
Left Relations

Eva Maia Nelma Moreira Rogério Reis
e-mail:{emaia,nam,rvr}@dcc.fc.up.pt

DCC-FC & CMUP, Universidade do Porto

Rua do Campo Alegre 1021, 4169-007 Porto, Portugal

Technical Report Series: DCC-2014-09

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 1021/1055,

4169-007 PORTO,
PORTUGAL

Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/

Left Relations

February 3, 2015

Abstract

Recently, Yamamoto presented a new method for the conversion from regular expres-
sions (REs) to non-deterministic finite automata (NFA) based on the Thompson ε-NFA
(AT). The AT automaton has two quotients considered: the suffix automaton Asuf and
the prefix automaton, Apre. Eliminating ε-transitions in AT , the Glushkov automaton
(Apos) is obtained. Thus, it is easy to see that Asuf and the partial derivative automaton
(Apd) are the same. In this paper, we characterise the Apre automaton as a solution of a
system of left RE equations and express it as a quotient of Apos by a specific left-invariant
equivalence relation. We define and characterise the right-partial derivative automaton

(
←−
Apd). Finally, we study the average size of all these constructions both experimentally

and from an analytic combinatorics point of view.

1 Introduction

Regular expressions (REs), because of their succinctness and clear syntax, are the common
choice to represent regular languages. The minimal deterministic finite automaton (DFA)
equivalent to a RE can be exponentially larger than the RE. However, nondeterministic finite
automata (NFAs) equivalent to REs can have the number of states linear with respect to
(w.r.t) the size of the REs.

Brzozowski [4] proposed a method to convert REs in equivalent DFAs, based on the
derivatives of regular expressions. Conversion methods from REs to equivalent NFAs can
produce NFAs without or with transitions labelled with the empty word (ε-NFA). The
standard conversion without ε-transitions is the position automaton (Apos) [11, 16]. Other
conversions such as partial derivative automata (Apd) [1, 17], which is a nondeterministic
version of the Brzozowski automata, follow automata (Af) [13], or the construction by Garcia
et al. (Au) [10] were proved to be quotients of the position automata, by specific right-
equivalence relations. The Thompson automaton AT is the typical conversion method with
ε-transitions. Yamamoto [20] present a new conversion method based on the left languages
of the states of AT , instead of the right languages commonly used. This method has as result
the Apre automaton.

In this paper we define the left derivative and the left partial derivative automaton and
show its relation with Brzozowski automaton and partial derivative automaton, respectively.
We also construct the Apre automaton directly from the regular expression without use the
AT automaton, and show that it also is a quotient of the Apos automaton.

2

2 Regular Expressions and Automata

Given an alphabet Σ = {σ1, σ2, . . . , σk} of size k, the set RE of regular expressions α over Σ
is defined by the following grammar:

α := ∅ | ε | σ1 | · · · | σk | (α+ α) | (α · α) | (α)?, (1)

where the symbol · is often omitted. If two regular expressions α and β are syntactically
equal, we write α ≡ β. The size of a regular expression α, |α|, is its number of symbols,
disregarding parenthesis; its alphabetic size, |α|Σ, is the number of occurrences of letters from
Σ; and |α|ε denotes the number of occurrences of ε in α. A regular expression α is linear if
all its letters are distinct.

The language represented by a RE α is denoted by L(α). Two REs α and β are equivalent
if L(α) = L(β), and one writes α = β. We define ε(α) = ε if ε ∈ L(α) and ε(α) = ∅,
otherwise. Given a set S ⊆ RE, we define ε(S) =

⋃
α∈S ε(α). We can inductively define ε(α)

as follows:

ε(σ) = ε(∅) = ∅
ε(ε) = ε
ε(α∗) = ε

ε(α+ β) =

{
ε if (ε(α) = ε) or (ε(β) = ε)

∅ otherwise

ε(αβ) =

{
ε if (ε(α) = ε) and (ε(β) = ε)

∅ otherwise

The algebraic structure (RE,+, ., ∅, ε) constitutes an idempotent semiring, and with
the Kleene star operator ?, a Kleene algebra. There are several well-known complete
axiomatizations of Kleene algebras [14]. In the following we consider regular expressions
reduced by the following rules: ε ·α = α = α · ε, ∅+α = α = α+ ∅, and ∅ ·α = ∅ = α · ∅. Let
ACI denote the associativity, commutativity and idempotence of +. Given a language L ⊆ Σ?

and a word w ∈ Σ?, the left-quotient of L w.r.t. w is the language w−1L = {x | wx ∈ L},
and the rigth-quotient of L w.r.t. w is the language Lw−1 = {x | xw ∈ L}. It is not difficult
to verify that Lw−1 = (wR)−1LR. We define Prefix(w) = {v ∈ Σ+ | ∃u ∈ Σ? : vu = w}. The
reversal of a word w = σ1σ2 · · ·σn is the word written backwards, i.e. wR = σn · · ·σ2σ1.
The reversal of a language L, denoted by LR, is the set of words whose reversal is on L. The
reversal of a regular expression α ∈ RE can be inductively define by the following rules [12]:

σR = σ

∅R = ∅
εR = ε

(α+ β)R = αR + βR

(αβ)R = βRαR

(α∗)R = (αR)?

(2)
A nondeterministic finite automaton (NFA) is a five-tuple A = (Q,Σ, δ, I, F) where Q

is a finite set of states, Σ is a finite alphabet, I ⊆ Q is the set of initial states, F ⊆ Q
is the set of final states, and δ : Q × Σ → 2Q is the transition function. This transition
function can be extended to words in the natural way. To simplify the notation, when
|I| = 1, instead of use I = {q0}, q0 ∈ Q, we use I = q0. Given a state q ∈ Q, the
right language of q is L(A, q) = {w ∈ Σ? | δ(q, w) ∩ F 6= ∅}, and the left language is
←−
L (A, q) = {w ∈ Σ? | δ(q0, w) = q}. The language accepted by A is L(A) = L(A, q0). Two
NFAs are equivalent if they accept the same language. If two NFAs A and B are isomorphic,
we write A ' B. An NFA is deterministic if for all (q, σ) ∈ Q × Σ, |δ(q, σ)| ≤ 1. A DFA
is minimal if there is no equivalent DFA with fewer states. Minimal DFAs are unique up to

3

isomorphism. The size of an automaton A, |A|, is its number of states. The reversal of an
automaton A is the automaton AR, where the initial and final states are interchanged and
all transitions are reversed.

If R is a equivalence relation on Q the quotient automaton A�R can be constructed

by A�R = (Q�R,Σ,
δ�R, [q0], F�R), where [q] is the equivalence class that contains q ∈ Q;

S�R = {[q] | q ∈ S}, with S ⊆ Q; and δ�R = {([p], σ, [q]) | (p, σ, q) ∈ δ}. It is easy to see

that L(A�R) = L(A). R is right invariant w.r.t. A if and only if: R ⊆ (Q − F)2 ∪ F 2 and

∀p, q ∈ Q, σ ∈ Σ, if pRq, then δ(p, σ)�R = δ(q, σ)�R. R is a left invariant relation w.r.t. A if
and only if it is a right invariant relation w.r.t. AR.

The right languages of the states of an automaton A with Q = [0, n] define a system of

right equations, Li =
⋃k
j=1 σj

(⋃
m∈Iij Lm

)
∪ ε(Li), where Iij ⊆ [0, n] and m ∈ Iij ⇔ Lm ∈

δ(Li, σj). In the same manner, the left languages of the states of A define a system of left

equations
←−
L i =

⋃k
j=1

(⋃
m∈Iij

←−
Lm
)
σj ∪ ε(

←−
L i), where Iij ⊆ [0, n] and m ∈ Iij ⇔

←−
L i ∈

δ(
←−
Lm, σj); and L(A) =

⋃
i∈F
←−
L i.

3 Left Derivatives

The left derivative [4] of a regular expression α with respect to a symbol σ ∈ Σ, denoted
σ−1α, is defined recursively on the structure of α as follows:

σ−1∅ = σ−1ε = ∅

σ−1σ′ =

{
{ε}, if σ′ = σ

∅, otherwise

σ−1(α+ β) = σ−1(α) + σ−1(β)

σ−1(αβ) =

{
(σ−1α)β if ε(α) 6= ε

(σ−1α)β + σ−1β otherwise

σ−1(α?) = (σ−1α)α?

(3)
This notion can be extended to derivatives w.r.t. a word w = w1 · · ·wn, wi ∈ Σ? in the

following way:

ε−1α = α

(w1 · · ·wn)−1α = (w2 · · ·wn)−1(w−1
1 α)

or, more generally,
(ps)−1α = s−1(p−1α) (4)

for every factorization w = ps, p, s ∈ Σ?.
Brzozowski [4] proved that L(w−1α) = w−1L(α). Let D(α) be the quotient of the set of

all derivatives of a regular expression α modulo the ACI-equivalence relation. Brzozowski also
proved that the set D(α) is finite. Using this result it is possible to define the Brzozowski’s
automaton: AB(α) = (D(α),Σ, δ, [α], F), where F = {[d] ∈ D(α) | ε(d) = ε}, and δ([q], σ) =
[σ−1q], for all [q] ∈ D(α), σ ∈ Σ. It was proved that this automaton recognizes L(α).

4 Right derivatives

Similar to what happens in the previous section, the right derivative of a regular expression
α with respect to a symbol σ ∈ Σ, denoted ασ−1, is defined recursively on the structure of

4

α as follows:

∅σ−1 = (ε)σ−1 = ∅

σ′σ−1 =

{
{ε}, if σ′ = σ

∅, otherwise

(α+ β)σ−1 = (α)σ−1 + (β)σ−1

(αβ)σ−1 =

{
α(βσ−1) if ε(β) 6= ε

α(βσ−1) + ασ−1 otherwise

(α?)σ−1 = α?(ασ−1)
(5)

This definition can be extended to derivatives w.r.t. a word w = w1 · · ·wn, wi ∈ Σ? in
the following way:

αε−1 = α

α(w1 · · ·wn)−1 = (αw−1
n)(w1 · · ·wn−1)−1

More generally we can use:

α(ps)−1 = (αs−1)p−1

for every factorization w = ps, p, s ∈ Σ?.

Let
←−
D (α) be the quotient of the set of all right derivatives of a regular expression α

modulo the ACI-equivalence relation.
The two following results establish a relationship between the right and the left deriva-

tives.

Proposition 1. For any regular expression α ∈ RE and any σ ∈ Σ, the following result
holds:

ασ−1 = (σ−1αR)R

Proof. Let us prove the result by induction on α. For the base cases the result is obviously
true. Assume that the equality holds for α1, α1 ∈ RE. Let α = α1 + α2, then:

(α1 + α2)σ−1 = α1σ
−1 + α2σ

−1 by (5)

= (σ−1αR1)R + (σ−1αR2)R by inductive hypothesis

= (σ−1αR1 + σ−1αR2)R by (2)

= (σ−1(αR1 + αR2))R by (3)

= (σ−1(α1 + α2)R)R by (2)

If α = α1α2, then we have:

(α1α2)σ−1 =

{
α1(α2σ

−1) If ε(α2) 6= ε

α1(α2σ
−1) + α1σ

−1 otherwise
by (5)

=

{
α1(σ−1αR2)R If ε(α2) 6= ε

α1(σ−1αR2)R + (σ−1αR1)R otherwise
by inductive hypothesis

=

{
((σ−1αR2)αR1)R If ε(α2) 6= ε

((σ−1αR2)αR1 + σ−1αR1)R otherwise
by (2)

= (σ−1(αR2 α
R
1))R = (σ−1(α1α2)R)R by (3) and (2), respectively.

5

Finally, if α = α?1, then:

α?1σ
−1 = α?1(α1σ

−1) by (5)

= α?1(σ−1αR1)R by inductive hypothesis

= (σ−1(αR1)(αR1)?)R by (2)

= (σ−1(α?1)R)R by (3)

= (σ−1(α?1)R)R by (2)

Proposition 2. For any regular expression α ∈ RE and any w ∈ Σ+, the following reult
holds:

αw−1 = ((wR)−1αR)R.

