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Abstract

This paper gives a new presentation of Kozen’s proof of Kleene algebra completeness featured
in his article A completeness theorem for Kleene algebras and the algebra of regular events. A few
new variants are introduced, shortening the proof. Specifically, we directly construct an ε-free
automaton to prove an equivalent to Kleene’s representation theorem (implementing Glushkov’s
instead of Thompson’s construction), and we bypass the use of minimal automata by directly
implementing a Myhill-Nerode equivalence relation on the union of equivalent deterministic
automata.

1 Introduction

A Kleene algebra is an algebraic structure intended to model the equational theory of regular
languages. Several distinct axiomatizations serving that purpose exist in the literature, namely by
Salomaa [7] and Kozen [4]. Kozen’s axiomatization introduces two equational implications similar to
Salomaa’s inference rules but with the advantage of being sound over several natural interpretations.

This paper deals with Kozen’s axiomatization, giving a new presentation of the proof of complete-
ness featured in [4]. While we essentially follow Kozen’s ideas, we introduce a few new variants, short-
ening the proof and avoiding the need for some technical considerations. Specifically, we implement
Glushkov’s instead of Thompson’s construction to prove an equivalent to Kleene’s representation
theorem (thereby avoiding the need for implementing the ε-elimination during determinization,
by directly constructing an ε-free automaton), and we bypass the use of minimal automata by
directly implementing a Myhill-Nerode equivalence relation on the union of equivalent deterministic
automata. In our presentation we also try to make more explicit some reasoning steps that we felt
were somewhat obscure.

Braibant and Pous [1] formalized what is essentially Kozen’s proof within the Coq proof assistant
but used an improved version of Thompson’s construction, the ε-follow automaton of Ilie and Yu [3].
Related work also includes a derivative based proof by Kozen [5] and completeness proofs for weak
versions of Kozen’s axioms that allow the ommission of one of the equational implications (see [6]
and references therein).

The rest of this paper is divided into three sections. The first two give the background theory
needed for the proof: the first section presents Kozen’s axiomatization of Kleene algebra and some
of its more relevant properties, while the second one recalls some important definitions and facts
about regular languages, regular expressions and finite automata. We give particular emphasis
to the connection between the combinatorial and the algebraic approach to automata, which is
something that lies at the core of Kozen’s proof but is not explicitly pointed out there. Finally, in
the third section we prove completeness, pointing out where our approach differs from Kozen’s.

2 Kleene Algebra

AKleene algebra (KA) as defined in [4] is an algebraic structure (K,+, ·, ∗, 0, 1) such that (K,+, ·, 0, 1)
is an idempotent semiring, i.e. satisfies axioms (1)-(9) below, and ∗ satisfies axioms (10)-(13). The
natural order ≤ in (K,+, ·, 0, 1) is defined by a ≤ b iff a+b = b. As usual, we will omit the operator ·
whenever it does not give rise to any ambiguity and use the following precedence over the operators:
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+ < · < ∗.

(1) a+ (b+ c) = (a+ b) + c
(2) a+ b = b+ a
(3) a+ 0 = 0 + a = a
(4) a+ a = a
(5) a(bc) = (ab)c
(6) a1 = 1a = a
(7) a(b+ c) = ab+ ac

(8) (a+ b)c = ac+ bc
(9) 0a = a0 = 0
(10) 1 + aa∗ ≤ a∗
(11) 1 + a∗a ≤ a∗
(12) b+ ax ≤ x → a∗b ≤ x
(13) b+ xa ≤ x → ba∗ ≤ x

