
Type-Inhabitation:

Formula-Trees vs. Game Semantics

1

Sandra Alves, Sabine Broda

e-mail: sandra@dcc.fc.up.pt, sbb@dcc.fc.up.pt

LIACC & CMUP & DCC-FC, University of Porto

Technical Report Series: DCC-2014-08

Version 1.0 December 2014

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 1021/1055,

4169-007 PORTO,
PORTUGAL

Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/

1Funded by ERDF (program COMPETE) and FCT project PEst-C/MAT/UI0144/2013

A Short Note on Type-inhabitation:

Formula-Trees vs. Game Semantics

Sandra Alves Sabine Broda

LIACC CMUP

Department of Computer Science, University of Porto

January 19, 2015

Abstract

Type-inhabitation is a topic of major importance, due to its close relationship to provability

in logical systems and has been studied from di↵erent perspectives over the years. In 2000 a

new proof method has been presented, evidencing the close relationship between the structure

of types and their inhabitants. More recently, in 2011, another method has been given in the

context of game semantics. In this paper we clarify the similarities between the two approaches.

1 Introduction

In the simply typed �-calculus, the problem of associating to a type a term that inhabits it, which
is known as type inhabitation, has been a major focus of research over the years. Through the
Curry-Howard isomorphism the problem is equivalent to provability of formulas in the implicational
fragment of propositional logic [20], and has major implications in the area of proof-theory. Since
normal forms in the �-calculus correspond to Prawitz’s [24] notion of normal deduction, algorithms
for deciding type-inhabitation can be used for indirectly decide provability. Note that typed �-calculi
derived from the Curry-Howard isomorphism led to the development of theorem assistant tools, such
as Coq, where proofs are formalized as programs, which can be checked and executed, and which are
valuable tools in the area of formal verification.

The research carried out in the area led to a vast number of results, ranging from the definition
of algorithms for generating/counting terms/proofs, to the capture of complexity classes, and the
establishment of conditions guaranteeing the uniqueness of normal inhabitants of a given type. For
a non-exhausting list of references we point to [4, 9, 14, 27, 26, 19, 22]. The subject has also been
studied from the point of view of category-theory, where the uniqueness of type inhabitants for a
giving typing was established through the verification of certain syntactic constraints [1, 23, 2]. This
result is known as the coherence theorem and has several computational implications. In particular,
in the area of computational linguistics, and since the appearance of grammars of lambda-terms [15],
knowing that such terms are unique inhabitants of their principal typings has been fundamental in
developing e�cient parsers for these grammars [25], which in turn have been used in solving problems
in text parsing and generation [6].

In [7] a new formal method for exploring type inhabitation was presented, which was later
developed in [12], and that clearly evidenced the relationship between the structure of types and
their normal inhabitants. This procedure, called Formula-Tree Method, represents types by splitting
them into atomic parts, which are then used to construct a tree from which the inhabitants of the
type can be obtained, and where the process of obtaining the tree is guided by the structure of the
type. The method proved to be e↵ective in establishing new results, as well as simplifying existing
proofs [10, 8, 13]. Note that, the problem of type inhabitation has been proved to be undecidable for
several typed calculi. Although decidable for some well known typed calculi, in general it is a very
hard problem: it was proved to be PSPACE-complete for the simply typed �-calculus [26, 28] and
EXPTIME-hard for rank-2 intersection-types [29].

2

More recently, another method for studying type inhabitation was given, through the use of game
semantics [5], that also explores the relation between the structure of types and terms. In that context,
type inhabitants are seen as the interpretation of winning strategies in the arena given by a particular
typing. From a categorical point of view, this relation has been established between dialogue games
and innocent strategies [17]. Although the two method were developed within di↵erent backgrounds,
there are several similarities between the concepts employed.

The main goal of this paper is to clarify the close relation between the formula-tree method and
the method based on game semantics, by exploring the correspondence between:

• the formula-tree of a type and the arena associated to a type;

• proof-trees and winning strategies in a game.

This relation also establishes a direct correspondence between the term scheme associated to the
proof-tree of a type and the interpretation of a winning strategy in the arena associated to a type.
Furthermore, we refer to previous results that were obtained using both methods.

2 Preliminaries

2.1 The simply typed �-calculus

In this paper we assume familiarity with basic results on the simply typed �-calculus as described
in [18] or [3]. We denote type-variables (atoms) by a, b, c, . . . and arbitrary types by lower-case Greek
letters ↵,�, � The sets of type-variables and of simple types are respectively denoted by A and
T . A typing environment � is a finite set of type assignments x : ↵, such that whenever (x : ↵) 2 �
and (x : �) 2 �, one has ↵ = �. A typing is a pair < �, � >. We say that < �, � > is a typing of M ,
or that M is an inhabitant of < �, � >, and write � � M : �, if this formula can be obtained from
the inference rules below.

�, x : ↵ � x : ↵
�, x : ↵ � M : �

� � �x.M : ↵ ! �
� � M : ↵ ! � � � N : ↵

� [� � MN : �

We write �, x : ↵ to denote the set �[{x : ↵}, such that x does not occur in another type assignment in
�. As standard, we assume ! to be right-associative. If � M : � we also say that M is an inhabitant
of �. One has {x1 : �1, . . . , xn : �n} � M : � if and only if � �x1 . . . xn.M : �1 ! . . . ! �n ! �. Note
that, the two methods we consider in this paper, can both be formulated in terms of inhabitation
of typings as well as in terms of inhabitation of types. We will focus here on the inhabitation of
types, rather than typings. This is standard procedure and often preferable (cf. [28], and [3] pp. 182
and following) when addressing problems related to type checking, typability and inhabitation. A
�-term M is in (�)-normal form i↵ it is of the form �x1 . . . xn.yQ1 . . . Qm, such that m,n � 0 and
Q1, . . . , Qm are in normal form.