Proof. Let us prove the result by induction on w. If |w| = 1, then w = σ. Thus, in this case,
the equality is true by Proposition 1. Assuming that the equality holds for some w ∈ Σ+,
let us prove it for w′ = σw:

α(σw)−1 = (αw−1)σ−1

= ((wR)−1αR)Rσ−1 by inductive hypothesis

= (σ−1(((wR)−1αR)R)R)R by Proposition 1

= (σ−1((wR)−1αR))R

= ((wRσ)−1αR)R by (4)

= (((σw)R)−1αR)R by (2)

Using these relations is not difficult to prove that the following result holds.

Proposition 3. For any regular expression α ∈ RE and any word w ∈ Σ? the following
holds:

L(αw−1) = L(α)w−1.

Proof. It is known that L(w−1α) = w−1L(α). Thus, we have:

L(αw−1) = L(((wR)−1αR)R), because αw−1 = ((wR)−1αR)R

= (L((wR)−1αR))R

= ((wR)−1L(αR))R, because L(w−1α) = w−1L(α)

= L(α)w−1, because Lw−1 = (wR)−1LR

Using the Proposition 1 and Proposition 2 we can conclude that:

Corollary 1. For any regular expression α ∈ RE,
←−
D (α) = (D(αR))R

As we know that the set D(α) of derivatives modulo ACI-equivalence is finite, by the

Corollary 1 we can conclude that the set
←−
D (α) is also finite. Thus, we can define the NFA

←−
AB(α), whose states are the right derivatives of α modulo ACI-equivalence.

The right Brzozowski’s automaton of a regular expression α is defined by
←−
AB(α) =

(
←−
D (α),Σ, δ, I, {[α]}), where i = {[d] ∈

←−
D (α) | ε(d) = ε}, and δ([q], σ) = {[q′] ∈

←−
D (α) |

[q′σ−1] = [q]}.

6

Corollary 2. For any regular expression α ∈ RE,
←−
AB(α) ' (AB(αR))R.

Corollary 3. For any regular expression α ∈ RE, L(
←−
AB(α)) = L(α).

As (
←−
AB(α))R = AB(αR) and AB(αR) is deterministic, for any regular expression α ∈ RE,

←−
AB is a disjoint NFA [19] or a partial átomaton [5].

5 Left Partial Derivates Automaton

The partial derivative automaton of a regular expression was introduced independently by
Mirkin [17] and Antimirov [1]. Champarnaud and Ziadi [7] proved that the two formulations
are equivalent. For a regular expression α ∈ RE and a symbol σ ∈ Σ, the set of left-partial
derivatives of α w.r.t. σ is defined inductively as follows:

∂σ(∅) = ∂σ(ε) = ∅

∂σ(σ′) =

{
{ε}, if σ′ = σ

∅, otherwise

∂σ(α+ β) = ∂σ(α) ∪ ∂σ(β)

∂σ(αβ) = ∂σ(α)β ∪ ε(α)∂σ(β)

∂σ(α?) = ∂σ(α)α?

(6)
where for any S ⊆ RE, S∅ = ∅S = ∅, Sε = εS = S, and Sβ = {αβ|α ∈ S} if β 6= ∅, and
β 6= ε.

The definition of left-partial derivative can be extended to sets of regular expressions,
words, and languages. Given a regulare expression α ∈ RE, a symbol σ ∈ Σ, a word w ∈ Σ?

and a set S ⊆ RE, we define ∂σ(S) =
⋃
α∈S ∂σ(α), ∂ε(α) = α, ∂wσ(α) = ∂σ(∂w(α)), and

∂L(α) =
⋃
w∈L ∂w(α) for L ⊆ Σ?. It is known that

⋃
τ∈∂w(α) L(τ) = w−1L(α). The set of

all partial derivatives of α w.r.t. words is denoted by PD(α) =
⋃
w∈Σ? ∂w(α). Note that the

set PD(α) is always finite [1], as opposed to what happens for the Brzozowski derivatives set
which is only finite modulo ACI.

The partial derivative automaton is defined by Apd(α) = (PD(α),Σ, δpd, α, Fpd), where
δpd = {(τ, σ, τ ′) | τ ∈ PD(α), σ ∈ Σ, τ ′ ∈ ∂σ(τ)} and Fpd = {τ ∈ PD(α) | ε(τ) = ε}.

As noted by Broda et al. [3] and Maia et al. [15], following Mirkin’s construction, the
partial derivative automaton of α can be inductively constructed. A (right) support for α is
a set of regular expressions {α1, . . . , αn} such that αi = σ1αi1 + · · ·+σkαik+ε(αi), i ∈ [0, n],
α0 ≡ α and αij is a linear combination of αl, l ∈ [1, n] and j ∈ [1, k]. The set π(α) inductively
defined as follows is a right support of α:

π(∅) = ∅
π(ε) = ∅
π(σ) = {ε}

π(α+ β) = π(α) ∪ π(β)

π(αβ) = π(α)β ∪ π(β)

π(α?) = π(α)α?.
(7)

Champarnaud and Ziadi [7] proved that PD(α) = π(α) ∪ {α}.
We also need an inductive definition of the set of transitions of Apd(α). Let ϕ(α) =

{(σ, γ) | γ ∈ ∂σ(α), σ ∈ Σ} and λ(α) = {α′ | α′ ∈ π(α), ε(α′) = ε}, where both sets can be
inductively defined using (6) and (7). We have, δpd = {α}×ϕ(α)∪F (α) where the result of

7

q0 q1

q2

q3

q4 q5

q6

q7

a

b

b

b
b

a a

b
b

b

a

b

b

a

b a

b

a

a

b

a

b

a

b

b

a

a

b

(a) Apos(α)

α a?α

a?bα

a?baα

ε aα

a

b
a

b

b

a

b

a a

b

b

a

b

a

b

a

a

(b) Apd(α)

Figure 1: α = (a?b+ a?ba+ a?)?b.

the × operation is seen as a set of triples and the set F is defined inductively by:

F (∅) = F (ε) = F (σ) = ∅, σ ∈ Σ
F (α+ β) = F (α) ∪ F (β)
F (αβ) = F (α)β ∪ F (β) ∪ λ(α)β × ϕ(β)
F (α?) = F (α)α? ∪ (λ(α)× ϕ(α))α?.

(8)

Note that the concatenation of a transition (α, σ, β) with a regular expression is defined
by (α, σ, β)γ = (αγ, σ, βγ), if γ 6∈ {∅, ε}, (α, σ, β)∅ = ∅ and (α, σ, β)ε = (α, σ, β). Then,

Apd(α) = (π(α) ∪ {α},Σ, {α} × ϕ(α) ∪ F (α), α, λ(α) ∪ ε(α){α}).

In Fig. 1 are represented Apos(α) and Apd(α), where α = (a?b+ a?ba+ a?)?b.
Champarnaud and Ziadi [8] showed that the partial derivative automaton is a quotient

of the Glushkov automaton by the right-invariant equivalence relation ≡c, such that i ≡c j
if ∂wσi(α) = ∂wσj (α), where it is known that ∂wσi(α) is either empty or an unique singleton
for all w ∈ Σ?.

6 Right Partial Derivates Automaton

In the previous section we define the partial derivative automaton using the left-partial
derivatives. We can also define a partial derivative automaton using the right-partial deriva-
tives.

The concept of right-partial derivatives was introduced by Champarnaud et. al [6]. For
a regular expression α ∈ RE and a symbol σ ∈ Σ, the set of right-partial derivatives of α

w.r.t. σ,
←−
∂ σ(α), is defined inductively as follows:

←−
∂ σ(∅) =

←−
∂ σ(ε) = ∅

←−
∂ σ(σ′) =

{
{ε}, if σ′ = σ

∅, otherwise

←−
∂ σ(α+ β) =

←−
∂ σ(α) ∪

←−
∂ σ(β)

←−
∂ σ(αβ) = α

←−
∂ σ(β) ∪ ε(β)

←−
∂ σ(α)

←−
∂ σ(α?) = α?

←−
∂ σ(α).

(9)

8

q0

q1

q2 q3

b

a, b

a, b

a

a

a

Figure 2:
←−
Apd(α) : q0 = (a?b+ a?ba+ a?)?a?, q1 = (a?b+ a?ba+ a?)?a?b, q2 = (a?b+ a?ba+

a?)?, q3 = (a?b+ a?ba+ a?)?b

The definition of right-partial derivative can be extended to sets of regular expressions,
words, and languages. Given a regulare expression α ∈ RE, a symbol σ ∈ Σ, a word w ∈ Σ?

and a set S ⊆ RE, we define
←−
∂ σ(S) =

⋃
α∈S
←−
∂ σ(α), ∂ε(α) = α,

←−
∂ σw(α) =

←−
∂ σ(
←−
∂ w(α)), and

←−
∂ L(α) =

⋃
w∈L
←−
∂ w(α) for L ⊆ Σ?. The set of all right-partial derivatives of α w.r.t. words

is denoted by
←−
PD(α) =

⋃
w∈Σ?

←−
∂ w(α). In Fig. 6 is represented the

←−
Apd(a

?b+a?ba+a?)?b).
The next results establish a parallel between the left and the right partial derivatives.

Proposition 4. For a regular expression α and a symbol σ ∈ Σ, (∂σ(αR))R =
←−
∂ σ(α).

Proof. Let us prove the result by induction on the structure of α. For the base cases the
equality is obvious. Let α = α1 + α2, then

(∂σ((α1 + α2)R))R = (∂σ(αR1) ∪ ∂σ(αR2))R

= (∂σ(αR1))R ∪ (∂σ(αR2))R

=
←−
∂ σ(α1) ∪

←−
∂ σ(α2)

=
←−
∂ σ(α)

Let α = α1α2, then

(∂σ((α1α2)R))R = (∂σ(αR2 α
R
1))R

= (∂σ(αR2)αR1 ∪ ε(αR2)∂σ(αR1))R

= (∂σ(αR2)αR1)R ∪ (ε(αR2)∂σ(αR1))R

= α1
←−
∂ σ(α2) ∪ ε(α2)

←−
∂ σ(α1)

=
←−
∂ σ(α)

Let α = α?1

(∂σ((α?1)R))R = (∂σ((αR1)?))R

= (∂σ(αR1)(αR1)?)R

= α?1(∂σ(αR1))R

= α?1
←−
∂ σ(α1)

=
←−
∂ σ(α)

Thus the equality in the Proposition holds.

Proposition 5. For a regular expression α and a word w ∈ Σ?, (∂wR(αR))R =
←−
∂ w(α).

9

Proof. Let us proceed by induction on the size of w. If w = ε the result is obviously true. If
w = σ the result is true by the Proposition 4. Assuming that the result is true for w, let us
prove it for w′ = σw:

←−
∂ σw(α) =

←−
∂ σ(
←−
∂ w(α)) =

←−
∂ σ((∂wR(αR))R)

= (∂σ(((∂wR(αR))R)R))R

= (∂σ(∂wR(αR)))R

= (∂wRσ(αR))R = (∂(σw)R(αR))R

Proposition 6. For a regular expression α,
←−
PD(α) = (PD(αR))R.

Proof.

←−
PD(α) = (PD(αR))R

(
←−
PD(α))R = PD(αR))(⋃

w∈Σ?

←−
∂ w(α)

)R
=

⋃
w∈Σ?

∂w(αR)

(⋃
w∈Σ?

(∂wR(αR))R

)R
=

⋃
w∈Σ?

∂w(αR)⋃
w∈Σ?

∂wR(αR) =
⋃
w∈Σ?

∂w(αR)

As
⋃
w∈Σ? w =

⋃
w∈Σ? w

R the equality holds.