It is easy to check that ≤ is indeed a partial order. Reflexivity is simply the indempotence of
+: for all a ∈ K, a+ a = a, ie a ≤ a. Antisymmetry comes from the fact that, if a ≤ b and b ≤ a,
b = a + b = b + a = a, and transitivity from the fact that, if a ≤ b and b ≤ c, i.e. a + b = b
and b + c = c, a + c = a + (b + c) = (a + b) + c = b + c = c, hence a ≤ c. It is also monotone
with respect to the three Kleene algebra operators. In fact, suppose that a ≤ b, i.e. a + b = b.
Then (a + c) + (b + c) = (a + b) + c = b + c, hence a + b ≤ b + c, and ac + bc = (a + b)c = bc,
hence ac ≤ bc (and analogously ca ≤ cb). Also, using the monotonicity of + and · plus axiom (10),
1 + ab∗ ≤ 1 + bb∗ ≤ b∗, hence, by axiom (12), a∗ ≤ b∗. Two more important properties of ≤ are the
fact that 0 is the least element for ≤, since a+ 0 = a for all a ∈ K, and the following lemma.

Lemma 1. In an idempotent semiring, a+ b ≤ c ⇐⇒ a ≤ c and b ≤ c.

Proof. Suppose that a+b ≤ c. From monotonicity and the fact that 0 ≤ b follows that a ≤ a+b ≤ c;
and similarly b ≤ c. On the other hand, if a ≤ c and b ≤ c, by monotonicity a+ b ≤ c+ c = c.

Axioms (10)-(13), the ones that rule the behaviour of ∗, are equivalent to the claim that, given
elements a, b ∈ K, a∗b is the least solution of b + ax ≤ x and ba∗ the least solution of b + xa ≤ x.
Hence in a Kleene algebra a∗ gets determined by the idempotent semiring structure as the least
solution of 1 + ax ≤ x (or 1 + xa ≤ x), which proves the following result.

Lemma 2. Given an idempotent semiring, one can define at most one unary operation ∗ that turns
it into a Kleene algebra.

The next lemma gives some basic equalities and inequalities that are true in every Kleene algebra.

Lemma 3. For all a in a Kleene algebra, 1 ≤ a∗, a ≤ a∗, a∗a∗ = a∗, (a∗)∗ = a∗, 1 + aa∗ = a∗,
1 + a∗a = a∗, 0∗ = 1 and 1∗ = 1.

Proof. Applying lemma 1 to axiom (10) yields 1 ≤ a∗ and aa∗ ≤ a∗. From these follows, using
monotonicity, that a ≤ aa∗ ≤ a∗. From 1 ≤ a∗ also follows that a∗ ≤ a∗a∗; to prove the converse
inequality, note, using lemma 1, that a∗ + aa∗ ≤ a∗, hence, applying axiom (12), a∗a∗ ≤ a∗.
Therefore a∗a∗ = a∗. Since a ≤ a∗ for all a, a∗ ≤ (a∗)∗; on the other hand, applying axiom (12)
to 1 + a∗a∗ ≤ a∗ gives (a∗)∗ ≤ a∗. Hence (a∗)∗ = a∗. To prove 1 + aa∗ = a∗ (the proof for
1 + a∗a = a∗ is analogous), note that the inequality 1 + aa∗ ≤ a∗ is simply axiom (10); from it
follows, by monotonicity, that 1 + a(1 + aa∗) ≤ 1 + aa∗, hence, applying axiom (12), we have the
converse inequality a∗ ≤ 1 + aa∗. Putting a = 0 in 1 + aa∗ = a∗ yields 0∗ = 1 + 0 · 0∗ = 1. We
already know that 1 ≤ 1∗; to prove the converse inequality, note that 1 + 1 · 1 ≤ 1 implies, by axiom
(12), 1∗ = 1∗ · 1 ≤ 1. Hence 1∗ = 1.

Finally, we state a few important results that will be needed in the proof later on. Proofs for i,
ii and iii, which we include for the sake of completeness, can be found in [4].
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Lemma 4. For all a and b in a Kleene algebra,
i. ax = xb → a∗x = xb∗;
ii. (ab)∗a = a(ba)∗;
iii. (a+ b)∗ = a∗(ba∗)∗;
iv. (1 + a)∗ = a∗.