In the following we will recall some of the less standard results on simple types and their normal
inhabitants. These are partly due to Ben-Yelles, cf. [4], and an exhaustive exposition can be found
in [18]. A �-normal inhabitant M of a type � is called a long normal inhabitant of � i↵ every
variable-occurrence z in M is followed by the longest sequence of arguments, allowed by its type, i.e.
i↵ each component with form (zP1 . . . Pn), (n � 0), that is not in a function position, has atomic
type. The finite set of all terms, obtained by ⌘-reducing a �-term M , is called the ⌘-family of M
and denoted by {M}⌘. It has been shown, cf. [4] and [18], that the ⌘-families of the long normal
inhabitants of � partition the set of normal inhabitants of � into non-overlapping finite subsets, each
⌘-family containing just one long member. Furthermore, Ben-Yelles, cf. [4] and [18], showed that
every normal inhabitant of a typing � can be ⌘-expanded to one unique (up to ↵-conversion) long
normal inhabitant of �. A simple expansion-algorithm can be found in [18]. Thus, when studying
normal inhabitants of a typing one might focus on the set of its long normal inhabitants from which
all normal inhabitants can be obtained by ⌘-reduction. Every type � can be uniquely written as
� = �1 ! . . . �n ! a, with n � 0.

3

Definition 1 Given a type �, the polarity of occurrences of types in � is defined as follows:

• � is a positive occurrence in �;

• if ↵ ! � occurs positively (resp. negatively) in � , then that occurrence of ↵ is negative
(resp. positive) and that occurrence of � is positive (resp. negative) in �.

A term M has a bound-variable clash i↵ M contains an abstractor �x and a (free, bound or binding)
occurrence of x that is not in its scope. On the other hand, every term can be ↵-converted to a term
without bound-variable clashes. In this paper we consider �-terms without bound-variable clashes.

2.2 Tree-domains and labelled trees

We will use s, s1, . . . to range over finite sequences of positive natural numbers, ✏ to denote the empty
sequence, s1 · s2 to denote the concatenation of two sequences and |s| to denote the length of a
sequence. As usual the set of such sequences is denoted by N?

+. Given s, s0 2 N?
+, we say that s

enables s0, and write s ` s0, if there is an i 2 N+ such that s0 = s · i. Then, the reflexive, transitive
closure of ` allows us to define the notion of initial segment, i.e. s `? s0 i↵ there exists s00 such that
s0 = s · s00.

We recall the following formal definitions about labelled trees, cf. [16].

Definition 2 A tree-domain is a nonempty set Dt of sequences of natural numbers such that

• if s 2 Dt and s0 `? s then s0 2 Dt;

• if s · i 2 Dt then s · j 2 Dt for every j such that 1  j < i.

An L-labelled tree t is a map from some tree domain Dt into a set L. A tree t is finite i↵ Dt is finite.

Example 3 For Dt = {✏, 1, 2, 3, 1 · 1, 1 · 2, 1 · 1 · 1, 2 · 1} and L = {a, b} the tree t defined by
t(✏) = t(1) = t(1 · 1) = t(2) = b and t(1 · 2) = t(1 · 1 · 1) = t(2 · 1) = t(3) = a can also be represented
as follows.

b

b

b

a

a

b

a

a

We will call elements of L labels of the tree t, and elements of Dt nodes of the tree. A node s is a
leaf node if s ·1 62 Dt, and an internal node otherwise. A node s0 is a descendant of a node s i↵ s `? s0

and s 6= s0. A node s0 is a direct descendant of a node s i↵ s ` s0. A node s is a (direct) ancestor of a
node s0 i↵ s0 is a (direct) descendant of s. The depth of a node s is the length |s| of the sequence s.
The height of a finite tree t is maxs2Dt |s|. From now on, whenever there are no numbers greater than
9 in the sequences of a tree-domain, we generally omit the concatenation symbol in the sequences.
As such, we will represent the domain in the previous example as Dt = {✏, 1, 2, 3, 11, 12, 111, 21}.

Definition 4 If t is a tree and s is a node of t, then the subtree t[s] of t at s is the tree with domain
Dt[s] = {s0 | s · s0 2 Dt} defined by t[s](s0) = t(s · s0).

Definition 5 If t1, ..., tn are L�labelled trees and l 2 L then let l[t1, ..., tn] denote the tree with
domain

{✏} [
[

1in

{i · s | s 2 Dti}

defined by l[t1, ..., tn](✏) = l and l[t1, ..., tn](i · s) = ti(s), for 1  i  n.

4

Note that any labelled tree can be written in a unique way as l[t1, ..., tn] where n � 0. For sake of
readability, when n = 0, we generally write l instead of l[].

Definition 6 One can associate with any type � a tree t� , labelled by its type-variables, i.e. atomic
types, as follows:

• if � is an atom a, then t� is a;

• if � is of the form �1 ! . . . ! �n ! a, then its tree is t� = a[t�1 , ..., t�n

].

Example 7 The tree of type � = ((a ! b) ! a ! b) ! (a ! b) ! a ! b is the tree t from
Example 3, and can be written as b[b[b[a], a], b[a], a].