Using the last result is not difficult to conclude that
←−
PD is finite. Thus, the right partial

derivative automaton for α is

←−
Apd(α) = (

←−
PD(α) ∪ {α},Σ,

←−
δ pd,

←−
F pd(α), α),

where
←−
δ pd = {(q′, a, q) | q ∈

←−
PD(α), q′ ∈

←−
∂ a(q), and a ∈ Σ},

←−
F pd = {q ∈

←−
PD(α) | ε(q) =

ε}. Note that
←−
Apd(α) has always just one final state and it can has more than one initial

state.
As what happens for Apd, the

←−
Apd(α) can also be defined inductively as a solution of a

left system of expression equations, αi = αi1σ1 + · · ·+ αikσk + ε(αi), i ∈ [0, n], α0 ≡ α, αij
is a linear combination of αl, l ∈ [1, n] and j ∈ [1, k].

Proposition 7. The set of regular expressions ←−π (α) is a solution of a left system of
expression equations,

←−π (∅) = ∅
←−π (ε) = ∅
←−π (σ) = {ε}

←−π (α+ β) = ←−π (α) ∪←−π (β)
←−π (αβ) = α←−π (β) ∪←−π (α)
←−π (α?) = α?←−π (α).

(10)

10

Proof. For α = ∅ and α = ε is obvious that the solution is ∅. For α = σ, α = εσ thus the
solution set is {ε}. Let us suppose that

β = β0

βi = βi1σ1 + · · ·+ βikσk + ε(βi),

with ←−π (β) = {β1, · · · , βn} and

γ = γ0

γi = γi1σ1 + · · ·+ γikσk + ε(γi),

with ←−π (γ) = {γ1, · · · , γm}. Consider α = β + γ, then

β + γ = β0 + γ0

As we need all βi, i ∈ [1, n] to define β, and all γi, i ∈ [1,m] to define γ, ←−π (αβ) =
{β1, · · · , βn} ∪ {γ1, · · · , γm}. Consider α = βγ then

βγ = βγ0

= β(γ01σ1 + · · ·+ γ0kσk + ε(γ0))

= βγ01a1 + · · ·+ βγ0kak + ε(γ0)β

= (βγ01 + ε(γ0)β01)σ1 + · · ·+ (βγ0k + ε(γ0)β0k) + ε(γ0)ε(β0)

And,

βγi = (βγ0i + ε(γ0)β01)σ1 + · · ·+ (βγik + ε(γi)β0k)σk + ε(γi)ε(β0)

As we know that exists i ∈ [0,m] such that ε(γi) = ε, then ←−π (βγ) = {βγ1, · · · , βγm} ∪
{β1, · · · , βn}.

Consider α = β? then

β? = β?β + ε

= β?(β01σ1 + · · ·+ β0kσk + ε(βi)) + ε

= β?β01σ1 + · · ·+ β?β0kσk + ε(βi)β
? + ε

And,

β?βi = β?β0iσ1 + · · ·+ β?β0iσk + ε(βi)β
?

Thus, ←−π (β?) = {β?β1, · · · , β?βn}.
Therefore the set ←−π (α) is a solution of the system of equations.

Let←−ϕ (α) = {(γ, σ) | γ ∈
←−
∂ σ(α), σ ∈ Σ} and

←−
λ (α) = {α′ | α′ ∈ ←−π (α), ε(α′) = ε}, where

both sets can be inductively defined as follows:

11

←−ϕ (∅) = ∅
←−ϕ (ε) = ∅
←−ϕ (σ) = {(ε, σ)}, σ ∈ Σ

←−ϕ (α+ β) = ←−ϕ (α) ∪←−ϕ (α)
←−ϕ (αβ) = α←−ϕ (β) ∪ ε(β)←−ϕ (α)
←−ϕ (α?) = α?←−ϕ (α)

←−
λ (∅) = ∅
←−
λ (ε) = ∅
←−
λ (σ) = {ε}, σ ∈ Σ

←−
λ (α+ β) =

←−
λ (α) ∪

←−
λ (β)

←−
λ (αβ) = ε(α)α

←−
λ (β) ∪

←−
λ (α)

←−
λ (α?) = α?

←−
λ (α).

(11)

The set of transitions of
←−
Apd is←−ϕ (α)×{α}∪

←−
F (α) where the set

←−
F is defined inductively

by: ←−
F (∅) =

←−
F (ε) =

←−
F (σ) = ∅, σ ∈ Σ

←−
F (α+ β) =

←−
F (α) ∪

←−
F (β)

←−
F (αβ) = α

←−
F (β) ∪

←−
F (α) ∪ ϕ(α)× (α

←−
λ (β))

←−
F (α?) = α?

←−
F (α) ∪ α?(←−ϕ (α)×

←−
λ (α)).

(12)

Note that the concatenation of a regular expression with a transition (α, σ, β) is defined
by γ(α, σ, β) = (γα, σ, γβ), if γ 6∈ {∅, ε}, ∅(α, σ, β) = ∅ and ε(α, σ, β) = (α, σ, β).

Proposition 8. The inductive definitions given in (11) and (12) follows from the resolution
of the above system of equations.

Proof. For the base cases it is obvious. Let us suppose that

β = β0

βi = βi1σ1 + · · ·+ βikσk + ε(βi),

with
←−
λ (β) = {βi | ε(βi) = ε}, ←−ϕ (β) = {(βi, σ1) | βi ∈ βi1, β = βi1σ1}, and

←−
F (β) =

{(βi, σ1, βj) | βi ∈ βi1, βj = βi1σ1}.
and

γ = γ0

γi = γi1σ1 + · · ·+ γikσk + ε(γi),

with
←−
λ (γ) = {βi | ε(γi) = ε}, ←−ϕ (γ) = {(γi, σ1) | γi ∈ γi1, γ = γi1σ1}, and

←−
F (γ) =

{(γi, σ1, γj) | γi ∈ γi1, γj = γi1σ1} For the case α = β + γ, it is obvious. Consider α = βγ
then

βγ = βγ0

= β(γ01σ1 + · · ·+ γ0kσk + ε(γ0))

= βγ01a1 + · · ·+ βγ0kak + ε(γ0)β

From the last row of the equation is not difficult to conclude that ←−ϕ (βγ) = β←−ϕ (γ) ∪
ε(γ)←−ϕ (β). We know that

←−
λ (α) = {αi | ε(αi) = ε}, then in this case

←−
λ (α) = {βi | ε(βi) =

12

ε}∪{βγi | ε(γi) = ε, ε(β) = ε}. Thus,
←−
λ (α) =

←−
λ (β)∪ε(β)β

←−
λ (γ). Considering the solutions

βi we can conclude that
←−
F (β) ⊆

←−
F (α), and considerinf the solutions βγi we conclude that

β
←−
F (γ) ∪←−ϕ (β)× (β

←−
λ (γ)) ⊆ Fr(α). Thus,

←−
F (α) =

←−
F (β) ∪ β

←−
F (γ) ∪←−ϕ (β)× (β

←−
λ (γ)).

Consider α = β? then

β? = β?β + ε

= β?(β01σ1 + · · ·+ β0kσk + ε(βi)) + ε

From this it is not difficult to conclude that ←−ϕ (β?) = β?←−ϕ (β). Looking at the definition

of βi, it is also not difficult to see that
←−
λ (β?) = β?

←−
λ (β).

We know that

β?βi = β?β0iσ1 + · · ·+ β?β0iσk + ε(βi)β
?

= β?β0iσ1 + · · ·+ β?β0iσk + ε(βi)(β
?β + ε)

Thus,
←−
F (β?) = β?

←−
F (β) ∪ β?(←−ϕ (β)×

←−
λ (β)).

Then, the right-partial derivative automaton of α is

Apd(α) = (←−π (α) ∪ {α},Σ,←−ϕ (α)× {α} ∪
←−
F (α),

←−
λ (α) ∪ ε(α){α}, {α}).

We can relate the set π with the set ←−π :

Proposition 9. Let α be a regular expression. Then (π(αR))R =←−π (α).

Proof. Let us prove by induction on the structure of α. For α = ε, α = ∅ and α = σ ∈ Σ
it is obvious. Suppose that the equality is true for any subexpression of α, and let us prove
that it is also true for α. If α = α1 + α2, then

(π(αR))R = (π(αR1) ∪ π(αR2))R

= (π(αR1))R ∪ (π(αR2))R

= ←−π (α1) ∪←−π (α2)

= ←−π (α1 + α2).

If α = α1α2, then

(π((α1α2)R))R = (π(αR2 α
R
1))R

= (π(αR2)αR1 ∪ π(αR1))R

= (π(αR2)αR1)R ∪ (π(αR1))R

= (αR1)R(π(αR2))R ∪←−π (α1)

= α1
←−π (α2) ∪←−π (α1)

= ←−π (α1α2)

If α = α?1, then

(π((α?1)R))R = (π((αR1)?))R

= (π(αR1)(αR1)?)R

= ((α?1)R)R(π(αR1))R

= α?1
←−π (α1)

= ←−π (α?1)

13

Note that the sizes of π(α) and ←−π (α) are not comparable in general. For example, if
α = (a?b + a?ba + a?)?b then |π(α)| > |←−π (α)|, but if we consider β = b(ba? + aba? + a?)?

then |π(β)| < |←−π (β)|. As π(α) and ←−π (α) are subsets of the set of states of Apd and
←−
Apd

respectively, the number of states of Apd and of
←−
Apd are also not related.

Then we can conclude that the set of states of the right-partial derivative automaton is
partially given by the set ←−π (α), moreover

Corollary 4. For a regular expression α,
←−
PD(α) =←−π (α) ∪ {α}.

Proof. For any regular expression α ∈ RE we know that

PD(α) = π(α) ∪ {α}
⇔ PD(αR) = π(αR) ∪ {αR}
⇔ (

←−
PD(α))R = (←−π (α))R ∪ {αR}

⇔
←−
PD(α) =←−π (α) ∪ {α}

Let us define that ∀α ∈ RE, σ ∈ Σ, {(σ, α)}R = {(αR, σ)}. The following facts show the

relationship between the functions λ and
←−
λ , ϕ and ←−ϕ , and F and

←−
F .

Corollary 5. Let α be a regular expression, (λ(αR))R =
←−
λ (α).

Proof. Let us prove the result by induction on α. For the base cases the result is obviously
true. If α = α1 + α2, then (λ((α1 + α2)R))R = (λ(αR1 + αR2))R = (λ(αR1))R ∪ (λ(αR2))R =
←−
λ (α1) ∪

←−
λ (α2) =

←−
λ (α1 + α2). If α = α1α2 then

(λ((α1α2)R))R = (λ(αR2 α
R
1))R

= (λ(αR1) ∪ ε(αR1)λ(αR2)αR1)R

= (λ(αR1))R ∪ ε(α1)α1(λ(αR2))R

=
←−
λ (α1) ∪ ε(α1)α1

←−
λ (α2)

=
←−
λ (α1α2)

If α = α?1 then (λ((α?1)R))R = (λ((αR1)?))R = (λ(αR1)(αR1)?)R = α?1
←−
λ (α1) =

←−
λ (α?1).

Note that while λ(α) defines the final states of Apd(α),
←−
λ (α) defines the initial states of

←−
Apd(α).

Corollary 6. Let α be a regular expression, (ϕ(αR))R =←−ϕ (α).

Proof. Let us prove the result by structural induction. For α = ∅, and α = ε the result is
obviously true. If α = σ ∈ Σ then (ϕ(σ))R = {(σ, ε)}R. Thus, (ϕ(σ))R =←−ϕ (σ).

If α = α1 + α2 then (ϕ((α1 + α2)R))R = (ϕ(αR1 + αR2))R = (ϕ(αR1))R ∪ (ϕ(αR2))R =
←−ϕ (α1) ∪←−ϕ (α2) =←−ϕ (α1 + α2).