Proof. i. Suppose ax = xb. From ax ≤ xb follows, by monotonicity, axb∗ ≤ xbb∗. By axiom (10)
and distributivity, x + xbb∗ ≤ xb∗. Therefore, by monotonicity, x + axb∗ ≤ x + xbb∗ ≤ xb∗, and
hence, by (12), a∗x ≤ xb∗. The converse implication follows from a symmetric argument using (11)
and (13).

ii. Follows from i. since (ab)a = a(ba).

iii. By monotonicity and the previous lemma, a∗(ba∗)∗ ≤ (a+b)∗((a+b)(a+b)∗)∗ ≤ (a+b)∗((a+
b)∗)∗ ≤ (a + b)∗(a + b)∗ ≤ (a + b)∗. The converse inequality follows from axiom (12) noting that
1 + (a+ b)a∗(ba∗)∗ = 1 + aa∗(ba∗)∗+ ba∗(ba∗)∗ ≤ a∗(ba∗)∗, since it can be seen, using monotonicity
and the previous lemma, that 1 ≤ a∗(ba∗)∗, aa∗(ba∗)∗ ≤ a∗(ba∗)∗ and ba∗(ba∗)∗ ≤ (ba∗)∗ ≤ a∗(ba∗)∗.

iv. Using iv. we have (1 + a)∗ = 1∗(a1∗)∗ = 1(a1)∗ = a∗.

3 Regular Languages, Regular Expressions and Automata

Let Σ be a finite alphabet. The languages over Σ with union for +, language concatenation for ·,
Kleene star for ∗, ∅ for 0 and {ε} for 1 form a Kleene algebra. We denote by RegΣ the smallest
subalgebra (subset which is closed for +, · and ∗) that contains 0, 1 and {σ} for all σ ∈ Σ. Its
elements are called the regular languages, and are precisely the languages that can be finitely
generated from 0, 1, {σ} (σ ∈ Σ) and operators +, ·, ∗. The regular languages are represented in
the natural way by the regular expressions, which are the formal terms generated by the grammar

α → 0 | 1 | σ | α+ α | α · α | α∗ (σ ∈ Σ).

Formally, given a regular expression α, the language L(α) represented by α is inductively defined
as follows,

L(σ) = {σ}
L(0) = ∅
L(1) = {ε}

L(α+ β) = L(α) ∪ L(β)
L(αβ) = L(α)L(β)
L(α∗) = L(α)∗.

The empty word operator ε on languages is defined by ε(L) = 1 if ε ∈ L and ε(L) = 0 otherwise.
An analogous operator is defined on regular expressions in the natural way by ε(α) = ε(L(α)). An
alternative inductive definition is

ε(σ) = 0
ε(0) = 0
ε(1) = 1

ε(α+ β) = ε(α) + ε(β)
ε(αβ) = ε(α)ε(β)
ε(α∗) = 1.

The regular languages are precisely the languages accepted by a finite automaton. There are
three widely used classes of finite automata, all of which have the same power of expression despite
their increasing generality: DFAs (deterministic finite automata), NFAs (nondeterministic finite
automata) and ε-NFAs (nondeterministic finite automata with epsilon transitions). We recall that,
considering a fixed alphabet Σ, a DFA is a tuple A = (Q, q0, δ, F ) where Q is a finite set of states,
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q0 ∈ Q the initial state, F ⊆ Q a set of final states, and δ : Q×Σ −→ Q the transition function (we
say that in A there is a transition by σ from state q to state δ(q, σ)). An NFA is a generalized DFA
in which we allow the possibility of more than one initial state and of multiple (or none) transitions
by the same symbol: instead of q0 we consider a non-empty set Q0 ⊆ Q of initial states, and the
transition function δ : Q× Σ −→ P(Q) now takes a state and symbol to a set of states. Finally, in
an ε-NFA the transition function δ : Q×Σ∪{ε} −→ P(Q) allows also for the possibility of making
“spontaneous” transitions by the empty word ε. In each of these automata, we say that a word x can
be read from state i to state j iff there is a sequence of transitions i = q1 −→ q2 −→ · · · −→ qk = j
in the automaton such that the concatenation of transition symbols (letters in Σ and/or the empty
word) in the sequence is precisely x. The language accepted by a state q is the set of words that
can be read from q to a final state; the language accepted by an automaton A, denoted by L(A),
is the set of words that can be read from an initial state to a final state. It is clear that DFAs
are a particular case of NFAs and NFAs a particular case of ε-NFAs. To prove that in fact all
three classes of automata have the same power of expression, there are standard constructions that
allow to go from an ε-NFA to an NFA (epsilon elimination) and from an NFA to a DFA (subset
construction) while preserving the accepted language. There are also a number of algorithms that
convert from regular expressions to automata representing the same language (such as Thompson’s,
Brzozowski’s, Glushkov’s and Antimirov’s algorithms) and the other way around (state elimination
algorithm, MNY algorithm). For an overview of these topics we direct the reader to [?].