Consider a �-normal form M , of the form �x1 . . . xn.yN1 . . . Nm, where n,m � 0 and such that
N1, . . . , Nm are also terms in �-normal form. The variable y is called the head of M and is denoted
by head(M). The Böhm tree1 of M , denoted by BT (M), is

�x1 . . . xn.y

if m = 0 and otherwise
�x1 . . . xn.y

BT (N1) . . . BT (Nm)

.

Example 8 For Dt = {✏, 1, 2, 11} and L = {�xyz.x,�w.y, w, z} the tree t defined by t(✏) =
�xyz.x, t(1) = �w.y, t(2) = z, and t(11) = w is the Böhm tree of the term M = �xyz.x(�w.yw)z
and can also be represented as follows.

�xyz.x

�w.y

z

w

It is well known that, given a (long) �-normal inhabitant M of a type �, there is exactly one
deduction for � M : �, and that in this unique deduction every variable and subterm is given a
type. Furthermore, if M has no bound-variable clashes, then all occurrences of a variable x in this
deduction correspond to exactly one occurrence of a subtype �x in �. This particular occurrence of
�x as well as the corresponding node sx in the tree t� of �, such that t� [sx] = t�

x

can be easily
determined. A simple algorithm for computing �x and sx can be found in [12].

Example 9 The term M from Example 8 is a long normal inhabitant of � from Example 7. For
variables x and w one has, for instance, �x = (a ! b) ! a ! b and sx = 1, �w = a and sw = 111.

3 The Formula-Tree Method

In this section we recall the Formula-tree proof method for type-inhabitation [12].

3.1 Formula-trees and Proof-trees

Given a type �, its formula-tree, denoted by FT � , is obtained from t� by splitting t� into small parts
ps, that are called primitive parts, and which are formed by the nodes s of odd length and their direct
descendants. Additionally, one considers a root-part consisting of the root-node of FT � . In order
to distinguish this part from the parts resulting from nodes with no direct descendants, i.e. from
leaf nodes, an edge is added in the top of the type-variable in the former, and an edge below the
type-variables in the latter.

1Note, that we restrict the definition of Böhm trees to the case of �-normal forms.

5

Example 10 Consider again � as in Examples 3 and 7. It’s formula-tree FT � is the following.

b

b

b

a

a

b

a

a

p✏

p1 p2 p3

p111

We conclude that primitive parts are items of either one of the following forms (P1), (P2) or (P3),
where a, b, b1, . . . , bn, c denote type-variables.

a
b1

b

bn

c
(P1) (P2) (P3)

Here, a, b1, . . . , bn are called the tail-variables of the respective primitive part, while b and c are
head-variables. The arity of a primitive part is the number of its tail-variables. Now, it is easy to see
that FT � forms a tree-like structure consisting of primitive parts. Here, the primitive part p✏ in the
top is the only part of the form (P1). Any other primitive part ps is of the form (P2) or (P3), and s
is the position of its head-variable in t� . Furthermore, ps descends directly from (i.e. is enabled by)
the ith tail-variable of another primitive part ps0 of arity n, for some integer 1  i  n, such that
s = s0 · i · j for some j � 1.

Definition 11 A proof-tree for � is a tree PT, labelled with primitive parts of FT � , that satisfies the
following conditions.

i. p✏ labels the root of PT.

ii. Every occurrence of a primitive part ps in PT, with n � 0 tail-variables a1, . . . , an, has exactly n
direct descendants ps1 , . . . , psn with head-variables a1, . . . , an respectively.

iii. Finally, if ps labels a node s0 in PT and the primitive part ps descends directly from (i.e. is enabled
by) the ith tail-variable of another primitive part ps00 6= p✏ in FT � , i.e. s = s00 · i · j, then there
is an ancestor s000 of s0 in PT labelled by ps00 and the node s0 is in the ith subtree rooted in s000.

It follows from this definition, that constructing a proof-tree for a type � is a kind of puzzle/game
consisting of primitive parts that can be ’put together’, while respecting the hierarchy imposed on
them by the formula-tree of �. The game always starts with primitive part p✏. In the first step it is
necessary to link the tail-variable a of p✏ to some ’available’ primitive part ps, whose head-variable
is also a. If ps has no tail-variable, the game is won. Otherwise, it is necessary to pursue until there
are no tail-variables in any leaf node (which is a primitive part) of the proof-tree constructed so far.
In [11] one can find a tool where the potentialities of the Formula-tree proof method can be explored.

Example 12 The following is a proof-tree for the type � from previous examples and is constructed
from its formula-tree FT � given in Example 10.

6

p✏

p1

p1 p3

p2 p111

p111

b

b

b

a

a

b

b

a

a

b

a

a

It has been shown in [12], that for every normal inhabitant M of a type � there is one unique
proof-tree of �. Conversely, every proof-tree of � represents a finite set of normal inhabitants, all
of them with the same principal type (which is obviously not necessarily �). The corresponding
transformation algorithms are given in the next subsection.

3.2 From long normal inhabitants to proof-trees and back

Informally, the proof-tree tM of a long normal inhabitant M , without bound-variable clashes, is a
tree which, after removing its top node p✏, has the same structure as the Böhm tree of M and such
that every node, labelled by some expression �x1 . . . xn.y in the Böhm tree, is labelled by the node
ps

y

.