14

If α = α1α2 then

(ϕ((α1α2)R))R = (ϕ(αR2 α
R
1))R

= (ϕ(αR2)αR1 ∪ ε(αR2)ϕ(αR1))R

= α1(ϕ(αR2))R ∪ ε(α2)(ϕ(αR1))R

= α1
←−ϕ (α2) ∪ ε(α2)←−ϕ (α1)

= ←−ϕ (α1α2).

If α = α?1 then (ϕ((α?1)R))R = (ϕ(αR1)(αR1)?)R = α?1(ϕ(αR1))R = α?ϕ(α1). Thus the
equality of the Proposition holds.

Corollary 7. Let α be a regular expression, (F (αR))R =
←−
F (α).

Proof. Let us prove the result by structural induction. For α = ∅, and α = ε and α = σ the
result is obviously true.

If α = α1 + α2 then (F ((α1 + α2)R))R = (F (αR1 + αR2))R = (F (αR1))R ∪ (F (αR2))R =
←−
F (α1) ∪

←−
F (α2) =

←−
F (α1 + α2).

If α = α1α2 then

F ((α1α2)R))R = (F (αR2 α
R
1))R

= (F (αR2)αR1 ∪ F (αR1) ∪ λ(αR2)αR1 × ϕ(αR1))R

= (F (αR2)αR1)R ∪ (F (αR1))R ∪ (λ(αR2)αR1 × ϕ(αR1))R

= α1(F (αR2))R ∪
←−
F (α1) ∪ (ϕ(αR1))R × (α1(λ(αR2))R)

= α1
←−
F (α2) ∪

←−
F (α1) ∪←−ϕ (α1)× (α1

←−
λ (α2)).

If α = α?1 then

(F ((α?1)R))R = (F (αR1)(αR1)? ∪ (λ(αR1)× ϕ(αR1))(αR1)?)R

= (F (αR1)(αR1)?)R ∪ ((λ(αR1)× ϕ(αR1))(αR1)?)R

= α?1
←−
F (α1) ∪ α?1(←−ϕ (α1)×

←−
λ (α1))

Thus the equality of the Proposition holds.

Proposition 10. For any α ∈ RE and w ∈ Σ?, the following holds: L(
←−
∂ w(α)) = L(α)w−1.

Proof. We know that L(∂w(α)) = w−1L(α). Thus,

L(
←−
∂ w(α)) = L((∂wR(αR))R) = (L(∂wR(αR)))R

= ((wR)−1L(αR))R = L(α)w−1

Proposition 11. For any α ∈ RE and w ∈ Σ?, the following holds: αw−1 =
∑←−

∂ w(α).

15

Proof. It known that w−1α =
∑
∂w(α). Thus,∑←−

∂ w(α) =
∑(

(∂wR(αR))R
)

= (
∑

∂wR(αR))R

= ((wR)−1αR)R = αw−1

Using the previous results we can associate Apd with
←−
Apd.

Proposition 12. Let α be a regular expression. Then (Apd(αR))R '
←−
Apd(α).

Proof. Follows from the Proposition 9, Corollary 5, Corollary 6, and Corollary 7.

Proposition 13. Let α be a regular expression. Then L(
←−
Apd(α)) = L(α).

Proof. We know that L(α) = L(Apd(α)). Thus,

L(α) = L(Apd(α)) ⇔ L(αR) = L(Apd(αR))

⇔ L((αR)R) = L((Apd(αR))R)

⇔ L(α) = L(
←−
Apd(α))

As we know that Apd(α) ' Apos(α)�≡c we can conclude that:

Corollary 8. For any α ∈ RE,
←−
Apd(α) ' (Apos(αR))R�≡c.

It is not difficult to see that:

Proposition 14. For any α ∈ RE, |(Apos(αR))R| = |Apos(α)|.

Proof. The reversal of an automaton does not change its number of states and transitions.
Thus, to prove this equality is sufficient prove that |Apos(αR)| = |Apos(α)|. For any β ∈ RE,
we know that |Apos(β)| = |β|+ 1, and |β| = |βR|. Thus, the equality |Apos(αR)| = |Apos(α)|
holds.

6.1 Properties of Right Partial Derivates

Proposition 15. For any regular expressions α, β and word w ∈ Σ+ the following holds:

←−
∂ w(α+ β) ⊆

←−
∂ w(α) ∪

←−
∂ w(β) (13)

←−
∂ w(αβ) ⊆ α

←−
∂ w(β) ∪

⋃
v∈Prefix(w)

←−
∂ v(α) (14)

←−
∂ w(α?) ⊆ α?

⋃
v∈Prefix(w)

←−
∂ v(α) (15)

Proof. Let us prove all the inclusions by induction on the size of w. Note that if |w| = 1,
then w = σ and the inclusions correspond to the rules presented in (6). Assuming that all

16

the inclusions hold for some w ∈ Σ+, we will prove each one for w′ = xw. Considering the
inclusion (13) we have that:

←−
∂ xw(α+ β) =

←−
∂ x(
←−
∂ w(α+ β)) =

←−
∂ (
←−
∂ w(α) ∪

←−
∂ w(β))

=
←−
∂ xw(α) ∪

←−
∂ xw(β)

Let us prove the inclusion (14):

←−
∂ xw(αβ) =

←−
∂ x(
←−
∂ w(αβ)) ⊆

←−
∂ x

α←−∂ w(β) ∪
⋃

v∈Prefix(w)

←−
∂ v(α)


⊆
←−
∂ x(α

←−
∂ w(β)) ∪

⋃
v∈Prefix(w)

←−
∂ x(
←−
∂ v(α))

⊆ α
←−
∂ x(
←−
∂ w(β)) ∪

←−
∂ x(α) ∪

⋃
v∈Prefix(w)

←−
∂ xv(α)

⊆ α
←−
∂ xw(β) ∪

⋃
v∈Prefix(xw)

←−
∂ v(α)

Finally, we prove the inclusion (15):

←−
∂ xw(α?) = ∂x(

←−
∂ w(α?)) ⊆

←−
∂ x

α? ⋃
v∈Prefix(w)

←−
∂ v(α)


⊆

⋃
v∈Prefix(w)

←−
∂ x(α?

←−
∂ v(α))

⊆

 ⋃
v∈Prefix(w)

α?
←−
∂ x(
←−
∂ v(α))

 ∪←−∂ x(α?)

⊆

 ⋃
v∈Prefix(w)

α?∂xv(α)

 ∪ α?←−∂ x(α)

⊆
⋃

v∈Prefix(xw)

α?
←−
∂ v(α)

Proposition 16. For any α ∈ RE the following hold:

|←−π (α)| ≤ |α| (16)

|
←−
PD(α)| ≤ |α|+ 1. (17)

Proof. Since
←−
PD(α) =←−π (α) ∪ {α}, the first inequality implies the second one, thus we only

need to prove (16). We proceed by induction on α. The base cases are obvious. Let us
suppose that the inequality (16) holds for some α1, α2 ∈ RE and consider three subcases.
First, consider α = α1 + α2. Then we have:

|←−π (α1 + α2)| = |←−π (α1) ∪←−π (α2)| = |←−π (α1)|+ |←−π (α2)| ≤ |α1 + α2|

17

For the second case, consider α = α1α2, then:

|←−π (α1α2)| = |α1
←−π (α2) ∪←−π (α1)| = |α1

←−π (α2)|+ |←−π (α1)|
≤ |α2|+ |α1| = |α1α2|

Finally, consider α = α?1, thus we have that:

|←−π (α?1)| = |α?1←−π (α1)| ≤ |α1| = |α?1|

Observing the Proposition 15 is not difficult to conclude the following result, which is
similar to what happens for left-partial derivatives:

Corollary 9. Given a regular expression α ∈ RE, any right partial derivative of α is either
ε, or a subterm of α, or a concatenation α1 · α2 · · ·αn of several such subterms, where n is
not greater than the number of ocurrences of concatenation and Kleene star in α.

6.2 Average Case

In [3] the authors proved that the average number of states of partial derivative automaton is,

on average, half the number of states of the Glushkov automaton. As
←−
Apd(α) = (Apd(αR))R,

we can conclude that:

Corollary 10. The number of states of
←−
Apd are, on average, half of the number of states

of Apos.

7 Prefix Automaton

Yamamoto [20] presented a new algorithm for converting a regular expression into an equiv-
alent NFA. First, a labeled version of the usual Thompson NFA (Q,Σ, δ, I, F) is obtained,
where each state q is labeled with two regular expressions, one that corresponds to its left
language, LP (q), and the other to its right language, LS(q). States that in-transitions are
labeled with a letter are called sym-states. Then the equivalence relations ≡pre and ≡suf are
defined on the set of sym-states: for two states p, q ∈ Q, p ≡pre q if and only if LP (p) =
LP (q); and p ≡suf q if and only if LS(p) = LS(q). The prefix automaton Apre and the
suffix automaton Asuf are the quotient automata by these relations. The final automaton
is a combination of these two. The author also shows that Asuf automaton coincides with

Apd. This relation between Apd and Asuf could lead us to think that
←−
Apd(α) coincide with

Apre(α), which is not true. For instance, considering α = a+ b, the
←−
Apd(α) has 2 states and

the Apre(α) has 3 states (see Fig. 3). Note that both automata are obtained from another

automaton by merging the states with the same left language: while the
←−
Apd(α) is obtained

from (Apos(αR))R, we will see that the Apre(α) is obtained from Apos(α).
We can define the set of states of the automaton Apre inductively on the structure of α

by the following rules, which are based in the left languages labelling scheme defined by the
author:

Pre(∅) = ∅
Pre(ε) = ∅
Pre(σ) = {σ}

Pre(α+ β) = Pre(α) ∪ Pre(β)

Pre(αβ) = αPre(β) ∪ Pre(α)

Pre(α?) = α?Pre(α).
(18)

18

q0

q1

q2

a

b

(a) Apos(α)

q0

q1

q2

a

b

(b) (Apos(αR))R

ε

a

b

a

b

(c) Apre(α)

ε a + b
a, b

(d)
←−
Apd(α)

Figure 3: α = a+ b.

The definition of Pre can be extended to sets of regular expressions: Pre(S) =
⋃
α∈S Pre(α)

for S ⊆ RE.

Remark 1. For any α ∈ RE, the elements of Pre(α) are always of the form ∅ or α′σ, where
α′ is a subexpression of α or ε, and σ ∈ Σ.

In order to obtain the final states of Apre automaton we need to calculate the left
languages of the Apos final states. For that we define the function Pr′:

Pr′(∅) = ∅
Pr′(ε) = ε

Pr′(σ) = {σ}

Pr′(αβ) = αPr′(β) ∪ ε(β)Pr′(α)

Pr′(α+ β) = Pr′(α) ∪ Pr′(β)

Pr′(α?) = α?Pr′(α).

(19)

Similarly to what happens for Apre, the definition of Pr′ can be extended to sets of regular
expressions: Pr′(S) =

⋃
α∈S Pr′(α) for S ⊆ RE.

Lemma 17. For any α ∈ RE the following holds: Pr′(α) ⊆ ε ∪ Pre(α).

Proof. Let us prove the inclusion by induction on α. Is not difficult to see that the results
is true for the base cases. Let α = α1 + α2, then Pr′(α1 + α2) = Pr′(α1) ∪ Pr′(α1) ⊆
Pre(α1)∪Pre(α2). If α = α1α2, then Pr′(α1α2) = α1Pr′(α2)∪Pr′(α1) ⊆ α1Pre(α2)∪Pre(α1).
If α = α?1, the Pr′(α?1) = α?1Pr′(α1) ⊆ α?1Pre(α1).

Remark 2. For any α ∈ RE, the elements of Pr′(α) are always of the form ε, ∅ or α′σ,
where α′ is a subexpression of α or ε, and σ ∈ Σ.

Corollary 11. For any j ∈ Pr′(α), α ∈ RE, if ε(j) = ε then ε(α) = ε.