There is a natural correspondence between automata seen as tuples (Q,Q0, δ, F ) and the set
of tuples (u,A, v) where A is an Q × Q matrix with entries in P({ε} ∪ Σ) and u and v are Q × 1
vectors with entries in {0,1}: A, called the transition matrix, encodes Q and δ by interpreting its
(p, q) entry as the set of transition symbols taking state p to state q, whereas u and v, called the
initial states vector and final states vector, are the characteristic vectors of Q0 and F . Note that
the transition matrix is uniquely written as a sum A = J +

∑
σ∈Σ σAσ where J and the Aσ are 0-1

matrices. The automaton is an NFA if J is the zero matrix, and a DFA if, besides being an NFA, u
and all the rows in Aσ have exactly one entry equal to 1, in which case δ(q, σ) is the column index
corresponding to the only 1 in the qth column of Aσ. Besides giving an alternative way to present
an automaton, this new approach allows an algebraic characterization of its accepted language. It
is easy to check that, considering the usual matrix product, the (p, q) entry of An is the set of words
that can be read in (u,A, v) from state p to state q using n transitions. Thus, if we define A∗ to be
I +A+A2 + · · · , we have that the (p, q) entry of A∗ is the set of words that can be read from state
p to state q, and the language accepted by (u,A, v) is precisely uTA∗v, the union of languages that
can be read from an initial state to a final state.

Two automata, states or regular expressions are said to be language equivalent if they ac-
cept/represent the same language. Let A = (Q, δ, F ) be a deterministic transition system, i.e., a
DFA without a defined start state. A Myhill-Nerode equivalence relation on A is an equivalence
relation ≡ on Q such that, if p ≡ q, then p ∈ F ⇔ q ∈ F and δ(p, σ) ≡ δ(q, σ) for all σ ∈ Σ. Given
such an equivalence relation one can construct the quotient transition system (Q/≡, δ′, {[q] | q ∈ F})
where δ′([q], σ) = [δ(q, σ)]. In this quotient transition system, the language accepted by [q] is
precisely the language accepted by q in the original system. This shows in particular that two
states related by a Myhill-Nerode equivalence relation accept the same language. The converse also
holds, since the equivalence relation p ≡ q iff p and q accept the same language is Myhill-Nerode.
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4 Completeness of the KA Axioms

Kozen’s completeness theorem states the completeness of the KA axioms for the equational theory
of regular languages:

Theorem (Kozen). If two regular expressions represent the same language, their equality is provable
from the KA axioms.

The proof works with elements of FΣ, the free Kleene algebra on generators Σ, which is
constructed taking the quotient of the regular expressions modulo provable equivalence by the
KA axioms. One checks that this quotient is indeed a Kleene algebra with the operations induced
by the syntactic operations in the regular expressions. Furthermore, since all regular expressions in
the same equivalence class represent the same language, it makes sense to talk about the language
represented by an element α ∈ FΣ, denoted by L(α). This gives a natural Kleene algebra surjective
homomorphism between FΣ and RegΣ. What the theorem states is that this homomorphism is in
fact also injective.

