ VX,σ,s′ | s
′ ∈ Y } ∪

{

VX,σ,s′ | s
′ ∈ ∆σ(X) \ Y

})

. The adapted version

of equivalence testing based on partial derivatives is presented below.

Algorithm 2: Naive algorithm for deciding SKAT expression equivalence.

1 def NAIVE(α, β) :
2 R i s empty ; todo = { ({α}, {β}) }
3 while todo i s not empty , do :
4 ex t r a c t (X,Y) from todo
5 i f (X,Y) ∈ R then sk ip
6 i f out(X) 6= out(Y) then return False

7 for a l l σ ∈ Σ ,
8 B1 = ∂σ(X) ; B2 = ∂σ(Y)

12

9 i f

⋃

(b1,)∈B1

Vb1 =
⋃

(b2,)∈B2

Vb2 then

10 for X′ ⊆ ∆σ(X) :
11 for Y ′ ⊆ ∆σ(Y) :
12 i f VX,σ,X′ ∩ VY,σ,Y ′ 6= ∅ :
13 i f X′ 6= Y ′ :
14 i n s e r t (X′, Y ′) in todo
15 i n s e r t (X,Y) in R

16 else : return False

17 return True

4 Conclusion

In this paper we extended the notion of derivative to sets of (guarded) synchronous strings and showed
that the methods based on derivatives lead to simple and elegant decision procedures for testing SKA

and SKAT expressions equivalence. For practical usage, more efficient versions of the algorithms here
proposed must be considered as already done for KA and KAT. Considering bisimulation equivalence
instead of language equivalence for SKA and SKAT is also a topic for future work.

References

[1] Almeida, M., Moreira, N., Reis, R.: Testing regular languages equivalence. Journal of Automata,
Languages and Combinatorics 15(1/2), 7–25 (2010)

[2] Almeida, R., Broda, S., Moreira, N.: Deciding KAT and Hoare logic with derivatives. In: Faella,
M., Murano, A. (eds.) 3rd GANDALF. EPTCS, vol. 96, pp. 127–140 (2012)

[3] Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton constructions.
Theoret. Comput. Sci. 155(2), 291–319 (1996)

[4] Berry, G., Gonthier, G.: The esterel synchronous programming language: Design, semantics,
implementation. Sci. Comput. Program. 19(2), 87–152 (1992)

[5] Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congruence. In:
Giacobazzi, R., Cousot, R. (eds.) POPL ’13. pp. 457–468. ACM (2013)

[6] Braibant, T., Pous, D.: Deciding Kleene algebras in Coq. Logical Methods in Computer Science
8(1) (2012)

[7] Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average size of Glushkov and equation
automata for KAT expressions. In: FCT 2013. pp. 72–83. No. 8070 in LNCS, Springer (2013)

[8] Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the Equivalence of Automata for KAT-
expressions. In: CiE 2014. LNCS, vol. 8493. Springer (2014), to appear

[9] Brzozowski, J.A.: Derivatives of regular expressions. JACM 11(4), 481–494 (1964)

[10] Champarnaud, J.M., Ziadi, D.: From Mirkin’s prebases to Antimirov’s word partial derivatives.
Fundam. Inform. 45(3), 195–205 (2001)

[11] Hopcroft, J., Karp, R.M.: A linear algorithm for testing equivalence of finite automata. Tech.
Rep. TR 71 -114, University of California, Berkeley, California (1971)

[12] Kozen, D.: Kleene algebra with tests. Trans. on Prog. Lang. and Systems 19(3), 427–443 (05
1997)

[13] Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM Trans. Comput. Log. 1(1), 60–76
(2000)

13

[14] Kozen, D.: Automata on guarded strings and applications. Matématica Contemporânea 24,
117–139 (2003)

[15] Kozen, D.: On the coalgebraic theory of Kleene algebra with tests. Tech. Rep. http://hdl.
handle.net/1813/10173, Cornell University (05 2008)

[16] Milner, R.: Communication and concurrency. PHI Series in computer science, Prentice Hall
(1989)

[17] Mirkin, B.G.: An algorithm for constructing a base in a language of regular expressions.
Engineering Cybernetics 5, 51—57 (1966)

[18] Nelma Moreira, D.P., de Sousa, S.M.: Deciding regular expressions (in-)equivalence in Coq. In:
Griffin, T.G., Kahl, W. (eds.) 13th RAMiCS 2012. LNCS, vol. 7560, pp. 98–113. Springer (2012)

[19] Pereira, D.: Towards Certified Program Logics for the Verification of Imperative Programs.
Ph.D. thesis, University of Porto (2013)

[20] Prisacariu, C.: Synchronous Kleene algebra. J. Log. Algebr. Program. 79(7), 608–635 (2010)

[21] Rot, J., Bonsangue, M.M., Rutten, J.J.M.M.: Coinductive proof techniques for language
equivalence. In: Dediu, A.H., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810,
pp. 480–492. Springer (2013)

[22] Silva, A.: Position automata for Kleene algebra with tests. Sci. Ann. Comp. Sci. 22(2), 367–394
(2012)

14