Proof. By Remark 2 we know that j = ε, j = ∅ or j = α′σ. In the last two cases is obvious
that ε(j) 6= ε. By (19) we can conclude that if j = ε then α = ε, α = ε+ α′ or α = α′ + ε.
Thus the proposition holds.

Now, we need to define the Apre(α) transition function, i.e. for each state γ of Apre
and each σ ∈ Σ we need to determine from which states we reach γ. Thus, we have to find
which β satisfies βσ = γ, and then calculate the left languages of the states of Apos(α) that
correspond to β. The following function permit us to define such transitions:

19

q0 q1

q2

q3

q4

a

b

b

a

b

b

b
a

ba

b

bb

Figure 4: Apre((a?b+ a?ba+ a?)?b) : q0 = ε, q1 = (a?b+ a?ba+ a?)?(a?a), q2 = (a?b+ a?ba+
a?)?(a?b), q3 = (a?b+ a?ba+ a?)?((a?b)a), q4 = (a?b+ a?ba+ a?)?b.

Prσ(∅) = Prσ(ε) = ∅

Prσ(σ′) =

{
{ε}, if σ′ = σ

∅, otherwise

Prσ(α+ β) = Prσ(α) ∪ Prσ(β)

∪ ε(Prσ(α) ∪ Prσ(β))

Prσ(αβ) = Pr′(αPrσ(β))

∪ ε(αPrσ(β))

∪ ε(β)(Pr′(Prσ(α))

∪ ε(Prσ(α)))

Prσ(α?) = Pr′(α?Prσ(α))

∪ ε(Prσ(α))
(20)

The definition of Prσ can be extended to sets of regular expressions, words, and languages.
Given α ∈ RE and σ ∈ Σ, Prσ(S) =

⋃
α∈S Prσ(α) for S ⊆ RE, Prε(α) = Pr′(α) and Prσw(α) =

Prσ(Prw(α)), for any w ∈ Σ?, σ ∈ Σ.
Therefore, the automaton Apre can be inductively defined by

Apre(α) = ({ε} ∪ Pre(α),Σ, δpre, ε,Pr′(α) ∪ ε(α){ε}),

where δpre = {(s′, σ, s) | s ∈ Pre(α), s′ ∈ Prσ(s), σ ∈ Σ}.
As we know that we only apply the function Prσ to an s in Pre(α), by Remark 1 we can

redefine this function in a simplest way:

Prσ(∅) = Prσ(ε) = ∅

Prσ(σ′) =

{
{ε}, if σ′ = σ

∅, otherwise

Prσ(α′σ′) =

{
Pr′(α′) ∪ ε(α′), if σ′ = σ

∅, otherwise

(21)

In Fig.4 we can see the Apre((a?b+ a?ba+ a?)?b).
The following facts describe some properties of the functions Pr and Pr′.

Lemma 18. For any α ∈ RE, and any σ ∈ Σ, the following inclusion hold Prσ(Pr′(α)) ⊆
Prσ(α).

Proof. Let us prove the result by structural induction on α. For α = ∅,α = ε and α = σ the
inclusion is obviously true. If α = α1 + α2, then

Prσ(Pr′(α1 + α2)) = Prσ(Pr′(α1)) ∪ Prσ(Pr′(α2))

⊆ Prσ(α1) ∪ Prσ(α2)

If α = α1α2, then

20

Prσ(Pr′(α1α2)) =

{
Prσ(α1Pr′(α2) ∪ ε(α2)Pr′(α1)) if α2 6= ε

Prσ(Pr′(α1)) if α2 = ε

=


Pr′(α1Prσ(Pr(α2))) ∪ ε(α1Prσ(Pr′(α2)))∪
ε(Pr′(α2))(Pr′(Prσ(α1)) ∪ ε(Prσ(α1))) ∪ ε(α2)Pr′(α1))

if α2 6= ε

Prσ(α1) if α2 = ε

⊆


Pr′(α1Prσ(α2)) ∪ ε(α1Prσ(α2))∪
ε(Pr′(α2))(Pr′(Prσ(α1)) ∪ ε(Prσ(α1))) ∪ ε(α2)Pr′(α1))

if α2 6= ε

Prσ(α1) if α2 = ε

by Corollary 11

⊆ Prσ(α1α2)

If α = α?1, then

Prσ(Pr′(α?1)) = Prσ(α?1Pr′(α1))

= Pr′(α?1Prσ(Pr′(α1))) ∪ ε(Pr(Pr′(α1))){ε}
= Pr′(α?1Prσ(α1)) ∪ ε(Prσ(α1))

= Prσ(α?1)

Lemma 19. For any α ∈ RE, the following inclusion hold Pr′(Pr′(α)) = Pr′(α).

Proof. Let us prove the equality by structural induction on w. For the base cases it is
obvious. Let α = α1 + α2, then

Pr′(Pr′(α1 + α2)) = Pr′(Pr′(α1) ∪ Pr′(α2))

= Pr′(Pr′(α1)) ∪ Pr′(Pr′(α2))

= Pr′(α1) ∪ Pr′(α2)

If α = α1α2, then

Pr′(Pr′(α1α2)) =

{
Pr′(α1Pr′(α2) ∪ ε(α2)Pr′(α1)) if α2 6= ε

Pr′(Pr′(α1)) if α2 = ε

=


α1Pr′(Pr′(α1)) ∪ ε(Pr′(Pr′(α2)))Pr′(α1) ∪ ε(α2)Pr′(α1) if Pr′(α1) 6= ε ∧ α2 6= ε

Pr′(α1) if Pr(α2) = ε

Pr′(α1) if α2 = ε

=


α1Pr′(α1) ∪ ε(Pr′(α2))Pr′(α1) ∪ ε(α2)Pr′(α1) if Pr′(α1) 6= ε ∧ α2 6= ε

Pr′(α1) if Pr(α2) = ε

Pr′(α1) if α2 = ε

by Corollary 11

= Pr′(α1α2)

21

If α = α?1, then

Pr′(Pr′(α?1)) = Pr′(α?1Pr′(α1))

=

{
α?1Pr′(Pr′(α1)) ∪ ε(Pr′(α1))Pr′(α?1) if Pr′(α1) 6= ε

Pr′(α?1) otherwise

as Pr′(α?1) = α?1Pr′(α1)

= α?1Pr′(α1)

Lemma 20. For any α ∈ RE and σ ∈ Σ, the following inclusion hold Pr′(Prσ(α)) = Prσ(α).

Proof. Follows directly from the definition and from the previous lemma.

Lemma 21. For any regular expressions α1, α2 and word w ∈ Σ? the following inclusions
hold:

Prw(α1 + α2) ⊆ Prw(α1) ∪ Prw(α2) ∪ {ε} (22)

Prw(α1α2) ⊆ Pr′(αPrw(α2)) ∪
⋃

v∈Prefix(w)

Pr′(Prv(α)) ∪ {ε} (23)

Prw(α?1) ⊆
⋃

v∈Prefix(w)

Pr′(α?Prv(α)) ∪ {ε} (24)

Proof. We will prove the three results by induction on the size of w. The base case, |w| = 1,
for all the results it is obvious and coincide with the definition of Prσ(α). Assuming that the
inclusions holds for some w ∈ Σ+, we prove it for w′ = σw. Consider the result (22). Then,

Prσw(α1 + α2) = Prσ(Prw(α1 + α2))

⊆ Prσ(Prw(α1) ∪ Prw(α2) ∪ {ε})
⊆ Prσ(Prw(α1)) ∪ Prσ(Prw(α2))

⊆ Prσw(α1) ∪ Prσw(α2) ∪ {ε}

Let us consider the inclusion (23). Then,

Prσw(α1α2) = Prσ(Prw(α1α2))

⊆ Prσ(Pr′(α1Prw(α2)) ∪
⋃

v∈Prefix(w)

Pr′(Prv(α1)) ∪ {ε})

⊆ Prσ(Pr′(α1Prw(α2))) ∪
⋃

v∈Prefix(w)

Prσ(Pr′(Prv(α1)))

as Prσ(Pr′(α)) ⊆ Prσ(α)

⊆ Prσ(α1Prw(α2)) ∪
⋃

v∈Prefix(w)

Prσ(Prv(α1))

⊆ Pr′(α1Prσ(Prw(α2))) ∪ {ε} ∪ Pr′(Prσ(α1)) ∪
⋃

v∈Prefix(w)

Prσ(Prv(α1))

as Pr′(Prσ(α)) ⊆ Prσ(α) and Prσ(α1) ⊆
⋃

v∈Prefix(σw)

Prv(α1)

⊆ Pr′(α1Prσw(α2))) ∪ {ε} ∪
⋃

v∈Prefix(σw)

Prv(α1)

22

Finally consider the inclusion (24). Then

Prσw(α?1) = Prσ(Prw(α?1))

⊆ Prσ(
⋃

v∈Prefix(w)

Pr′(α?1Prv(α1)) ∪ {ε})

⊆
⋃

v∈Prefix(w)

Prσ(Pr′(α?1Prv(α1)))

as Prσ(Pr′(α)) ⊆ Prσ(α)

⊆
⋃

v∈Prefix(w)

Prσ(α?1Prv(α1))

⊆
⋃

v∈Prefix(w)

Pr′(α?1Prσ(Prv(α1))) ∪ {ε} ∪ Pr′(Prσ(α?1))

as Pr′(Prσ(α)) ⊆ Prσ(α)

⊆
⋃

v∈Prefix(w)

Pr′(α?1Prσv(α1))) ∪ {ε} ∪ Prσ(α?1)

as Prσ(α?1) ⊆
⋃

v∈Prefix(σw)

Pr′(α?1Prv(α1))

⊆
⋃

v∈Prefix(σw)

Pr′(α?1Prv(α1))) ∪ {ε}

Lemma 22. For any α ∈ RE and any w ∈ Σ+, the following holds: Pr′(Prw(α)) ⊆ Prw(α)

Proof. Let us prove the result by structural inductions on α. For the base cases the result
is obviously true. Consider α = α1 + α2, then

Pr′(Prw(α1 + α2)) ⊆ Pr′(Prw(α1) ∪ Prw(α2) ∪ {ε})
⊆ Pr′(Prw(α1)) ∪ Pr′(Prw(α2)) ∪ Pr′({ε})
⊆ Prw(α1) ∪ Prw(α2) ∪ {ε}
⊆ Prw(α1 + α2)

If α = α1α2 then

Pr′(Prw(α1α2)) ⊆ Pr′(Pr′(α1Prw(α2)) ∪
⋃

v∈Prefix(w)

Pr′(Prv(α1)) ∪ {ε})

⊆ Pr′(Pr′(α1Prw(α2))) ∪
⋃

v∈Prefix(w)

Pr′(Pr′(Prv(α1))) ∪ Pr′({ε})

⊆ Pr′(α1Prw(α2)) ∪
⋃

v∈Prefix(w)

Pr′(Prv(α1)) ∪ {ε}

⊆ Prw(α1α2)

23

Finally if α = α?1 the

Pr′(Prw(α?1)) ⊆ Pr′(
⋃

v∈Prefix(w)

Pr′(α?1Prv(α1)) ∪ {ε})

⊆
⋃

v∈Prefix(w)

Pr′(Pr′(α?1Prv(α1))) ∪ Pr′({ε})

⊆
⋃

v∈Prefix(w)

Pr′(α?1Prv(α1)) ∪ {ε}

⊆ Prw(α?1)

The next results ensure that the transitions of Apre(α) only goes to states in the set
{ε} ∪ Pre(α).

Lemma 23. For any α ∈ RE and any σ ∈ Σ, the following holds: Prσ(α) ⊆ Pre(α) ∪ {ε}.

Proof. Let us proceed by induction on α. For the base cases the inclusion is obvious. Let
α = α1 + α2, the Prσ(α1 + α2) = Prσ(α1) ∪ Prσ(α2) ⊆ Pre(α1) ∪ Pre(α2).