The concept that plays a central role in the proof is that of a finite automaton over FΣ, an
object analogous to the usual finite automata that is able to recognize a certain element of FΣ. The
definition of automata in this context, and more generally in the context of an arbitrary Kleene
algebra, is motivated by the algebraic approach to automata theory presented above, and relies
crucially on some structure on the matrices over that Kleene algebra.

4.1 Matrices over a Kleene Algebra

It is easy to check that, if K is a Kleene algebra, the usual sum and product between matrices
over K satisfy the axioms of an idempotent semiring (with the zero matrix in the role of 0 and
the identity matrix in the role of 1) as long as the operations are defined between the operands.
In particular, M(n,K) is an idempotent semiring for every n ∈ N. If K is the set of languages
over a certain alphabet, one can aditionally define a unary ∗ operation for square matrices, as done
above, by M∗ = I + M + M2 + · · · . It is straightforward to check that this definition satisfies
the ∗ Kleene algebra axioms, turning M(n,K) into a Kleene algebra. In the case of a general K,
such definition does not apply, but an alternative inductive definition for ∗ is possible (which, by
Lemma 2, coincides with the above definition when K is the set of languages over some alphabet).
We part slightly from the definition given by Kozen, preferring the more symmetric approach used
by Conway in [2]. For 1 × 1 matrices, we simply define [a]∗ = [a∗], turningM(1,K) into a Kleene
algebra isomorphic to K. Having defined ∗ for matrices of order up to n, we partition each matrix
M of order n+ 1 into submatrices

M =

[
A B

C D

]
so that A and D are square and define

M∗ =

[
(A+BD∗C)∗ A∗B(D + CA∗B)∗

D∗C(A+BD∗C)∗ (D + CA∗B)∗

]
.

We then check that this definition satisfies the ∗ KA axioms, so that M(n + 1,K) is a Kleene
algebra. It follows, by Lemma 2, that the definition of ∗ does not depend on the partitions chosen.
By induction hypothesis, the operator ∗ satisfies the KA axioms for matrices of dimension less than
n + 1. To show I + MM∗ ≤ M∗ (the proof for I + M∗M ≤ M∗ is analogous), note that, setting
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E = A+BD∗C and F = D + CA∗B, this inequality reduces to the four inequalities

I +AE∗ +BD∗CE∗ ≤ E∗ ⇔ I + EE∗ ≤ E∗

AA∗BF ∗ +BF ∗ ≤ A∗BF ∗ ⇔ (AA∗ + I)BF ∗ ≤ A∗BF ∗

CE∗ +DD∗CE∗ ≤ D∗CE∗ ⇔ (I +DD∗)CE∗ ≤ D∗CE∗

I + CA∗BF ∗ +DF ∗ ≤ F ∗ ⇔ I + FF ∗ ≤ F ∗

which follow from axiom (10) and monotonicity. We now show that Y + MX ≤ X → M∗Y ≤ X
(the proof for Y +XM ≤ X → YM∗ ≤ X is analogous). Let

X =

[
X1 X2

X3 X4

]
and Y =

[
Y1 Y2

Y3 Y4

]
and assume that Y +MX ≤ X, that is,

Y1 +AX1 +BX3 ≤ X1 Y3 + CX1 +DX3 ≤ X3

Y2 +AX2 +BX4 ≤ X2 Y4 + CX2 +DX4 ≤ X4.