Definition 13 Consider a closed long normal inhabitant M of a type � without bound-variable
clashes. Its proof-tree tM is obtained from the Böhm tree BT (M) by replacing every label of the
form �x1 . . . xn.y by the sequence/position ps

y

and adding an extra node with label p✏ at the root of
this tree.

Example 14 Consider the inhabitant M = �xyz.x(�w.yw)z of � from example 7. In order to
compute tM note that sx = 1, sy = 2, sz = 3 and sw = 111, and that the Böhm tree BT (M) of M
is the following, from which we obtain the proof-tree on the right:

w

�w.y

�xyz.x

z

p✏

p111

p2

p1

p3

We now describe how, given a proof-tree of a type �, we compute the corresponding finite set of
long normal inhabitants of �.

Definition 15 Consider a proof-tree t for a type �. The corresponding term-scheme Nt is the term
whose Böhm-tree is obtained from t by:

• first substituting every node s that descends from the ith tail-variable of another primitive part
ps0 in t, by �xs1 . . . xs

k

.xs, with k � 0, where s1, . . . , sk are all sequences s0 ·i·1, . . . , s0 ·i·k 2 Dt
�

;

• then, removing the top node labelled with p✏.

Finally, we obtain the finite set, Terms(t) of long normal inhabitants of � from Nt by renaming
all variables in abstraction sequences with identical names and renaming the free occurrences of these
variables in the scope of these abstraction sequences in all possible ways2.

2The precise algorithm can be found in [12].

7

Example 16 Consider again the proof-tree t for the type � in example 12. We have

Nt = �x1x2x3.x1(�x111.x1(�x111.x2x111)x111)x3, and

Terms(t) = {�x1x2x3.x1(�x111.x1(�x0
111.x2x111)x111)x3,

�x1x2x3.x1(�x111.x1(�x0
111.x2x

0
111)x111)x3}

=↵ {�xyz.x(�u.x(�v.yu)u)z, �xyz.x(�u.x(�v.yv)u)z }.

4 Type Inhabitation through Game Semantics

In this section, we describe a method for studying type-inhabitation, based on game-semantics,
introduced in [5]. We begin recalling some notions from game-semantics, in the context of type
inhabitation. The definitions and results in this section are the ones presented in [5], following the
restriction in [21]. However, at times we adapt notation according to what we defined in Section 2.
Note also that, for the reasons given in Section 2, our presentation of this method is in terms of
inhabitation of types, contrary to [5], where it was presented in terms of inhabitation of typings.
This choice simplifies the exposition and also makes the establishment of the relationship between
the two methods easier.

4.1 Arenas, Games and Winning Strategies

In the following, we consider an arena associated to a type as a labelled tree. For a given type �, a
move in the arena of � is a finite sequence s of natural numbers, i.e. s 2 N?

+.

Definition 17 Let � be a simple type. The arena associated to the type �, denoted by A� =
(M� , ⌧�), where M� is a set of moves and ⌧� : M� �! A is a typing function mapping moves to
atomic types, is defined by M� = Dt

�

and ⌧�(s) = t�(s), where t� is the tree associated with type �.

Example 18 Consider again type � = ((a ! b) ! a ! b) ! (a ! b) ! a ! b, from Example 3.
The arena A� is given by: M� = {✏, 1, 11, 12, 111, 2, 21, 3} and ⌧�(✏) = ⌧�(1) = ⌧�(11) = ⌧�(2) = b
and ⌧�(12) = ⌧�(111) = ⌧�(21) = ⌧�(3) = a.

Definition 19 Let (M, ⌧) be a given arena. The function pl : M ! {O,P}, which associates moves
in the arena to players, where P and O represent proponent and opponent, respectively, is defined
by pl(✏) = O and pl(s2) = pl(s1), if s1 ` s2, where pl is called the inverse function of pl and is such

that, pl(s) = O i↵ pl(s) = P , for every move s 2 M and pl = pl .
Note, that one has pl(s) = P i↵ s 2 M is a sequence of odd length.

Finite sequences of moves m1 . . .mn will be denoted by S, S1, . . . and we write S1 v S2, if a
sequence of moves S1 prefixes the sequence S2.

Definition 20 A finite sequence of moves of the form s1 . . . sn is said to be justified i↵ for each si,
with 1  i  n, there exists a move sj , such that j < i, which enables si, i.e. sj ` si.

A justified sequence is represented as (s1, 1, 0) · · · (sn, n, l), with (s, i, j) denoting the move in
position i, which is justified by the move in position j. Obviously, not all moves in a justified
sequence are relevant for player P . These are discarded in the P -view of the sequence.

Definition 21 Let S be a finite sequence of moves. The P -view of S, denoted by pSq, is inductively
defined as:

p✏q = ✏
pS · (s, i, j)q = pSq · (s, i, j) if s is a P-move
pS1 · (s1, j, k) · S2 · (s2, i, j)q = pS1q · (s1, j, k) · (s2, i, j) if s2 is a O-move

Definition 22 A justified sequence S = s1 . . . sn is a legal position if it satisfies the following
conditions:

8

• s1 = ✏;

• for S = S1 · (s, i, j) · (s0, i+ 1, k) · S2, one has pl(s) = pl(s0);

• pSq = S.