If α = α1α2, then

Prσ(α1α2) ⊆ Pr′(α1Prσ(α2)) ∪ {ε} ∪ Pr′(Prσ(α1))

⊆ Pr′(α1Prσ(α2)) ∪ {ε} ∪ Prσ(α1)

⊆ α1Pr′(Prσ(α2)) ∪ Pr′(α1) ∪ {ε} ∪ Prσ(α1)

as Pr′(Prσ(α)) ⊆ Prσ(α)

⊆ α1Prσ(α2) ∪ Pr′(α1) ∪ {ε} ∪ Prσ(α1)

as Pr′(α)) ⊆ Pre(α) ∪ {ε} and by inductive hypothesis

⊆ α1Pre(α2) ∪ Pre(α1) ∪ {ε}

If α = α?1 then

Prσ(α?1) = Pr′(α?1Prσ(α1))

⊆ α?1Pr′(Prσ(α1)) ∪ Pr′(α?1)

as Pr′(Prσ(α)) ⊆ Prσ(α)

⊆ α?1Prσ(α1) ∪ α?1Pr′(α1)

as Pr′(α)) ⊆ Pre(α) ∪ {ε} and by inductive hypothesis

⊆ α?1Pre(α1) ∪ {ε}

Lemma 24. For any R ⊆ RE and any σ ∈ Σ, the following holds: Prσ(R) ⊆ Pre(R) ∪ {ε}.

Proof. Let us prove the result by induction on the size of the set R. If |R| = 1 the inclusion
is true by Lemma 23. Assuming that the inclusion holds for some R ⊆ RE, let us prove it
for R′ = R ∪ {α}:

Prx(R ∪ {α}) = Prx(R) ∪ Prx(α)

⊆ Pre(R) ∪ Pre(α) ∪ {ε} ⊆ Pre(R ∪ {α}) ∪ {ε}.

24

Lemma 25. For any α ∈ RE the following holds: Pre(Pre(α)) = Pre(α).

Proof. Let us prove the result by induction on α. For the base cases the result is obviously
true. Let α = α1 + α2 then Pre(Pre(α1 + α2)) = Pre(Pre(α1)) ∪ Pre(Pre(α2)) = Pre(α1) ∪
Pre(α2). If α = α1α2, then

Pre(Pre(α1α2)) = Pre(α1Pre(α2)) ∪ Pre(Pre(α1))

= α1Pre(Pre(α2)) ∪ Pre(α1) ∪ Pre(α1)

= α1Pre(α2) ∪ Pre(α1)

If α = α?1 then Pre(Pre(α?1)) = Pre(α?1Pre(α1)) = α?1Pre(Pre(α1)) ∪ Pre(α?1) = α?1Pre(α1).

Lemma 26. For any α ∈ RE and any w ∈ Σ+, the following holds:⋃
v∈Prefix(w)

Prv(α) ⊆ Pre(α) ∪ {ε}

.

Proof. Let us prove the result by induction on the size of w. If |w| = 1, then w = σ and
Prefix(σ) = {σ}. Thus,

⋃
v∈Prefix(w) Prv(α) = Prσ(α), and by Lemma 23 we can conclude

that Prσ(α) ⊆ Pre(α)∪ {ε}. Assuming that the inclusion holds for some w ∈ Σ+, and let us
prove it for w′ = xw, where x ∈ Σ:⋃
v∈Prefix(xw)

Prv(α) ⊆
⋃

v∈Prefix(w)

Prxv(α) ∪ Prx(α)

⊆
⋃

v∈Prefix(w)

Prx(Prv(α)) ∪ Prx(α)

⊆ Prx(
⋃

v∈Prefix(w)

Prv(α)) ∪ Prx(α)

⊆ Prx(Pre(α)) ∪ Prx({ε}) ∪ Prx(α)

as Prx(α) ∪ {ε} ⊆ Pre(α) and Prx(R) ⊆ Pre(R) ∪ {ε}, where R ⊆ RE

⊆ Pre(Pre(α)) ∪ Pre(α) ∪ {ε}
⊆ Pre(α) ∪ {ε}

Proposition 27. For any regular expressions α1, α2 and word w ∈ Σ? the following inclusion
holds: Prw(α) ⊆ Pre(α) ∪ {ε}.

Proof. Let us proceed by induction on α. It is not difficult to see that the inclusion is
true for the base cases. If α = α1 + α2 then Prw(α1 + α2) ⊆ Prw(α1) ∪ Prw(α2) ∪ {ε} ⊆
Pre(α1) ∪ Pre(α2) ∪ {ε}.

25

Let α = α1α2 then

Prw(α1α2) ⊆ Pr′(α1Prw(α2)) ∪
⋃

v∈Prefix(w)

Pr′(Prv(α1)) ∪ {ε}

⊆ α1Pr′(Prw(α2)) ∪ Pr′(α1) ∪
⋃

v∈Prefix(w)

Pr′(Prv(α1)) ∪ {ε}

as Pr′(Prw(α)) ⊆ Prw(α)

⊆ α1Prw(α2) ∪ Pr′(α1) ∪
⋃

v∈Prefix(w)

Prv(α1) ∪ {ε}

by inductive hypothesis and Lemma 26

⊆ α1Pre(α2) ∪ Pr′(α1) ∪ Pre(α1) ∪ {ε}
as Pr′(α) ⊆ Pre(α)

⊆ α1Pre(α2) ∪ Pre(α1) ∪ {ε}
⊆ Pre(α1α2) ∪ {ε}

If α = α?1, then

Prw(α?1) ⊆
⋃

v∈Prefix(w)

Pr′(α?1Prv(α1)) ∪ {ε}

⊆
⋃

v∈Prefix(w)

(α?1Pr′(Prv(α1)) ∪ Pr′(α?1)) ∪ {ε}

⊆ α?1
⋃

v∈Prefix(w)

Pr′(Prv(α1)) ∪ Pr′(α?1) ∪ {ε}

as Pr′(Prw(α)) ⊆ Prw(α)

⊆ α?1
⋃

v∈Prefix(w)

Prv(α1) ∪ Pr′(α?1) ∪ {ε}

by inductive hypothesis and Lemma 17

⊆ α?1Pre(α1) ∪ Pre(α?1) ∪ {ε}
⊆ Pre(α?1) ∪ {ε}

Inductive construction. If α = ∅ then Apre(∅) = ({ε, ∅},Σ, ∅, ε, {∅}). If α = ε then
Apre(ε) = ({ε},Σ, ∅, ε, {ε}). If α = σ then Apre(ε) = ({ε, σ},Σ, {(ε, σ, σ)}, ε, {σ}).

Suppose Apre(αi) = ({ε} ∪ Pre(αi),Σ, δpre(αi), ε,Pr′(αi) ∪ ε(αi)), for i ∈ {1, 2}.
If α = α1 +α2 then Apre(α) = ({ε}∪Pre(α1)∪Pre(α2),Σ, δpre(α1)∪ δpre(α2), ε,Pr′(α1)∪

Pr′(α2) ∪ ε(α)).
If α = α1α2 then Apre(α) = ({ε} ∪ α1Pre(α2) ∪ Pre(α1),Σ, δpre(α1) ∪ D, ε, α1Pr′(α2) ∪

ε(α2)Pr′(α1) ∪ ε(α)), where D = δ′ ∪ δ′′, δ′ = {(t, σ, α1s2) | t ∈ (Pr′(α1) ∪ ε(α1)), (ε, σ, s2) ∈
δpre(α2)} and δ′′ = {(t, σ, α1s2) | t ∈ (α1Pr′(s′2) ∪ ε(s′2)Pr′(α1) ∪ ε(α1s

′
2)), s′2 6= ε, (s′2, σ, s2) ∈

δpre(α2)}.
If α = α?1 thenApre(α) = ({ε},∪α?1Pre(α1),Σ, δ, ε, α?1Pr′(α1)∪{ε}). where δ = {(t, σ, α?1s1) |

t ∈ (α?1Pr′(s′1) ∪ ε(s′1)Pr′(α?1) ∪ ε(s′1)), s′1 6= ε, (s′1, σ, s1) ∈ δpre(α1)} ∪ {(t, σ, α?1s1) | t ∈
(Pr′(α?1) ∪ {ε}), (ε, σ, s1) ∈ δpre(α1)}.

Proposition 28. Let α be a regular expression. Then L(Apre(α)) = L(α).

26

Apd(∅) :
ε ∅

Apd(ε) :
ε

Apd(σ) :
ε σ

σ

Apd(α1 + α2) :

ε

Pr′(α1)

Pr′(α2)

δpre(α1)

δpre(α2)

Apd(α2α2) :

ε Pr′(α1) α1s2 α1Pr′(α2)
δpre(α1) δ′ δ′′

Apd(α?1) :

ε α?
1s1 α?

1Pr′(α1)
σ

σ

α?
1δpre(α1)

Figure 5: Inductive construction of Apd. The initial states are final if ε belongs to α language.
Note that only if ε(α2) = ε the dotted arrow in Apd(α1α2) exists.

Proof. For the base cases it is obvious (see Fig. 5). If α = α1 + α2, then the initial state of
Apre(α) coincides with the initial state of Apre(α1) and Apre(α2). The transitions of Apre(α1)
and Apre(α2) are maintained in Apre(α). Thus, L(Apre(α)) = L(Apre(α1)) ∪ L(Apre(α2)) =
L(α1)∪L(α2) = L(α). Let α = α1α2. The words accepted by Apre(α) are the words xy such
that x goes from the initial state ofApre(α), which corresponds to the initial state ofApre(α1),
to a state s ∈ Pr′(α1), which corresponds to a final state of Apre(α1); and y goes from a
state s ∈ Pr′(α1), which corresponds to the initial state of Apre(α2) to a state s′ ∈ α1Pr′(α2),
which corresponds to a final state of Apre(α2). Then L(Apre(α)) = {xy | x ∈ L(Apre(α1)) ∧
y ∈ L(Apre(α2))}. Thus, L(Apre(α)) = L(Apre(α1))L(Apre(α2)) = L(α1)L(α2) = L(α).
Consider α = α?1. The words accepted by Apre(α) are the words of the form x = x1x2x3 · · ·xn
such that xi ∈ L(α1),∀i ∈ [1, n]. Any word xi goes from the initial state of Apre(α), which
corresponds to the initial state of Apre(α1), to a final state f ⊆ α?1Pr′(α1), which corresponds
to a final state of Apre(α1). After recognise a word xi we can recognize a word xi+1, because
when the recognising process reaches a final state, it can proceed as if it has reached the
initial state – δpre(ε) ⊆ δpre(f). Note that if x = ε, x is also recognised, because the initial
state is also a final state. Thus, L(Apre(α)) = L(Apre(αi)?) = L(α?1).

7.1 Apre inductive definition

The LP labelling scheme proposed by Yamamoto can be obtained as a solution of a system

of expression equations for a RE α, as done both for Apd and
←−
Apd. Consider a system of left

equations αi = αi1σ1 + · · · + αikσk, i ∈ [1, n], where α =
∑

i∈I⊆[0,n] αi, αij =
∑

l∈Iij⊆[0,n] αl
and α0 ≡ ε.

27

Proposition 29. The set Pre(α) inductively defined as follows:

Pre(∅) = ∅
Pre(ε) = ∅
Pre(σ) = {σ}

Pre(α+ β) = Pre(α) ∪ Pre(β)
Pre(αβ) = αPre(β) ∪ Pre(α)
Pre(α?) = α?Pre(α).

(25)

is a solution (left support) of the system of left equations defined above.