Then
AX1 +BX3 ≤ X1 CX1 +DX3 ≤ X3

AX2 +BX4 ≤ X2 CX2 +DX4 ≤ X4,

hence
A∗BX3 ≤ X1 D∗CX1 ≤ X3

A∗BX4 ≤ X2 D∗CX2 ≤ X4,

and thus, substituting in the first set of equations,

Y1 +AX1 +BD∗CX1 ≤ X1 Y3 +DX3 + CA∗BX3 ≤ X3

Y2 +AX2 +BD∗CX2 ≤ X2 Y4 +DX4 + CA∗BX4 ≤ X4,

hence

(A+BD∗C)∗Y1 ≤ X1 ⇔ E∗Y1 ≤ X1 (D + CA∗B)∗Y3 ≤ X3 ⇔ F ∗Y3 ≤ X3

(A+BD∗C)∗Y2 ≤ X2 ⇔ E∗Y2 ≤ X2 (D + CA∗B)∗Y4 ≤ X4 ⇔ F ∗Y4 ≤ X4

and, substituting in the second set of equations,

AX1 +BF ∗Y3 ≤ X1 DX3 + CE∗Y1 ≤ X3

AX2 +BF ∗Y4 ≤ X2 DX4 + CE∗Y2 ≤ X4

hence
A∗BF ∗Y3 ≤ X1 D∗CE∗Y1 ≤ X3

A∗BF ∗Y4 ≤ X2 D∗CE∗Y2 ≤ X4

From the fifth and the last sets of equations follows

E∗Y1 +A∗BF ∗Y3 ≤ X1 D∗CE∗Y1 + F ∗Y3 ≤ X3

E∗Y2 +A∗BF ∗Y4 ≤ X2 D∗CE∗Y2 + F ∗Y4 ≤ X4,

which is precisely M∗Y ≤ X.
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4.2 Finite Automata

A finite automaton over a Kleene algebra K is a triple A = (u,A, v) where u, v ∈ {0, 1}n and
A ∈ M(n,K) for some n ∈ N. By analogy with the algebraic definition of automaton given in
Section 3, we say that the matrix indices are the automaton states, and call A the transition
matrix, u the initial states vector and v the final states vector. The element of K accepted by A is
uTA∗v.

We now consider the case where K = FΣ. The automaton A is said to be simple if A can be
expressed as a sum A = J +

∑
σ∈Σ σAσ where J and the Aσ are 0-1 matrices. Note that, when it

exists, this decomposition is unique. A is said to be ε-free is J is the zero matrix, and deterministic
if it is simple, ε-free, and u and all rows of Aσ have exactly one 1.

A simple automaton A = (u,A, v) encodes in a natural way an ε-NFA A′ = (u′, A′, v′) where
u′, A′ and v′ are obtained from u, A and v by simply replacing each element of FΣ by the regular
language is represents. Since this correspondence is a homomorphism between FΣ and RegΣ,
L(A′) = u′TA′∗v′ = L(uTA∗v): the language accepted by A′ is the language represented by uTA∗v.
It is also clear that A′ is an NFA exactly when A is ε-free, and a DFA when A is deterministic.

We start by proving the equivalent of Kleene’s representation theorem for free regular expres-
sions: that every element of FΣ is accepted by some automaton. In his article, Kozen does so
by simulating Thompson’s construction to build a simple automaton that accepts a given FΣ

element. He then gets rid of ε-transitions and mimics the subset construction to obtain an equivalent
deterministic automaton. Here we will, following the same ideas, directly construct an ε-free simple
automata by emulating Glushkov’s construction (see [?] for a description of Glushkov’s automaton).

Lemma 5. For every free regular expression α there is an ε-free simple automaton A = (u,A, v)
such that uTA∗v = α.

Proof. We proceed by structural induction. For each free regular expression α we will obtain a
corresponding ε-free simple automaton of the form

Gα =

([
1

0

]
,

[
0 a

0 A

]
,

[
ε(α)

v

])
where A is a square matrix, a a row vector and the partitions are compatible with the matrix
operations. Each automaton will thus admit a single start state to which no transitions arrive and
which is a final state iff ε(α) = 1. For the base case, we present automata satisfying these conditions
that accept 0, 1 and a for all a ∈ Σ:

G0 =

([
1
0

]
,

[
0 0
0 0

]
,

[
0
0

])
, G1 =

([
1
0

]
,

[
0 0
0 0

]
,

[
1
0

])
, Ga =

([
1
0

]
,

[
0 a
0 0

]
,

[
0
1

])
.