A game is generally defined by associating a set of positions to an arena. In this context, a game
will be an arena with an associated set of prefix-closed legal positions. Because a legal position is
a P -view, each occurrence in the legal position of an O-move di↵erent from ✏, is justified by the
immediate preceding move, which corresponds to a P -move. Therefore, the following notation can
be used:

• if an occurrence of an O-move s is in position 2i+ 1 (from left-to-right) in sequence S, then it
is denoted by (s, i);

• if an occurrence of a P -move s in S, is justified by a preceding occurrence (s0, i) of an O-move
s0, then it is denoted by (s, i).

However, when convenient we sometimes will omit references in these sequences, writing s1, . . . , sn
instead of (s1, i1), . . . , (sn, in).

Definition 23 Consider an arena A = (M, ⌧) and let ⌃ be a finite non-empty set of prefix-closed
legal positions in A. We say that ⌃ is a typing strategy if:

a) Any sequence S 2 ⌃ is non-empty and of length even.

b) If S · s · s1, S · s · s2 2 ⌃, then s1 = s2.

c) If S · s · s0 2 ⌃, then ⌧(s) = ⌧(s0).

We consider max(⌃) ✓ ⌃ as the set of sequences which are maximal with respect to v. A typing
strategy ⌃ in an arena A = (M, ⌧), is a winning strategy if:

d) For all S · s 2 max(⌃), there is no O-move s0, such that s ` s0.

e) If S ·s1 2 ⌃ and S ·s1 ·s is a legal position in A, then there is a P -move s2 such that S ·s1 ·s ·s2 2 ⌃.

Example 24 Consider again type � as before and its arena given in Example 18. A winning strategy
for � is the following.

⌃ = { (✏, 0) · (1, 0),
(✏, 0) · (1, 0) · (11, 1) · (1, 0),
(✏, 0) · (1, 0) · (11, 1) · (1, 0) · (11, 2) · (2, 0),
(✏, 0) · (1, 0) · (11, 1) · (1, 0) · (11, 2) · (2, 0) · (21, 3) · (111, 2),
(✏, 0) · (1, 0) · (11, 1) · (1, 0) · (12, 2) · (111, 1),
(✏, 0) · (1, 0) · (12, 1) · (3, 0) }

4.2 From winning strategies to long normal inhabitants and back

In [5] it was shown that it is possible to establish a bijection between the set of winning strategies in
the arena of a type, and the set of its long normal inhabitants, through an interpretation of winning
strategies as �-terms.

The preceding relation � on sequences is defined by s1 � s2 i↵ there exists i, j 2 N+ and s 2 N?
+,

such that s1 = s · i, s2 = s · j and i < j.

Definition 25 Let A = (M, ⌧) be an arena and ⌃ a strategy on A. The arborescent reading of
⌃ (which is a tree representation of max(⌃)), is denoted T⌃, and defined inductively as T⌃ = s1 ·
s2[T⌃1 , . . . ,T⌃

p

] with:

• every S 2 max(⌃) is of the form s1 · s2 · S0;

9

• {s01, . . . , s0p} = {s0 | s2 ` s0} and s0i � s0j i↵ i < j;

• ⌃i = {s0i · S0 | s1 · s2 · s0i · S0 2 ⌃}.

Example 26 The arborescent reading of the strategy ⌃ in Example 24, is:

T⌃ = (✏, 0) · (1, 0)[(11, 1) · (1, 0)[(11, 2) · (2, 0)[(21, 3) · (111, 2)], (11, 2) · (111, 1)], (12, 1) · (3, 0)]

which can be pictured as:
(✏, 0) · (1, 0)

(12, 1) · (3, 0)
@@��

(11, 1) · (1, 0)

(12, 2) · (111, 1)
@@��

(11, 2) · (2, 0)

(21, 3) · (111, 2)

The interpretation of a strategy in an arena is defined on the arborescent reading of the strategy.

Definition 27 Let T⌃, be the arborescent reading of a strategy ⌃ in an arena A = (M, ⌧). The
interpretation of ⌃ on A, J⌃K = JT⌃, ;K is defined inductively on T⌃:

J(s, i) · (s0, j)[T⌃1 , . . . ,T⌃
p

], V K = �x1 . . . xp.xJT⌃1 ,W K . . . JT⌃
q

,W K

where s is a O-move, s0 is a P -move, W = V [{((s · k, i), xk) | s · k 2 M} with ((s0, j), x) 2 W and
xk is a fresh variable for 1  k  p.

Example 28 Consider again the arborescent reading of T⌃ from Example 26:

(✏, 0) · (1, 0) [(11, 1) · (1, 0) [(11, 2) · (2, 0)[(21, 3) · (111, 2)]
| {z }

T⌃2

, (11, 2) · (111, 1)]

| {z }
T⌃1

, (12, 1) · (3, 0)]

Then, with W = {((1, 0), x), ((2, 0), y), ((3, 0), z)}, W1 = W [{((111, 1), u)} and W2 = W1 [
{((111, 2), v)}:

J⌃K = JT⌃, ;K = �xyz.xJT⌃1 ,W K J(12, 1) · (3, 0)[],W K
= �xyz.x(�u.xJT⌃2 ,W1K J(11, 2) · (111, 1)[],W1K) z
= �xyz.x(�u.x(�v.yJ(21, 3) · (111, 2)[],W2K) u)z
= �xyz.x(�u.x(�v.yv)u)z

It was proved in [5], that given an arena A associated to a typing < �, � >, and a winning strategy
⌃ on A, then < �, � > is a typing pair for J⌃K. Given a typing judgment � ` M : �, it is also possible
to define, by induction on M , a winning strategy ⌃, such that J⌃K =�⌘ M (details can be found in
the Appendix of [5]).