Proof. For α = ∅ and α = ε is obvious that the solution is ∅. For α = σ,

α = α1

α1 = α0σ

α0 = ε

Thus Pre(α) = {σ}. Let us suppose that

β =
∑

i∈I⊆[0,n]

βi

βi = βi1a1 + · · ·+ βikak,

with Pre(β) = {β1, · · · , βn} and

γ =
∑

i∈I⊆[0,m]

γi

γi = γi1a1 + · · ·+ γikak,

with Pre(γ) = {γ1, · · · , γm}. Consider α = β + γ, then

β + γ =
∑

i∈I⊆[1,n]

βi +
∑

i∈I′⊆[1,n′]

γi

As we need all βi, i ∈ [1, n] to define β, and all γi, i ∈ [1,m] to define γ, Pre(α) =
{β1, · · · , βn} ∪ {γ1, · · · , γm}. Consider α = βγ then

βγ = β(
∑

i∈I⊆[0,m]

γi)

Note that if i=0, then ε(γ) = ε

= β(
∑

i∈I⊆[0,m]

γi) + ε(γ)
∑

i∈I⊆[0,n]

βi + ε(γ)ε(β)

And

βγi = β(γi1σ1 + · · ·+ γikσk)

As we know that γ0 ⊆ γi,k for some i ∈ [0,m], the solution set is Pre(α) = {βγ1, · · · , βγm}∪
{β1, · · · , βn}.

28

Consider α = β? then

β? = β?β + ε

= β?(
∑

i∈I⊆[1,n]

βi) + ε

Thus, Pre(α) = {β?β1, · · · , β?βn}.

The set Pre0(α) = Pre(α) ∪ {ε} constitutes the set of states of the prefix automaton
Apre(α). It also follows from the resolution of the above system of equations, that the set
of transitions of Apre(α) can be inductively defined. Let Pr′(α), ψ(α) and T(α) be defined,
respectively, as follows

Pr′(∅) = ∅
Pr′(ε) = {ε}
Pr′(σ) = {σ}

Pr′(α+ β) = Pr′(α) ∪ Pr′(β)
Pr′(αβ) = αPr′(β) ∪ ε(β)Pr′(α)
Pr′(α?) = α?Pr′(α).

(26)

ψ(∅) = ∅
ψ(ε) = ∅
ψ(σ) = {(σ, σ)}

ψ(α+ β) = ψ(α) ∪ ψ(α)
ψ(αβ) = ψ(α) ∪ ε(α) α ψ(β)
ψ(α?) = α?ψ(α)

(27)

T(∅) = T(ε) = T(σ) = ∅, σ ∈ Σ
T(α+ β) = T(α) ∪ T(β)

T(αβ) = T(α) ∪ αT(β) ∪ Pr′(α)× (αψ(β))
T(α?) = α?T(α) ∪ α?(Pr′(α)× ψ(α)).

(28)

Proposition 30. The inductive definitions given in (26), (27) and (28) follows from the
resolution of the above system of equations.

Proof. For the base cases it is obvious. Let us suppose that

β =
∑

i∈I⊆[0,n]

βi

βi = βi1a1 + · · ·+ βikak,

with ψ(β) = {(σ1, βi) | βi = βi1σ1, β0 ∈ βi1}, Pr′(β) = {βi | i ∈ I ⊆ [0, n]}, and T(β) =
{(βi, σ1, βj) | βj = βj1σ1, βi ∈ βj1}, and

γ =
∑

i∈I⊆[0,m]

γi

γi = γi1a1 + · · ·+ γikak,

with ψ(γ) = {(σ1, γi) | γi = γi1σ1, γ0 ∈ γi1}, Pr′(γ) = {γi | i ∈ I ⊆ [0, n]}, and T(γ) =
{(γi, σ1, γj) | γj = γj1σ1, γi ∈ γj1}.

In the case α = β + γ the definitions are obvious. Consider α = βγ, then from the
equation

βγβ = (
∑

i∈I⊆[0,m]

γi) + ε(γ)
∑

i∈I⊆[0,n]

βi + ε(γ)ε(β)

29

it is obvious that Pr′ = βPr′(γ) ∪ ε(γ)Pr′(β). Considering the equations βγi and βi is not
difficult to conclude that psi(βγ) = ψ(β)∪ ε(β)βψ(γ). From the same equations we can also
conclude that T(βγ) = T(β)∪βT(γ)∪Pr′(β)×βψ(γ). The definition for the functions when
α = β? are obtained in a similar way.

Therefore,

Apre(α) = (Pre0(α),Σ, {ε} × ψ(α) ∪ T(α), ε,Pr′(α) ∪ ε(α)).

7.2 Apre as Apos Quotient

We now show that the Apre(α) is a quotient of Apos(α). If α is a linear regular expression,
Apos(α) is deterministic and thus all its states have distinct left languages. Therefore, in
this case, Apre(α) coincides with Apos(α).

Proposition 31. For any linear regular expression α, |Pre(α)| = |α|Σ.

Proof. Let us prove the result by induction on α. For the base cases the result is obviously
true. Assuming that the result holds for α1, α2 ∈ RE, we prove it for the operations. If
α = α1+α2, then |Pre(α1+α2)| = |Pre(α1)∪Pre(α2)|. As Σα1∩Σα2 = ∅, |Pre(α1)∪Pre(α2)| =
|α1| + |α2| = |α1 + α2|. Considering α = α1α2 we have that |Pre(α1α2)| = |α1Pre(α2) ∪
Pre(α1)|. By the same reason of the previous case |α1Pre(α2)∪Pre(α1)| = |α2|+|α1| = |α1α2|.
Finally, if α = α?1, then |Pre(α?1)| = |α?1Pre(α1)| = |α1| = |α?1|.

In particular, for an arbitrary RE α, Apre(α) ' Apos(α).

Proposition 32. Let α be a regular expression. Then Apre(α) ' Apos(α).

Proof. By the Proposition 31 we know that the both automata have the same number
of states. However we need to prove that the automata are isomorphic. We proceed
by induction on α. For α = ∅ or α = ε the result is obvious. If α = σ, Apre(σ) =
({σ1, ε}, {σ}, (ε, σ, σ1), ε, {σ1}) andApos(σ) = ({0, (σ, 1)}, {σ}, (0, σ, (σ, 1)), 0, {(σ, 1)}). Thus
the automata are isomorphic. Let us assume that the result holds for α1, α2 ∈ RE, and
consider that
Apre(αi) = (Qαi ,Σ, δαi , ε,Pr′(αi) ∪ ε(αi)) and
Apos(αi) = (Pos(αi) ∪ {0},Σ, δpαi , 0, Last(αi)ε(αi){ε}), for i ∈ {1, 2}.
If α = α1+α2, then Apre(α1 + α2) = (Pre(α1)∪Pre(α2)∪{ε},Σ, δα1∪δα2 , ε,Pr′(α1)\{ε}∪

Pr′(α2)\{ε}∪ε(α1+α2)); and Apos(α1+α2) = (Pos(α1+α2)∪{ε},Σ, δpα1 ∪δpα2 , 0, Last(α1)\
{0} ∪ Last(α2) \ {0} ∪ ε(α1 + α2){0}). Therefore, is not difficult to see that the automata
are isomorphic.

If α = α1α2 thenApre(α1α2) = (α1Pre(α2)∪α1∪{ε},Σ, δα1α2 , ε,Pr′(α1α2)\{ε}∪ε(α1α2)),
where

δα1α2 = A ∪ B, whith A = {(s′, σ, s) | s ∈ α1q ∧ q ∈ Pre(α2) ∧ Prσ(q) 6= ε ∧ s′ ∈
(α1Pr′(Prσ(q)) ∪ ε(Prσ(q))Pr′(α1) ∪ ε(α1Prσ(q)){ε} ∪ ε(q)(Pr′(Prσ(α1)) ∪ ε(Prσ(α1))))},

B = {(s′, σ, s) | s ∈ α1q ∧ q ∈ Pre(α2) ∧ Prσ(q) = ε ∧ s′ ∈ (Pr′(α1) ∪ ε(α1))} ∪ δα1 , and

Pr′(α1α2) =

{
α1Pr′(α2) ∪ ε(α2)Pr′(α1) if α2 6= ε

Pr′(α1) otherwise
.

Still considering the same α,
Apos(α1α2) = (Pos(α1α2) ∪ {0}, σ, δp, 0, (Last(α2) ∪ ε(α2)Last(α1)) \ {0} ∪ ε(α1α2){0}),

where

30

δp(0, σ) = δpα1 (0, σ) ∪ ε(α1)δpα2 (0, σ), and
δp(x, σ) = A′∪B′, with A′ = {y | y ∈ Follow(α1, x)∧y = σ∧x ∈ (Pos(α1)\Last(α1))}∪

{y | y ∈ Follow(α1, x)∪First(α2)∧ y = σ∧x ∈ Last(α1)} and B′ = {y | y ∈ Follow(α2, x)∧
y = σ ∧ x ∈ Pos(α2)}.

It is not difficult to conclude that exists an isomorphism between the sets A and B′. The
same happens with the remaining transitions of δp and δα1α2 . Therefore we can conclude
that, also in this case, the automata are isomorphic.

Finally, consider α = α?1. Then, we have thatApre(α?1) = (α?1Pre(α1)∪{ε},Σ, δα?1 , ε, α
?
1Pr′(α1)∪

{ε}), where
δα?1 = {(s′, σ, s) | s ∈ α?1t∧ t ∈ Pre(α1)∧Prσ(t) 6= ε∧ s′ ∈ (α?1Pr′(Prσ(t))∪ ε(Prσ(t))({ε}∪

Pr′(α?1)))} ∪ {(s′, σ, s) | s ∈ α?1t ∧ t ∈ Pre(α1) ∧ Prσ(t) = ε ∧ s′ ∈ (Pr′(α?1) ∪ {ε})}.
Apos(α?1) = (Pos(α1),Σ, δp, Last(α1) ∪ {0}), where δp(0, σ) = δpα1 (0, σ), and δp(x, σ) =

{y | y ∈ Follow(α1, σ) ∧ y = σ ∧ x ∈ (Pos(α1 \ Last(α1)))} ∪ {y | y ∈ (Follow(α1, x) ∪
First(α1)) ∧ y = σ ∧ x ∈ Last(α1)}.

We can establish an isomorphism between δp and δα?1 . The same happens with the other
components of the automata. Thus, the automata are isomorphic.

Let us define the equivalence relation ≡l such that for any regular expression α, ∀s, s′ ∈
Pre(α), s ≡l s′ ⇔ s = s′. In the following we show that ≡l is a left-invariant relation.

Corollary 12. Let α ∈ RE. For any s ∈ Pre(α) the following holds: ∀w ∈ Prσ(s) : w ∈
Prσ(s).

Proposition 33. The relation ≡l is a left-invariant relation.

Proof. We want to prove that ≡l is a left-invariant relation. In this case it is obvious that
the initial state ε is not ≡l equivalent to any other state. We also need to prove that
s ≡l s′ ⇒ w ∈ Prσ(s) ≡l z ∈ Prσ(s′). Let us suppose that w ∈ Prσ(s), then

w ∈ Prσ(s) ⇒ w ∈ Prσ(s)

⇒ w ∈ Prσ(s′)

Thus ∃z ∈ Prσ(s′) : w ≡l z
because ∀w ∈ Prσ(s) : w ∈ Prσ(s)

Let us suppose that z ∈ Prσ(s′), then

z ∈ Prσ(s′) ⇒ z ∈ Prσ(s′)

⇒ z ∈ Prσ(s)

Thus ∃w ∈ Prσ(s) : w ≡l z

Thus ≡l is a left-invariant relation.

After all these results is not difficult to conclude that Apre automaton is a quotient of
Apos.

Corollary 13. Let α be a regular expression. Then Apre(α) ' Apre(α)�≡l.

By construction, the Glushkov automaton is homogeneous, i.e. the in- transitions of each
state are all labelled by the same letter. It follows from Corollary 13 that this property also
holds for Apre.