Suppose now that α and β are accepted by the automata

Gα =

([
1

0

]
,

[
0 a

0 A

]
,

[
ε(α)

v

])
, Gβ =

([
1

0

]
,

[
0 b

0 B

]
,

[
ε(β)

t

])
so that

α =
[

1 0
] [ 0 a

0 A

]∗ [
ε(α)

v

]
=
[

1 0
] [ 1 aA∗

0 A∗

] [
ε(α)

v

]
= ε(α) + aA∗v

β =
[

1 0
] [ 0 b

0 B

]∗ [
ε(β)

t

]
=
[

1 0
] [ 1 bB∗

0 B∗

] [
ε(β)

t

]
= ε(β) + bB∗t.
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Then α+ β is accepted by the automaton

Gα+β =

 1

0

0

 ,
 0 a b

0 A 0

0 0 B

 ,
 ε(α+ β)

v

t


because

[
1 0 0

]  0 a b

0 A 0

0 0 B

∗  ε(α+ β)

v

t


=
[

1 0 0
]  1 aA∗ bB∗

0 A∗ 0

0 0 B∗

 ε(α) + ε(β)

v

t


= ε(α) + ε(β) + aA∗v + bB∗t = α+ β;

αβ is accepted by the automaton

Gαβ =

 1

0

0

 ,
 0 a ε(α)b

0 A vb

0 0 B

 ,
 ε(αβ)

ε(β)v

t


because

[
1 0 0

]  0 a ε(α)b

0 A vb

0 0 B

∗  ε(αβ)

ε(β)v

t


=
[

1 0 0
]  1 aA∗ aA∗vbB∗ + ε(α)bB∗

0 A∗ A∗vbB∗

0 0 B∗

 ε(α)ε(β)

ε(β)v

t


= ε(α)ε(β) + aA∗ε(β)v + aA∗vbB∗t+ ε(α)bB∗t

= ε(α)ε(β) + (aA∗v)ε(β) + (aA∗v)(bB∗t) + ε(α)(bB∗t)

= (ε(α) + aA∗v)(ε(β) + bB∗t) = αβ;

and α∗ is accepted by the automaton

Gα∗ =

([
1

0

]
,

[
0 a

0 A+ va

]
,

[
1

v

])
because, using Lemma 3 and Lemma 4,[

1 0
] [ 0 a

0 A+ va

]∗ [
1

v

]
=
[

1 0
] [ 1 a(A+ va)∗

0 (A+ va)∗

] [
1

v

]
= 1 + a(A+ va)∗v

= 1 + aA∗(vaA∗)∗v

= 1 + (aA∗v)(aA∗v)∗ = (aA∗v)∗ = (ε(α) + aA∗v)∗ = α∗.
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The next step is to prove that for each ε-free simple automaton there is a deterministic automaton
that accepts the same element of FΣ. We reproduce Kozen’s proof, which works by implementing
the subset construction algebraically.

Lemma 6. For every simple ε-free automaton (u,A, v) there is a deterministic automaton (û, Â, v̂)
such that uTA∗v = ûT Â∗v̂.

Proof. Let (u,A, v), with A =
∑

σ∈Σ σAσ, be a simple ε-free automaton with states Q, where Q
is of size n. We identify each element s ∈ P(Q) with its characteristic {0, 1}n vector, so that in
the determinized automaton each state s makes a transition by σ to sTAσ. The transformation
between states in Q and states in P(Q) will be codified by the 0-1 P(Q)×Q matrix X whose sth
row is sT . Let es be the P(Q)× 1 vector with 1 in position s and 0 elsewhere. We define Âσ as the
P(Q) × P(Q) matrix whose sth row is eT

sTAσ
, and set Â =

∑
σ∈Σ σÂσ. We then have the relation

XA = ÂX because, for each s ∈ P(Q),

eTsXA = sTA =
∑
σ∈Σ

σ(sTAσ) =
∑
σ∈Σ

σ(eTsTAσX) =
∑
σ∈Σ

σ(eTs ÂσX) = eTs ÂX.