5 Winning Strategies and Proof Trees

In this section, we establish the close relationship that exists between winning strategies and proof-
trees, presenting two transformation algorithms between the two. We begin by simplifying3 some
notions of the game-semantic approach, with the following lemmas, that follow directly from the
definitions given in the previous section.

Lemma 29 Let A = (M, ⌧) be an arena and S = s1 . . . sn a finite sequence of moves in A. S is a
legal position if and only if the following conditions hold:

3For instance, there will be no longer need for concepts such as function pl , P -view of a sequence, etc.

10

a) every sequence S begins with s1 = ✏ and alternates O-moves (moves of even length) with P -moves
(moves of odd length);

b) if S0 · si · si+1 v S, where si is a P -move, then si ` si+1 (i.e. every O-move di↵erent from s1 is
enabled by the immediate preceding P -move in S);

c) for every P -move si in S there is some O-move sj , with j < i, and such that sj ` si (i.e. every
P -move in S is enabled by some preceding O-move).

Proof Straightforward from the definition of pSq and Definitions 20 and 22. •

Lemma 30 Let A = (M, ⌧) be an arena and ⌃ a non-empty prefix-closed set of legal positions of
even length in A. Then, ⌃ is a winning strategy if and only if the following conditions hold.

a) if S · si 2 ⌃, where si is a P -move, then for every sj 2 M such that si ` sj , there is some Sj 2 ⌃
such that S · si · sj v Sj ;

b) if S · s1 2 ⌃ and s1 is a P -move, then there is no other S · s2 2 ⌃ such that s1 6= s2;

c) if S · si · si+1 2 ⌃, where si is an O-move (and si+1 a P -move), then ⌧(si) = ⌧(si+1).

Proof Note first, that both Definition 23 as well as Lemma 30 are restricted to sequences of even
length. Furthermore, conditions b) and c) in Lemma 30 are equivalent to conditions b) and c) in
Definition 23. Finally, since all sequences in ⌃ are of even length, condition a) in Lemma 30 is
equivalent to conditions d) and e) in Definition 23. •

Comparing this alternative definition of winning strategies with the one, given in Section 3, for
proof-trees, the similarity of both methods becomes obvious; and in particular it is straightforward
to define transformation algorithms, from one approach to the other and back.

Definition 31 Let � be a type and ⌃ a winning strategy in A� = (M� , ⌧�). The tree PT⌃ is obtained
by substituting in the arborescent reading T⌃ every label (,)·(s,) by ps and adding an additional
root-node with label p✏.

Example 32 It is easy to see, that the proof-tree PT⌃ corresponding to � and ⌃ from Examples 24
and 26, is the proof-tree given in Example 12.

Proposition 33 If ⌃ is a winning strategy in an arena A� = (M� , ⌧�), then PT⌃ is a proof-tree for
�.

Proof PT⌃ is obtained by substituting in the arborescent reading T⌃ every label (,) · (s,) by
ps and adding an additional root-node with label p✏.

Since, in every label (s0, i), (s, j) in T⌃, s0 and s are respectively an O-move and a P -move, it
follows that the root-node of PT⌃ is labelled by p✏ and every other node in PT⌃ is labelled by ps for
some s 2 M� = Dt

�

of odd length, and consequently corresponds to exactly one primitive part in the
formula-tree of �.

In order to show that PT⌃ is a proof-tree for �, we show that all conditions in Definition 11
are satisfied. Condition i. follows directly from the definition of PT⌃. Condition ii. follows from
conditions a), b) and c) in Lemma 30. Finally condition iii. is guaranteed by condition c) of Lemma 29.
•

We now present the inverse transformation, that given a proof-tree PT for � constructs a finite
set of winning strategies in the arena A� = (M� , ⌧�). In the first step, we compute a tree TPT, where
each node is labelled with two pairs (sO,m) · (sP , {n1, . . . , nk}), where sO and sP are respectively an
O-move and a P -move, m is the reference of this node, and {n1, . . . , nk} is the set of all references
to nodes that can enable the P -move sP in this path.

The construction of TPT is done top-down, creating for each node ps in PT that descends from
the i-th tail-variable of another primitive part ps0 in PT4, a node labelled by (s0 · i, depth) · (s,Ref) ,
where

4Note that there will be no node created for the top-node p✏ in PT.

11

• depth is the depth of this node in TPT and

• Ref is the set containing all references d, such that there is some ancestor of this node with
label (s�, d), (,) with s� ` s, as well as the reference depth, whenever s0 · i ` s.

Then, the set of winning strategies WS(PT) is the set of strategies ⌃ with arborescent reading T⌃

consistent with TPT; meaning that T⌃ has the same structure as TPT and such that each node labelled
with (sO,m) · (sP , {n1, . . . , nk}) in TPT is labelled with (sO,m) · (sP , ni) in T⌃, where i 2 {1, . . . , k}.

Example 34 Consider again the proof-tree PT from Example 12 for type � as before. We have,
TPT =

(✏, 0) · (1, {0})

(12, 1) · (3, {0})
@@��

(11, 1) · (1, {0})

(12, 2) · (111, {1})
@@��

(11, 2) · (2, {0})

(21, 3) · (111, {1, 2})

Thus, WS(PT) = {⌃1,⌃2}, where ⌃1 is the winning strategy from Example 24 and ⌃2 has the following
arborescent reading:

(✏, 0) · (1, 0)

(12, 1) · (3, 0)
@@��

(11, 1) · (1, 0)

(12, 2) · (111, 1)
@@��

(11, 2) · (2, 0)

(21, 3) · (111,1)

Note also, that these two strategies represent precisely the two �-terms computed in Example 16.