31

k |α| |Pos0| |δpos| |PD| |δπ| |π|
|Pos| |

←−
PD| |δ←−π |

|←−π |
|Pos| |Pre0| |δpre| |Pre|

|Pos| 1− ηk

2
100 28.9 167.5 15.7 56.0 0.55 15.9 56.4 0.55 20.1 73.7 0.71

0.90
500 139.9 1486.5 71.6 389.8 0.51 71.5 393.1 0.51 91.9 530.8 0.66

10
100 42.5 159.4 23.8 73.7 0.56 23.8 72.9 0.56 38.5 130.4 0.91

0.99500 207.1 1019.1 113.2 423.8 0.55 112.4 425.6 0.54 186 807.1 0.90
1000 412.1 2182.1 223.7 884.1 0.54 223.1 884.5 0.54 369.5 1717.6 0.90

Table 1: Experimental results for uniform random generated regular expressions.

8 Average-Case Complexity

We conducted some experimental tests in order to compare the sizes of Apos, Apd,
←−
Apd

and Apre automata. We used the FAdo library1 that includes implementations of the NFA
conversions and also several tools for uniformly random generate regular expressions. In
order to obtain regular expressions uniformly generated in the size of the syntactic tree, we
use a prefix notation version of the grammar. For each alphabet size, k, and |α|, samples of
10 000 REs were generated, which is sufficient to ensure a 95% confidence level within a 1%
error margin. Table 1 presents the average values obtained for |α| ∈ {100, 500, 1000} and

k ∈ {2, 10}. These experiments suggest that the
←−
Apd and the Apd have the same size and

the Apre is not significantly smaller then the Apos.
By Proposition ??, |αR|Σ = |α|Σ and by the fact that ε ∈ π(α) if and only if ε ∈ ←−π (α),

the analysis of the average size of Apd(α) presented in Broda et al [2] carries on to
←−
Apd(α).

Thus the average sizes of Apd and
←−
Apd are asymptotically the same. However,

←−
Apd(α) has

only one final state and its number of initial states is the number of final states of Apd(αR).
As studied by Nicaud [18], the size of Last(α) tends asymptotically to a constant depending
on k and |λ(α)| is half that size [3]. Following, again, the ideas in Broda et al., we estimate
the number of mergings of states that arise when computing Apre from Apos. The Apre has
at most |α|Σ + 1 states and this only occurs when all unions in Pre(α) are disjoint. However
there are cases in which this does not happen. For instance, when σ ∈ Pre(β) ∩ Pre(γ),
then |Pre(β + γ)| = |Pre(β) ∪ Pre(γ)| ≤ |Pre(β)|+ |Pre(γ)| − 1 and |Pre(β?γ)| = |β?Pre(γ) ∪
β?Pre(β)| ≤ |Pre(β)| + |Pre(γ)| − 1. In what follows we estimate the number of these non-
disjoint unions, which correspond to a lower bound for the number of states merged in
the Apos automaton. This is done by the use of the methods of analytic combinatorics
as expounded by Flajolet and Sedgewick [9]. These apply to generating functions A(z) =∑

n anz
n for a combinatorial class A with an objects of size n, denoted by [zn]A(z), and also

bivariate functions C(u, z) =
∑

α u
c(α)z|α|, where c(α) is some measure of the object α ∈ A.

The regular expressions ασ for which σ ∈ Pre(ασ), σ ∈ Σ are generated by following
grammar

ασ := σ | ασ + α | ασ + ασ | ασ · α | ε · ασ (29)

The regular expressions that are not generated by ασ are denoted by ασ. The generating
function for ασ, Rσ,k(z) satisfies

1http://fado.dcc.fc.up.pt

32

Rσ,k(z) = z + zRσ,k(z)Rk(z) + z(Rk(z)−Rσ,k(z))Rσ,k(z) + zRσ,k(z)Rk(z) + z2Rσ,k(z)

that is equivalent to

zRσ,k(z)
2 − (3zRk(z) + z2 − 1)Rσ,k(z)− z = 0. (30)

From this one gets

Rσ,k(z) =
(z2 + 3zRk(z)− 1) +

√
(z2 + 3zRk(z)− 1)2 + 4z2

2z
. (31)

As we know that Rk(z) =
1−z−
√

∆k(z)

4z , which is the generating function for REs given
by grammar (1) but omitting the ∅, one has

8zRσ(z) = −b(z)− 3
√

∆k(z) +

√
a(z) + 6b(z)

√
∆k(z) + 9∆k(z) (32)

where a(z) = 16z4 − 24z3 + 65z2 + 6z + 1, b(z) = −4z2 + 3z + 1, and ∆k(z) = 1− 2z −
(7 + 8k)z2. Using the binomial theorem, we know that√

a(z) + 6b(z)
√

∆k(z) + 9∆k(z) =
√
a(z) + 3

b(z)√
a(z)

√
∆k(z) + o(∆k(z)

1
2).

Thus,

8zRσ,k(z) = −b(z) +
√
a(z) + 3

b(z)√
a(z)

√
∆k(z) + o(∆k(z)

1
2). (33)

As we know that the following equalities are true:√
∆k(z) =

√
(7 + 8k)ρk(z − ρk)

√
1− z/ρk,

√
(7 + 8k)ρk(ρk − ρk) =

√
2− 2ρk

and using the techniques in Broda et. al and namely Proposition 3

[zn]Rσ(z) ∼ 3

16
√
π

(
1− b(ρk)√

a(ρk)

)√
2(1− ρk)ρ

−(n+1)
k n−

3
2 . (34)

Thus the asymptotic ratio of regular expressions with σ ∈ Pre(α) is:

[zn]Rσ,k(z)

[zn]Rk(z)
∼ 3

2

(
1− b(ρk)√

a(ρk)

)
. (35)

As lim
k→∞

ρk = 0, lim
k→∞

a(ρk) = 1, and lim
k→∞

b(ρk) = 1, this asymptotic ratio approaches 0

when k →∞.
Let i(α) be the number of non-disjoint unions appearing during the computation of

Pre(α), α ∈ RE originated by the previous two cases. Then i(α) verifies

i(ε) = i(σ) = 0
i(ασ + ασ) = i(ασ) + i(ασ) + 1
i(ασ + ασ) = i(ασ) + i(ασ)
i(ασ + α) = i(ασ) + i(α)

i(α?σασ) = i(α?σ) + i(ασ) + 1
i(α?σασ) = i(α?σ) + i(ασ)
i(αασ) = i(α) + i(ασ)
i(α?) = i(α).

33

From these equations we can obtain the cost generating function of the mergings, Ia(z):

Ia(z) =
(z + z2)Ra(z)

2√
∆k(z)

. (36)

Using again the same Proposition 3 from Broda et al., we conclude that:

[zn]Ia(z) ∼
1 + ρk

64

(
a(ρk) + b(ρk)

2 − 2b(ρk)
√
a(ρk)

)
√
π
√

2− 2ρk
ρ
−(n+1)
k n−

1
2 . (37)

The asymptotic estimate for the average number of mergings is given by:

[zn]Iσ(z)

[zn]Lk(z)
∼ 1− ρk

4ρ2
k

λk = ηk, (38)

where λk = (1+ρk)
16(1−ρk)

(
a(ρk) + b(ρk)

2 − 2b(ρk)
√
a(ρk)

)
. It is not difficult to conclude that

lim
k→∞

λk = 0, therefore lim
k→∞

ηk = 0. As it is evident from the last two columns of Table 1, for

small values of k, the lower bound ηk does not capture all the mergings that occur in Apre.
Although we must study other contributions for those mergings, it seems that for larger
values of k, the average number of states of the Apre automaton approaches the number of
states of the Apos automaton.

8.0.1 A more general case

Instead of consider the cases previous described to calculate the number of non-disjoint
unions, we can consider the following ones. Whenever σ ∈ Pre(β) ∩ Pre(γ),

|Pre(β + γ)| = |Pre(β) ∪ Pre(γ)| ≤ |Pre(β)|+ |Pre(γ)| − 1;

and also whenever σ ∈ Pre(γ) and βσ ∈ Pre(β)

|Pre(βγ)| = |βPre(γ) ∪ Pre(β)| ≤ |Pre(β)|+ |Pre(γ)| − 1.

Note that the previous cases are a subset of these ones. Now we need to consider one
more grammar, Rr, that generate the regular expressions αr such that αrσ ∈ Pre(αr):

αr := α · αr | α?σ
The generating function for Rr, Rr(z) is:

Rr(z) =
zRa(z)

1− zRk(z)
. (39)

In this case the i(α) is given by:

i(ε) = i(σ) = 0
i(ασ + ασ) = i(ασ) + i(ασ) + 1
i(ασ + ασ) = i(ασ) + i(ασ)
i(ασ + α) = i(ασ) + i(α)

i(αrασ) = i(αr) + i(ασ) + 1
i(αrασ) = i(αr) + i(ασ)
i(αασ) = i(α) + i(ασ)
i(α?) = i(α)

Thus, the cumulative generating function of the mergings is:

Irσ(z) =
zRa(z) (Ra(z) +Rr(z))

1− 4zRk(z)− z
. (40)

34

References

[1] Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci. 155(2), 291–319 (1996)

[2] Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average state complexity of
partial derivative automata. Int. J. Found. Comput. Sci. 22(7), 1593–1606 (2011)

[3] Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average size of Glushkov and
partial derivative automata. Int. J. Found. Comput. Sci. 23(5), 969–984 (2012)

[4] Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (Oct 1964)

[5] Brzozowski, J.A., Tamm, H.: Theory of átomata. Theor. Comput. Sci. 539, 13–27
(2014), http://dx.doi.org/10.1016/j.tcs.2014.04.016

[6] Champarnaud, J.M., Dubernard, J.P., Jeanne, H., Mignot, L.: Two-sided derivatives
for regular expressions and for Hairpin expressions. In: Dediu, A.H., Mart́ın-Vide, C.,
Truthe, B. (eds.) 7th LATA. LNCS, vol. 7810, pp. 202–213. Springer (2013)

[7] Champarnaud, J.M., Ziadi, D.: From Mirkin’s prebases to Antimirov’s word partial
derivatives. Fundam. Inform. 45(3), 195–205 (2001)

[8] Champarnaud, J.M., Ziadi, D.: Canonical derivatives, partial derivatives and finite
automaton constructions. Theor. Comput. Sci. 289(1), 137–163 (2002)

[9] Flajolet, P., Sedgewick, R.: Analytic Combinatorics. CUP (2008)

[10] Garćıa, P., López, D., Ruiz, J., Alvarez, G.I.: From regular expressions to smaller nfas.
Theor. Comput. Sci. 412(41), 5802–5807 (2011)

[11] Glushkov, V.M.: The abstract theory of automata. Russian Mathematical Surveys
16(5), 1–53 (1961)

[12] Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA (2006)

[13] Ilie, L., Yu, S.: Follow automata. Inf. Comput. 186(1), 140–162 (2003)

[14] Kozen, D.C.: Automata and Computability. Springer (1997)

[15] Maia, E., Moreira, N., Reis, R.: Partial derivative and position bisimilarity automata.
In: Holzer, M., Kutrib, M. (eds.) 19th CIAA. LNCS, vol. 8587, pp. 264–277. Springer
(2014)

[16] McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IEEE Transactions on Electronic Computers 9, 39–47 (1960)

[17] Mirkin, B.: An algorithm for constructing a base in a language of regular expressions.
Engineering Cybernetics 5, 110–116 (1966)

[18] Nicaud, C.: On the average size of Glushkov’s automata. In: Dediu, A.H., Ionescu,
A.M., Mart́ın-Vide, C. (eds.) 3rd LATA. LNCS, vol. 5457, pp. 626–637. Springer (2009)

35

[19] Sengoku, H.: Minimization of Nondeterministic Finite Automata. Master’s thesis, Kyoto
University (1992)

[20] Yamamoto, H.: A new finite automaton construction for regular expressions. In:
Bensch, S., Freund, R., Otto, F. (eds.) NCMA. books@ocg.at, vol. 304, pp. 249–264.
Österreichische Computer Gesellschaft (2014)

36