If we aditionally define û = eu and v̂ = Xv we have that the automaton (û, Â, v̂) is deterministic
and also accepts the same FΣ element as (u,A, v): the proof rests on the fact that, by Lemma 3,
XA = ÂX implies XA∗ = Â∗X, hence

ûT Â∗v̂ = eTu Â
∗Xv = eTuXA

∗v = uTA∗v.

From the two previous lemmas follows that for every α ∈ FΣ there is a deterministic finite
automaton A = (u,A, v) such that uTA∗v = α.

4.3 Myhill-Nerode Equivalence Relations and Completeness

Suppose now that α and β belonging to FΣ are language equivalent. We already know that there are
deterministic automata A = (u,A, v) and B = (s,B, t) accepting α and β, i.e. such that uTA∗v = α
and sTB∗t = β. We will show that α and β are the same, thereby proving completeness, by
algebraically implementing the notion of a Myhill-Nerode equivalence relation on the union of states
of A and B and showing that in the resulting quotient transition system the class corresponding to
the initial states of A and B accepts the same element of FΣ as both the original automata. Let
A′ = (Q1, δ1, a0, F1) and B′ = (Q2, δ2, b0, F2) be the corresponding DFAs. The language accepted
by both A′ and B′ is L(α) = L(β). Put Q = Q1 ∪ Q2, where we can assume that Q1 and Q2 are
disjoint, δ = δ1 ∪ δ2 and F = F1 ∪ F2. Since a0 and b0 are language equivalent, we know that there
is a Myhill-Nerode equivalence relation ≡ on Q such that a0 ≡ b0. Writing A =

∑
σ∈Σ σAσ and

B =
∑

σ∈Σ σBσ, consider

Mσ =

[
Aσ 0

0 Bσ

]
, M =

∑
σ∈Σ

σMσ and y =

[
v
t

]
.

We now algebraically implement the quotient by ≡. Let Y be the Q×Q/≡ matrix whose [q]th
column is the characteristic vector of [q], where [q] is the equivalence class of the state q. Note that
the partition Q = Q1 ∪Q2 induces a natural partition

Y =

[
YA
YB

]
.
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Let eq be the Q× 1 vector with 1 in position q and 0 otherwise, and e[q] the Q/≡× 1 vector with
1 in position [q] and 0 otherwise. Note that, by the definition of Y , eTq Y = eT[q]. For each σ ∈ Σ

we define Mσ as the Q/≡ × Q/≡ matrix whose [q]th row is eT[δ(q,σ)]; this is well defined since ≡ is
Myhill-Nerode. Put M =

∑
σ∈Σ σMσ and let y be the Q/≡× 1 vector whose [q]th entry is equal to

the qth entry of y; once again this is well defined because ≡ is Myhill-Nerode. We then have that
Y y = y and MY = YM , since, for any q ∈ Q,

eTqMY =
∑
σ∈Σ

σeTqMσY =
∑
σ∈Σ

σeTδ(q,σ)Y =
∑
σ∈Σ

σeT[δ(q,σ)] =
∑
σ∈Σ

σeT[q]Mσ =
∑
σ∈Σ

σeTq YMσ = eTq YM.

Hence [
YAy
YBy

]
=

[
v
t

]
and, by Lemma 4,

M∗Y = YM
∗ ⇔

[
A∗YA
B∗YB

]
=

[
YAM

∗

YBM
∗

]
.

Hence, noting that u = ea0 and s = eb0 ,

α = uTA∗v = eTa0A
∗YAy = eTa0YAM

∗
y = eT[a0]M

∗
y

= eT[b0]M
∗
y = eTb0YBM

∗
y = eTb0B

∗YBy = sTB∗t = β,

which concludes the proof.
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