Proposition 35 If PT is a proof-tree for �, then WS(PT) is a finite set of winning strategies in the
arena A� = (M� , ⌧�). Furthermore,

WS(PT) = { ⌃ | ⌃ is a winning strategy in A� such that PT⌃ = PT }.

Proof First, we note that each ⌃ 2 WS(PT) is a set of legal positions in A� . In fact, by construction,
every sequence in S begins with s1 = ✏ and alternates O-moves with P-moves. Also every O-move
s0 · i is enabled by the immediate preceding P -move s0 in S. Furthermore, by the definition of Ref,
every P -move in S is enabled by some preceding O-move.

The conditions in Lemma 30, guaranteeing that ⌃ is in fact a winning strategy follow easily from
PT being a proof-tree. And finally, any winning strategy ⌃ such that PT⌃ = PT is such that T⌃ is
consistent with TPT. •

5.1 Some considerations on the expressiveness of both methods

We saw that the notions of proof-tree and winning strategy are essentially the same, but for references
to enabling variables, which are present in winning strategies and missing in proof-trees. In fact, a
winning strategy represents exactly one long normal inhabitant and consequently a finite family
of normal inhabitants of a type. On the other hand, a proof-tree represents a finite set of long
normal inhabitants, corresponding to a possibly bigger finite family of normal inhabitants, which
share important properties such as principality, etc. (cf. [7]).

As such, it is natural that, in the past, both methods have been used for similar purposes.
For instance, the formula-tree method was used in 2000, cf. [7], to characterize principal typings
of �-normal terms. An equivalent characterization in terms of game-semantics was given in 2011,

12

cf. [5]. Also, both methods have been used (respectively in 2002 and 2011) to present a concise proof
of Aoto’s theorem, which states that negatively non-duplicating types, have at most one normal
inhabitant (cf. [10] and [5]).

In fact, it seems as if most notions in the game-semantics approach translate easily to the formula-
tree approach. For instance, in [5], given a long inhabitant N of a type (typing), a binary relation
INij on the variables in N is defined by xINij y if and only if there is a subterm of N of the form
xN1 . . . Ni�1(�x1 . . . xj�1yxj+1 . . . xn.N

0)Ni+1 . . . Nm. This relation is used to define another binary
relation ⇡N on variables in N . Given two variables x and y, one has x ⇡N y i↵

• x = y;

• there are two variables z1 and z2 in N such that z1INij x, z2I
N
ij y and z1 ⇡N z2.

This relation is then recursively extended to a relation ⇡N on subterms of N , defining N1 ⇡N N2 i↵

• N1 = x1, N2 = x2 and x1 ⇡N x2;

• N1 = �x1.P1, N2 = �x2.P2, x1 ⇡N x2 and P1 ⇡N P2;

• N1 = x1P1 . . . Pn, N2 = x2Q1 . . . Qn, x1 ⇡N x2 and Pi ⇡N Qi, for i = 1, . . . , n.

Example 36 Consider N = �xyz.y(�u.x(y(�v1.u))(y(�v2.v2))(y(�v3.z)). For the subterms N1 =
y(�v1.u), N2 = y(�v2.v2) and N3 = y(�v3.z), one has N1 ⇡N N2, but N1 6⇡N N3.

Finally, based on this relation, a syntactic characterization of the inhabitants of negatively non-
duplicating types, called first-order copying terms is provided: a long normal inhabitant for its
principal type is first-order copying if every two subterms N1 and N2 are assigned the same type i↵
N1 ⇡N N2.

Example 37 The term N from the previous example is a long normal inhabitant for its principal
type (a ! a ! a ! b) ! ((b ! b) ! a) ! b ! a. All subterms N1, N2 and N3 are assigned
the same type a. Since N1 6⇡N N3, one concludes that the term N is not first-order copying, and
consequently no inhabitant of a negatively non-duplicating type.

Now, it can be easily seen that, in terms of proof-trees ⇡N translates directly to the identity
on trees. As such, one has N1 ⇡N N2 i↵ tN1 = tN2 . Consequently, the characterization of the
inhabitants of negatively non-duplicating typings, given in [5], can be expressed in the formula-tree
approach, replacing N1 ⇡N N2 by tN1 = tN2 .

Example 38 In fact, for the subterms in the previous example the relation ⇡N is easy to establish
by observing their corresponding proof-trees.

tN1 = tN2 =
p2

p21

and tN3 =
p2

p3

On the other hand, results that depend on the absence/presence of references to enabling variables,
cannot be transferred directly from one world to the other. As an example, it was shown in [27] that
it is possible to describe the set of normal inhabitants of a type, using an infinitary extension of the
concept of context-free grammar, which allows for an infinite number of non-terminal symbols as well
as production rules. The set of normal inhabitants corresponds then to the set of terms generated by
this, possibly infinitary, grammar plus all terms obtained from those by ⌘-reduction. Later, using
the formula-tree approach, it has been shown, cf. [12], that for every type � there is in fact a finite
context-free grammar G� from which all normal inhabitants of � can be obtained. The existence
of this grammar relies on the absence of references and it seems that there is no straightforward
counterpart to the construction of a finite grammar in terms of game-semantics.

13

6 Conclusions

In this paper we revisited two tools for studying inhabitation in the simply typed �-calculus. Both
methods explore the close relationship between the structure of types and their inhabitants and both
have been used to obtain new results, as well as significantly simplifying previous proofs of other,
already known, results.

Although defined in two very di↵erent contexts, the two approaches are very closely related. In
this paper we highlighted the links between these two approaches, which up to now were considered
separately, by gradually refining the notation, in order to easily define simple translation algorithms
between the two methods.

In spite of the fact that the two approaches are equivalent, they are not completely identical and
we briefly discussed how di↵erent problems may benefit from the features of one method or the other.

7 Bibliography

References

[1] T. Aoto. Uniqueness of normal proofs in implicational intuitionistic logic. J. of Logic, Lang. and
Inf., 8(2):217–242, 1999.

[2] A.A. Babaev and S.V. Solov’ev. A coherence theorem for canonical morphisms in cartesian
closed categories. Journal of Mathematical Sciences, 20:2263–2279, 1982.

[3] H.P. Barendregt. Lambda Calculi with Types. In S. Abramsky, Dov M. Gabbay, and T.S.E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages 117–309. Clarendon
Press, Oxford, 1992.

[4] Ch. Ben-Yelles. Type Assignment in the Lambda-Calculus: Syntax and Semantics. PhD thesis,
University College of Swansea, September 1979.

[5] P. Bourreau and S. Salvati. Game semantics and uniqueness of type inhabitance in the simply-
typed �-calculus. In TLCA’11, volume 6690 of LNCS, pages 61–75. Springer, 2011.

[6] Pierre Bourreau and Sylvain Salvati. A datalog recognizer for almost a�ne -cfgs. In Makoto
Kanazawa, András Kornai, Marcus Kracht, and Hiroyuki Seki, editors, MOL, volume 6878 of
Lecture Notes in Computer Science, pages 21–38. Springer, 2011.

[7] S. Broda and L. Damas. On the structure of normal �-terms having a certain type. In Proc. 7th
WoLLIC’2000, pages 33–43, 2000.

[8] S. Broda and L. Damas. A context-free grammar representation for normal inhabitants of types
in TA�. In EPIA’01, volume 2258 of LNCS, pages 321–334. Springer, 2001.

[9] S. Broda and L. Damas. Counting a type’s (principal) inhabitants. Fundam. Inform., 45(1-
2):33–51, 2001.

[10] S. Broda and L. Damas. Studying provability in implicational intuitionistic logic: the formula
tree approach. ENTCS, 67:131–147, 2002.

[11] S. Broda and L. Damas. Formula Tree Lab. http://www.dcc.fc.up.pt/~sbb/FTLab/ftlab/
ftlab.html, 2003.

[12] S. Broda and L. Damas. On long normal inhabitants of a type. J. Log. and Comput., 15:353–390,
June 2005.

[13] S. Broda, L. Damas, M. Finger, and P. Silva e Silva. The decidability of a fragment of BB’IW-
logic. Theor. Comput. Sci., 318(3):373–408, 2004.

14

[14] M.W. Bunder. Proof finding algorithms for implicational logics. Theoretical Computer Science,
232(12):165 – 186, 2000.

[15] Philippe de Groote. Towards abstract categorial grammars. In ACL, pages 148–155. Morgan
Kaufmann Publishers, 2001.

[16] I. Guessarian. Algebraic Semantics, volume 99 of LNCS. Springer, 1981.

[17] R. Harmer, M. Hyland, and P. Melliès. Categorical combinatorics for innocent strategies. In
LICS, pages 379–388, 2007.

[18] J.R. Hindley. Basic Simple Type Theory, volume 42 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1997.

[19] S. Hirokawa. Infiniteness of proof (↵) is polynomial-space complete. Theor. Comput. Sci., 206(1-
2):331–339, 1998.

[20] W.A. Howard. The formulas-as-types notion of construction. In J.P. Seldin and J.R. Hindley,
editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism, pages
479–490. Academic Press, 1980.

[21] A.D. Ker, H. Nickau, and C.-H. Luke Ong. Innocent game models of untyped lambda-calculus.
Theor. Comput. Sci., 272(1-2):247–292, 2002.

[22] Y. Komori and S. Hirokawa. The number of proofs for a BCK-formula. J. Symb. Log., 58(2):626–
628, 1993.

[23] G.E. Mints. Closed categories and the theory of proofs. Journal of Mathematical Sciences,
15:45–62, 1981.

[24] D. Prawitz. Natural deduction: a proof-theoretical study. PhD thesis, Almqvist & Wiksell, 1965.

[25] S. Salvati. Problmes de filtrage et problmes danalyse pour les grammaires catgorielles abstraites.
PhD thesis, Institut National Polytechnique de Lorraine, 2005.

[26] R. Statman. Intuitionistic propositional logic is polynomial-space complete. Theor. Comput.
Sci., 9:67–72, 1979.

[27] M. Takahashi, Y. Akama, and S. Hirokawa. Normal proofs and their grammar. Information and
Computation, 125(2):144–153, 1996.

[28] P. Urzyczyn. Inhabitation in typed lambda-calculi (a syntactic approach). In TLCA’97, volume
1210 of LNCS, pages 373–389. Springer, 1997.

[29] P. Urzyczyn. Inhabitation of low-rank intersection types. In TLCA’09, volume 5608 of LNCS,
pages 356–370. Springer, 2009.

15

